首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Recent advances in our understanding of both the regulation of components of the translational machinery and the upstream signalling pathways that modulate them have provided important new insights into the mechanisms by which hormones, growth factors, nutrients and cellular energy status control protein synthesis in mammalian cells. The importance of proper control of mRNA translation is strikingly illustrated by the fact that defects in this process or its control are implicated in a number of disease states, such as cancer, tissue hypertrophy and neurodegeneration. Signalling pathways such as those involving mTOR (mammalian target of rapamycin) and mitogen-activated protein kinases modulate the phosphorylation of translation factors, the activities of the protein kinases that act upon them and the association of RNA-binding proteins with specific mRNAs. These effects contribute both to the overall control of protein synthesis (which is linked to cell growth) and to the modulation of the translation or stability of specific mRNAs. However, important questions remain about both the contributions of individual regulatory events to the control of general protein synthesis and the mechanisms by which the translation of specific mRNAs is controlled.  相似文献   

3.
4.
Cytokinin signal transduction in plant cells   总被引:8,自引:0,他引:8  
  相似文献   

5.
In humans injured myocardium cannot avert the onset and progression of ventricular dysfunction because of limited regenerative ability of myocytes. Although limited renaissance of cardiomyocytes has been reported in human infarcted hearts, it is generally accredited that non-functional fibrous tissue replaces the dead myocardium. High cardiovascular morbidity and dearth of donor hearts warrant a constant hunt for radically different approach to treat heart failure. Pluripotent stem (PS) cells possess the ability to produce functional cardiomyocytes for clinical applications and drug development, which may provide the answer to this problem. Although progress has been made in differentiating human PS cells into cardiomyocytes, however, the in vitro differentiation of pluripotent cells into cardiomyocytes involves a poorly defined, inefficient and relatively non-selective process. A thorough understanding of signaling pathways would tender a roadmap for the streamlined development of in vitro cardiac differentiation strategies. The ability to obtain unlimited numbers of human cardiomyocytes would improve development of cell-based therapies for cardiovascular diseases, facilitate the study of cardiovascular biology and improve the early stages of drug discovery. Here in this review, we highlight the interacting endogenous cellular signals and their modulators involved in directing the human PSCs towards cardiac differentiation.  相似文献   

6.
7.
Breast cancer is one of the most common cancers and affects nearly 1 in 7 women. We have demonstrated that targeting the CaM-K, Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways may be a novel approach to treat drug resistant breast cancer and eliminate cancer stem cells. Common chemotherapeutic drugs, such as doxorubicin, induce the CaM-K pathway which in turn, leads to activation of anti-apoptotic pathways such as Raf/MEK/ERK and PI3K/Akt. Some drug resistant breast cancers exhibited increased expression of CaM-KIV. CaM-K inhibitors synergized with doxorubicin to induce the death of all drug resistant breast cancers examined. Since CaM-Ks are known to result in activation of the Raf/MEK/ERK and PI3K/Akt pathways, we investigated the roles that these pathways exert in breast cancer drug resistance. CaM-K inhibitors suppressed ERK activation in response to doxorubicin in both drug sensitive and resistant cells. CaM-K inhibitors also suppressed ERK activation in response to FBS in the drug resistant cells suggesting dependence on the CaM-K pathway for proliferation. Both the Raf/MEK/ERK and PI3K/Akt pathways are involved in breast cancer drug resistance as they were detected at elevated, activated levels in the drug resistant cells and introduction of constitutively activated forms of Raf-1 and Akt-1 resulted in drug resistance. Drug resistant CICs were often hypersensitive to MEK and mTOR inhibitors, implicating important roles of these pathways in drug resistance. In summary, targeting these pathways may enhance therapy of drug resistant breast cancer and eliminate CICs.Breast cancer therapy is often limited by the occurrence of drug resistance which may be due to the re-emergence of CICs. The studies outlined in this proposal may identify a potentially novel role for CaM-Ks in drug resistance and metastasis and may lead to improved approaches to treat breast tumors by eliminating CICs. Our proposed studies are highly innovative as we will determine the involvement of the CaM-K pathway in breast cancer drug resistance, metastasis and CIC formation. Similar approaches have not been previously performed. Our studies may result in the discovery of novel methods to treat breast cancer by targeting the CaM-K pathway in combination with currently used and approved chemotherapeutic regimens to eliminate CICs which may be responsible for both drug resistance and metastasis.  相似文献   

8.
The pleiotropic effect of cytokines has been well documented, but the effects triggered by unique cytokines in different T cell types are still under investigation. The most relevant findings on the influence of interleukin-4 (IL-4) on T cell activation, differentiation, proliferation, and survival of different T cell types are discussed in this review. The main aim of our study was to correlate the observed effect with the corresponding molecular mechanism induced on IL-4/IL-4R interaction, in an effort to understand how the same extracellular stimuli can trigger a wide spectrum of signaling pathways leading to different responses in each T cell type.  相似文献   

9.
Upregulation of immunoglobulin D-specific receptors (IgD-R) on CD4+ T cells may facilitate their interaction with specific carbohydrate moieties uniquely associated with membrane IgD on B cells. Previous studies have shown that upregulation of IgD-R facilitates cognate T-B cell interactions by mediating bidirectional signaling resulting in increased antibody responses and clonal expansion of antigen-specific T cells. Murine T hybridoma cells, 7C5, constitutively express IgD-R, as has been confirmed by staining with biotinylated IgD. Earlier studies have shown that inhibitors of protein tyrosine kinase (PTK) completely prevented upregulation of IgD-R in response to oligomeric IgD, suggesting that cross-linking of IgD-R may induce signal transduction and functional consequences through one or more PTK activation pathways, leading to upregulation of IgD-R. In the present study we show that cross-linking of IgD-R by oligomeric IgD indeed results in (a) T cell activation as seen by tyrosine phosphorylation of several intracellular proteins, (b) tyrosine phosphorylation of p56 Lck and PLC-gamma in 7C5 T hybridoma cells, and (c) phosphorylation of an approximately 29-kDa band that exhibits strong affinity for IgD. We analyzed tyrosine phosphorylation of p56 Lck and PLC-gamma in BALB/c splenic T cells that were exposed to oligomeric IgD both in vivo and in vitro. In vitro cross-linking as well as in vivo followed by in vitro cross-linking of IgD-R resulted in enhanced phosphorylation of p56 Lck and moderate tyrosine phosphorylation of PLC-gamma. These results suggest that interactions between IgD-R and IgD mediate signal transduction and support our previous findings that IgD-R+ T cells enhance cognate T cell-B cell interactions and antibody production.  相似文献   

10.
Effects of LHRH-analogues on mitogenic signal transduction in cancer cells   总被引:6,自引:0,他引:6  
The expression of luteinizing hormone-releasing hormone (LHRH) and its receptors has been demonstrated in a number of human malignant tumors, including cancers of the breast, ovary, endometrium and prostate. These findings suggest the presence of an autocrine regulatory system based on LHRH. Recent studies in our laboratory have demonstrated that the function of LHRH produced by ovarian cancer cells is the inhibition of their proliferation. Dose-dependent antiproliferative effects of LHRH-agonists have been observed by several laboratories in cell lines derived from the above cancers. Interestingly, also LHRH-antagonists have marked antiproliferative activity in most of the ovarian, breast and endometrial cancer cell lines tested so far, indicating that the dichotomy of LHRH-agonists/LHRH-antagonists is not valid for the LHRH-system in cancer cells. In addition, our data suggest that the classical LHRH receptor signal transduction mechanisms known from the pituitary (phospholipase-C, protein kinase C, adenylyl cyclase) are not involved in the mediation of LHRH effects in cancer cells. Data obtained by several groups, including ours, rather suggest that LHRH analogs interfere with the signal transduction of growth-factor receptors and related oncogene products associated with tyrosine-kinase activity. The mechanism of action is probably an LHRH-induced activation of a phosphotyrosine phosphatase, counteracting the effects of receptor associated tyrosine kinase. In our hands, LHRH analogs virtually blocked the EGF-induced MAP-kinase activity of ovarian and endometrial cancer cells. The pharmacological exploitation of this mechanism might provide promising new therapies for these cancers.  相似文献   

11.
12.
Turning cells red: signal transduction mediated by erythropoietin   总被引:15,自引:0,他引:15  
Erythropoietin (EPO) is the crucial cytokine regulator of red blood-cell production. Since the discovery of EPO in 1985 and the isolation of its cognate receptor four years later, there has been significant interest in understanding the unique ability of this ligand-receptor pair to promote erythroid mitogenesis, survival and differentiation. The development of knockout mice has elucidated the precise role of the ligand, receptor and downstream players in murine erythroid development. In this review, we summarize EPO-mediated signaling pathways and examine their significance in vivo.  相似文献   

13.
Malignant mesothelioma (MM) is strongly resistant to conventional chemotherapy by unclear mechanisms. We and others have previously reported that cytokine- and growth factor-mediated signal transduction is involved in the growth and progression of MM. Here, we identified a pathway that involves stem cell factor (SCF)/c-Kit/Slug in mediating multidrug resistance of MM cells. When we compared gene expression profiles between five MM cells and their multidrug-resistant (MM DX) sublines, we found that MM DX cells expressed both SCF and c-Kit and had higher mRNA levels of Slug. Knockdown of c-Kit or Slug expression with their respective small interfering RNA sensitized MM DX cells to the induction of apoptosis by different chemotherapeutic agents, including doxorubicin, paclitaxel, and vincristine. Transfection of c-Kit in parental MM cells in the presence of SCF up-regulated Slug and increased resistance to the chemotherapeutic agents. Moreover, MM cells expressing Slug showed a similar increased resistance to the chemotherapeutic agents. These results indicate that induction of Slug by autocrine production of SCF and c-Kit activation plays a key role in conferring a broad spectrum chemoresistance on MM cells and reveal a novel signal transduction pathway for pharmacological or genetic intervention of MM patients.  相似文献   

14.
线粒体在真核细胞多种生物学过程中扮演重要角色,如能量产生、钙平衡、细胞内物质代谢、活性氧产生、细胞信号传导和凋亡等。线粒体的高度动态性,如生物发生、动态融合、分裂和退化等代谢特征与细胞种类、组织的需求密切相关。干细胞是一类具有自我更新和多向分化潜能的细胞。目前研究表明,线粒体的代谢与干细胞发育、命运决定紧密相关。本文综述干细胞干性维持及定向分化过程中,线粒体代谢改变与线粒体形态、结构和功能变化。  相似文献   

15.
Mechanical ventilation with hyperoxia is necessary to treat critically ill patients. However, prolonged exposure to hyperoxia leads to the generation of excessive reactive oxygen species (ROS), which can cause acute inflammatory lung injury. One of the major effects of hyperoxia is the injury and death of pulmonary epithelium, which is accompanied by increased levels of pulmonary proinflammatory cytokines and excessive leukocyte infiltration. A thorough understanding of the signaling pathways leading to pulmonary epithelial cell injury/death may provide some insights into the pathogenesis of hyperoxia-induced acute inflammatory lung injury. This review focuses on epithelial responses to hyperoxia and some of the major factors regulating pathways to epithelial cell injury/death, and proinflammatory responses on exposure to hyperoxia. We discuss in detail some of the most interesting players, such as NF-kappaB, that can modulate both proinflammatory responses and cell injury/death of lung epithelial cells. A better appreciation for the functions of these factors will no doubt help us to delineate the pathways to hyperoxic cell death and proinflammatory responses.  相似文献   

16.
Sphingosine 1-phosphate (S1P) is a powerful bioactive sphingolipid recently recognized to act as extracellular ligand for various subtypes of G protein-coupled receptors belonging to the S1P family. In our study, focused on mouse skeletal muscle cells, we showed that S1P activated enzymes crucial for membrane signal transduction, such as phospholipase D (PLD) and protein kinase C; it promoted also a significant increase of cytosolic Ca2+ via ligation to S1P2 and S1P3 receptor subtypes. Interestingly, myogenic differentiation was found to be accompanied by a profound variation of S1P receptor expression levels and the progressive uncoupling of S1P from PLD activation, suggesting that this signaling pathway is exclusively required for S1P action on proliferating cells.  相似文献   

17.
《Genomics》2020,112(5):3615-3623
Stem cell research has progressed widely and has been receiving a considerable attention for its advantages and drawbacks. Despite their extensive therapeutic potential in regenerative medicine, they are debatable for their genetic and epigenetic stability. In fact lineage specific differentiation is mediated via epigenetic changes in DNA methylation, acetylation, histone modifications etc. Thus epigenetics plays an important role in stem cell biology. For therapeutic interventions stem cells need to be genetically and epigenetically stable for their maximum paracrine secretions for bringing about expected tissue repair and regeneration. In this review we have focused on the current status of genetic and epigenetic stability in stem cells and their importance in regenerative medicine. We have also touched upon the possibility of considering tissue resident mesenchymal stem cells as epigenetic modifiers. This is likely to open a new era in stem cell therapeutic intervention by reversing disease inducing epigenetic changes.  相似文献   

18.
Signalling,cell cycle and pluripotency in embryonic stem cells   总被引:31,自引:0,他引:31  
  相似文献   

19.
20.
Lipid metabolism and signal transduction in endothelial cells   总被引:3,自引:0,他引:3  
Endothelial cells have the capacity to metabolize several important lipids; this includes the ability to store and then metabolize arachidonate, as well as the capacity to synthesize platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Arachidonate is predominantly metabolized via cyclooxygenase to PGI2 although the spectrum of prostaglandins may vary depending upon the source of the endothelial cell. Biosynthesis of eicosanoids and PAF are likely to be an important physiologic function of the endothelial cell as these potent lipids appear to have a role in maintaining vascular tone and mediating interactions of the endothelium with circulating inflammatory cells. In addition to production of eicosanoids and PAF, endothelial cells metabolize exogenous arachidonate and arachidonate metabolites and other fatty acids such as linoleate to bioactive compounds (HODEs). There is also evidence that small amounts of arachidonate are metabolized via a lipoxygenase. The physiologic significance of these minor lipid pathways is not known at this time. Production of eicosanoids and PAF is not a constitutive function of the endothelial cell. Lipid biosynthesis by endothelial cells is one component of the early activation response that occurs in response to stimulation with pro-inflammatory and vasoactive hormones or to pathologic agents such as oxidants and bacterial toxins. A central mechanism for activation of the relevant pathways is a rise in cellular calcium concentrations that can be mediated by hormone-receptor-binding or by direct permeabilization of the cell membrane to calcium (Fig. 3). Regulatory mechanisms distal to the calcium signal are unknown, but current evidence suggests that calcium directly or indirectly activates phospholipases that release arachidonate from phospholipids and hydrolyze a specific phospholipid to the immediate precursor of PAF. There is evidence that protein kinase C may, in part, regulate this process, but the role of other potential regulatory components, such as other protein kinases or G-proteins is not known. As noted above, the most direct mechanism for initiation of PAF biosynthesis and arachidonate release would be activation of a phospholipase A2 as shown in Fig. 3. Activation of other phospholipases (e.g. phospholipase C) may contribute to the total amount of arachidonate released, although the magnitude of that contribution is not yet known. In addition to generation of PAF and eicosanoids, activation of endothelial cell phospholipases generates second messengers that are important in intracellular signaling (Fig. 4). Activation of phospholipase C, in response to hormonal stimulation, generates diacylglycerol and inositol phosphates from phosphatidylinositol. Each of these is a potent intracellular second messenger.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号