首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abundant evidence has shown that the GTPase dynamin is required for receptor-mediated endocytosis, but its exact role in endocytic clathrin-coated vesicle formation remains to be established. Whereas dynamin GTPase domain mutants that are defective in GTP binding and hydrolysis are potent dominant-negative inhibitors of receptor-mediated endocytosis, overexpression of dynamin GTPase effector domain (GED) mutants that are selectively defective in assembly-stimulated GTPase-activating protein activity can stimulate the formation of constricted coated pits and receptor-mediated endocytosis. These apparently conflicting results suggest that a complex relationship exists between dynamin's GTPase cycle of binding and hydrolysis and its role in endocytic coated vesicle formation. We sought to explore this complex relationship by generating dynamin GTPase mutants predicted to be defective at distinct stages of its GTPase cycle and examining the structural intermediates that accumulate in cells overexpressing these mutants. We report that the effects of nucleotide-binding domain mutants on dynamin's GTPase cycle in vitro are not as predicted by comparison to other GTPase superfamily members. Specifically, GTP and GDP association was destabilized for each of the GTPase domain mutants we analyzed. Nonetheless, we find that overexpression of dynamin mutants with subtle differences in their GTPase properties can lead to the accumulation of distinct intermediates in endocytic coated vesicle formation.  相似文献   

2.
Numerous Ras-like GTPases function as molecular switches in the cytoplasm, but only one has been identified in the nucleus. This nuclear GTPase and its homologues are known in both yeasts and higher organisms and in all cases they are regulated by guanine-nucleotide-exchange factors. The 'nuclear GTPase cycle' created by these components is implicated in mRNA transport from and protein import to the nucleus, as well as in DNA replication, RNA processing and the regulation of the cell cycle. In this article, Alan Tartakoff and Roger Schneiter propose that this GTPase cycle regulates dispersive functions in the nucleoplasm, an idea that explains many of the observed effects of disrupting the cycle.  相似文献   

3.
Era is a low-molecular-weight GTPase essential for Escherichia coli viability. The gene encoding Era is found in the rnc operon, and the synthesis of both RNase III and Era increases with growth rate. Mutants that are partially defective in Era GTPase activity or that are reduced in the synthesis of wild-type Era become arrested in the cell cycle at the predivisional two-cell stage. The partially defective Era GTPase mutation ( era1 ) suppresses several temperature-sensitive lethal alleles that affect chromosome replication and chromosome partitioning but not cell division. Our results suggest that Era plays an important role in cell cycle progression at a specific point in the cycle, after chromosome partitioning but before cytokinesis. Possible functions for Era in cell cycle progression and the initiation of cell division are discussed.  相似文献   

4.
GTPase molecules are important regulators in cells that continuously run through an activation/deactivation and membrane-attachment/membrane-detachment cycle. Activated GTPase is able to localize in parts of the membranes and to induce cell polarity. As feedback loops contribute to the GTPase cycle and as the coupling between membrane-bound and cytoplasmic processes introduces different diffusion coefficients a Turing mechanism is a natural candidate for this symmetry breaking. We formulate a mathematical model that couples a reaction–diffusion system in the inner volume to a reaction–diffusion system on the membrane via a flux condition and an attachment/detachment law at the membrane. We present a reduction to a simpler non-local reaction–diffusion model and perform a stability analysis and numerical simulations for this reduction. Our model in principle does support Turing instabilities but only if the lateral diffusion of inactivated GTPase is much faster than the diffusion of activated GTPase.  相似文献   

5.
MnmE is a homodimeric multi-domain GTPase involved in tRNA modification. This protein differs from Ras-like GTPases in its low affinity for guanine nucleotides and mechanism of activation, which occurs by a cis, nucleotide- and potassium-dependent dimerization of its G-domains. Moreover, MnmE requires GTP hydrolysis to be functionally active. However, how GTP hydrolysis drives tRNA modification and how the MnmE GTPase cycle is regulated remains unresolved. Here, the kinetics of the MnmE GTPase cycle was studied under single-turnover conditions using stopped- and quench-flow techniques. We found that the G-domain dissociation is the rate-limiting step of the overall reaction. Mutational analysis and fast kinetics assays revealed that GTP hydrolysis, G-domain dissociation and Pi release can be uncoupled and that G-domain dissociation is directly responsible for the ‘ON’ state of MnmE. Thus, MnmE provides a new paradigm of how the ON/OFF cycling of GTPases may regulate a cellular process. We also demonstrate that the MnmE GTPase cycle is negatively controlled by the reaction products GDP and Pi. This feedback mechanism may prevent inefficacious GTP hydrolysis in vivo. We propose a biological model whereby a conformational change triggered by tRNA binding is required to remove product inhibition and initiate a new GTPase/tRNA-modification cycle.  相似文献   

6.
Formation of multiprotein complexes on cellular membranes is critically dependent on the cyclic activation of small GTPases. FRAP-based analyses demonstrate that within protein complexes, some small GTPases cycle nearly three orders of magnitude faster than they would spontaneously cycle in vitro. At the same time, experiments report concomitant excess of the activated, GTP-bound form of GTPases over their inactive form. Intuitively, high activity and rapid turnover are contradictory requirements. How the cells manage to maximize both remains poorly understood. Here, using GTPases of the Rab and Rho families as a prototype, we introduce a computational model of the GTPase cycle. We quantitatively investigate several plausible layouts of the cycling control module that consist of GEFs, GAPs, and GTPase effectors. We explain the existing experimental data and predict how the cycling of GTPases is controlled by the regulatory proteins in vivo. Our model explains distinct and separable roles that the activating GEFs and deactivating GAPs play in the GTPase cycling control. While the activity of GTPase is mainly defined by GEF, the turnover rate is a sole function of GAP. Maximization of the GTPase activity and turnover rate places conflicting requirements on the concentration of GAP. Therefore, to achieve a high activity and turnover rate at once, cells must carefully maintain concentrations of GEFs and GAPs within the optimal range. The values of these optimal concentrations indicate that efficient cycling can be achieved only within dense protein complexes typically assembled on the membrane surfaces. We show that the concentration requirement for GEF can be dramatically reduced by a GEF-activating GTPase effector that can also significantly boost the cycling efficiency. Interestingly, we find that the cycling regimes are only weakly dependent on the concentration of GTPase itself.  相似文献   

7.
8.
Rho小G蛋白家族是Ras超家族成员之一,人类Rho小G蛋白包括20个成员,研究最清楚的有RhoA、Rac1和Cdc42。Rho小G蛋白参与了诸如细胞骨架调节、细胞移动、细胞增殖、细胞周期调控等重要的生物学过程。在这些生物学过程的调节中,Rho小G蛋白的下游效应蛋白质如蛋白激酶(p21-activated kinase,PAK)、ROCK(Rho-kinase)、PKN(protein kinase novel)和MRCK(myotonin-related Cdc42-binding kinase)发挥了不可或缺的作用。迄今研究发现,PAK可调节细胞骨架动力学和细胞运动,另外,PAK通过MAPK(mitogen-activated protein kinases)参与转录、细胞凋亡和幸存通路及细胞周期进程;ROCK与肌动蛋白应力纤维介导黏附复合物的形成及与细胞周期进程的调节有关;哺乳动物的PKN与RhoA/B/C相互作用介导细胞骨架调节;MRCK与细胞骨架重排、细胞核转动、微管组织中心再定位、细胞移动和癌细胞侵袭等有关。该文简要介绍Rho小G蛋白下游激酶PAK、ROCK、PKN和MRCK的结构及其在细胞骨架调节中的功能,重点总结它们在真核细胞周期调控中的作用,尤其是在癌细胞周期进程中所发挥的作用,为寻找癌症治疗的新靶点提供理论依据。  相似文献   

9.
小分子的单体G蛋白Ran具有鸟苷三磷酸酶活性,其结合形式Ran-GTP作为区分间期细胞的核质和胞质的一个分子标记,并参与调控核质运输、指导纺锤体形成以及引导核膜解体与装配。现就Ran在真核细胞核质运输、有丝分裂纺锤体组装与核膜动力学中的功能作一综述。  相似文献   

10.
Wang X  Xu Y  Han Y  Bao S  Du J  Yuan M  Xu Z  Chong K 《Plant physiology》2006,140(1):91-101
Ran is an evolutionarily conserved eukaryotic GTPase. We previously identified a cDNA of TaRAN1, a novel Ran GTPase homologous gene in wheat (Triticum aestivum) and demonstrated that TaRAN1 is associated with regulation of genome integrity and cell division in yeast (Saccharomyces cerevisiae) systems. However, much less is known about the function of RAN in plant development. To analyze the possible biological roles of Ran GTPase, we overexpressed TaRAN1 in transgenic Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). TaRAN1 overexpression increased the proportion of cells in the G2 phase of the cell cycle, which resulted in an elevated mitotic index and prolonged life cycle. Furthermore, it led to increased primordial tissue, reduced number of lateral roots, and stimulated hypersensitivity to exogenous auxin. The results suggest that Ran protein was involved in the regulation of mitotic progress, either in the shoot apical meristem or the root meristem zone in plants, where auxin signaling is involved. This article determines the function of RAN in plant development mediated by the cell cycle and its novel role in meristem initiation mediated by auxin signaling.  相似文献   

11.
The small GTPase Ran has been found to play pivotal roles in several aspects of cell function. We have investigated the role of the Ran GTPase cycle in spindle formation and nuclear envelope assembly in dividing Caenorhabditis elegans embryos in real time. We found that Ran and its cofactors RanBP2, RanGAP, and RCC1 are all essential for reformation of the nuclear envelope after cell division. Reducing the expression of any of these components of the Ran GTPase cycle by RNAi leads to strong extranuclear clustering of integral nuclear envelope proteins and nucleoporins. Ran, RanBP2, and RanGAP are also required for building a mitotic spindle, whereas astral microtubules are normal in the absence of these proteins. RCC1(RNAi) embryos have similar abnormalities in the initial phase of spindle formation but eventually recover to form a bipolar spindle. Irregular chromatin structures and chromatin bridges due to spindle failure were frequently observed in embryos where the Ran cycle was perturbed. In addition, connection between the centrosomes and the male pronucleus, and thus centrosome positioning, depends upon the Ran cycle components. Finally, we have demonstrated that both IMA-2 and IMB-1, the homologues of vertebrate importin alpha and beta, are essential for both spindle assembly and nuclear formation in early embryos.  相似文献   

12.
The GTPase superfamily contains a large number of proteins that function as molecular switches by binding and hydrolyzing GTP molecules. They are localized at various intracellular organelles and control diverse cellular processes. For many GTPases, the lifetime of the activated, GTP-bound state is believed to serve as a timer in determining the activation time of a biological event such as membrane fusion and signal transduction. However, such a timer is intrinsically stochastic due to thermal noise at the level of single GTPase molecules. Here, we describe a mathematical model that shows how a directional GTPase cycle, in a nonequilibrium steady-state driven by GTP hydrolysis, can significantly reduce the variance in the lifetime of an activated GTPase molecule and thereby increase the accuracy and efficiency of the timer. This mechanism, termed kinetic timing, articulates a clear function for the energy consumption in GTPase-controlled biological processes. It provides a rationale for why biological timers utilize a GTP hydrolysis cycle rather than a simple GTP binding–dissociation equilibrium, and why the GTP-bound state is a better timer than the GDP-bound state. It also explains the necessity for the existence of multiple GTP-bound intermediates identified by fluorescence spectroscopy and nuclear magnetic resonance studies.  相似文献   

13.
GTPases of the Rho subfamily are widely involved in the myelination of the vertebrate nervous system. Rho GTPase activity is temporally and spatially regulated by a set of specific guanine nucleotide exchange factors (GEFs). Here, we report that disruption of frabin/FGD4, a GEF for the Rho GTPase cell-division cycle 42 (Cdc42), causes peripheral nerve demyelination in patients with autosomal recessive Charcot-Marie-Tooth (CMT) neuropathy. These data, together with the ability of frabin to induce Cdc42-mediated cell-shape changes in transfected Schwann cells, suggest that Rho GTPase signaling is essential for proper myelination of the peripheral nervous system.  相似文献   

14.
Ran-binding protein (RanBP) 1 is a major regulator of the Ran GTPase and is encoded by a regulatory target gene of E2F factors. The Ran GTPase network controls several cellular processes, including nucleocytoplasmic transport and cell cycle progression, and has recently also been shown to regulate microtubule nucleation and spindle assembly in Xenopus oocyte extracts. Here we report that RanBP1 protein levels are cell cycle regulated in mammalian cells, increase from S phase to M phase, peak in metaphase, and abruptly decline in late telophase. Overexpression of RanBP1 throughout the cell cycle yields abnormal mitoses characterized by severe defects in spindle polarization. In addition, microinjection of anti-RanBP1 antibody in mitotic cells induces mitotic delay and abnormal nuclear division, reflecting an abnormal stabilization of the mitotic spindle. Thus, regulated RanBP1 activity is required for proper execution of mitosis in somatic cells.  相似文献   

15.
The universally conserved signal recognition particle (SRP) and SRP receptor (SR) mediate the cotranslational targeting of proteins to cellular membranes. In contrast, a unique chloroplast SRP in green plants is primarily dedicated to the post-translational targeting of light harvesting chlorophyll a/b binding (LHC) proteins. In both pathways, dimerization and activation between the SRP and SR GTPases mediate the delivery of cargo; whether and how the GTPase cycle in each system adapts to its distinct substrate proteins were unclear. Here, we show that interactions at the active site essential for GTPase activation in the chloroplast SRP and SR play key roles in the assembly of the GTPase complex. In contrast to their cytosolic homologues, GTPase activation in the chloroplast SRP-SR complex contributes marginally to the targeting of LHC proteins. These results demonstrate that complex assembly and GTPase activation are highly coupled in the chloroplast SRP and SR and suggest that the chloroplast GTPases may forego the GTPase activation step as a key regulatory point. These features may reflect adaptations of the chloroplast SRP to the delivery of their unique substrate protein.  相似文献   

16.
Kolmos E  Davis SJ 《Current biology : CB》2007,17(18):R808-R810
A recent study shows that a small GTPase, LIF1, helps to coordinate the plant circadian clock with the daily light-dark cycle.  相似文献   

17.
Small GTPases are key intermediates that operate at the crossroads of signaling and trafficking. During insulin-stimulated glucose transport, activation of the vesicular-localized small GTPase RalA leads to its engagement with the vesicle tethering exocyst complex, mediating the plasma membrane targeting of Glut4 vesicles. Activation of RalA is achieved via inhibition of the Ral GAP Complex (RGC), comprised of the regulatory subunit RGC1 and the catalytic subunit RGC2. RGC1/2 share homology with the Rheb GAP complex TSC1/2 and can also be inactivated by Akt-catalyzed phosphorylation to produce RalA activation and exocyst engagement. Disengagement between the GTPase and the exocyst occurs through phosphorylation of its effector Sec5 in its Ral-binding domain, thus allowing continuation of exocytic program and recycling of the tether. Phosphorylation of Sec5 is catalyzed by protein kinase C (PKC) and can be reversed by an exocyst-associated phosphatase activity. Therefore, integration of the GTPase cycle and the phosphorylation cycle orchestrates the engagement-disengagement switch between Ral GTPases and the effector exocyst.  相似文献   

18.
Ran是细胞内的一种具有GTP酶活性的功能蛋白,可以调节染色体稳定性、细胞核组建以及核质运输等多种细胞进程.Ran结合蛋白1(Ran-binding protein 1, Rbp1p )是Ran的必要调控因子,促进Ran-GTP水解为Ran-GDP.本研究从嗜热四膜虫大核基因组中鉴定出1个保守的Ran结合蛋白基因RBP1(TTHERM_00158040, http://www.ciliate.org).实时荧光定量PCR表明,RBP1在四膜虫营养生长和有性生殖过程中都有表达,且在有性生殖过程中表达水平提高.免疫荧光定位表明,在营养 生长期Rbp1p定位于细胞质中.过表达RBP1或敲减RBP1后,细胞生长速率下降,大核的无丝分裂异常,细胞分裂末期产生了无大核的异常细胞,同时过表达RBP1导致了多小核的产生.结果表明,Rbp1p影响四膜虫细胞核的分裂进程,它的正常表达对细胞增殖过程起到重要的调节作用.  相似文献   

19.
COPII coat proteins are required for direct capture of cargo and SNARE proteins into transport vesicles from the endoplasmic reticulum (ER). Cargo and SNARE capture occurs during the formation of a 'prebudding complex' comprising a cargo, Sar1p-GTP and the COPII subunits Sec23/24p. The assembly and disassembly cycle of the prebudding complex on ER membranes is coupled to the Sar1p GTPase cycle. Using FRET to monitor a single round of Sec23/24p binding and dissociation from SNAREs in reconstituted liposomes, we show that Sec23/24p dissociates from v-SNARE and complexed t-SNARE with kinetics slower than Sar1p-GTP hydrolysis. Once Sec23/24p becomes associated with v-SNARE or complexed t-SNARE, the complex remains assembled during multiple rounds of Sar1p-GTP hydrolysis mediated by the GDP-GTP exchange factor Sec12p. These data suggest a model for the maintenance of kinetically stable prebudding complexes during the Sar1p GTPase cycle that regulates cargo sorting into transport vesicles.  相似文献   

20.
Monomeric GTPases of the Rho subfamily are important mediators of polar growth and NADPH (Nox) signaling in a variety of organisms. These pathways influence the ability of Claviceps purpurea to infect host plants. GTPase regulators contribute to the nucleotide loading cycle that is essential for proper functionality of the GTPases. Scaffold proteins gather GTPase complexes to facilitate proper function. The guanine nucleotide exchange factors (GEFs) CpCdc24 and CpDock180 activate GTPase signaling by triggering nucleotide exchange of the GTPases. Here we show that CpCdc24 harbors nucleotide exchange activity for both Rac and Cdc42 homologues. The GEFs partly share the cellular distribution of the GTPases and interact with the putative upstream GTPase CpRas1. Interaction studies show the formation of higher-order protein complexes, mediated by the scaffold protein CpBem1. Besides the GTPases and GEFs, these complexes also contain the GTPase effectors CpSte20 and CpCla4, as well as the regulatory protein CpNoxR. Functional characterizations suggest a role of CpCdc24 mainly in polarity, whereas CpDock180 is involved in stress tolerance mechanisms. These findings indicate the dynamic formation of small GTPase complexes and improve the model for GTPase-associated signaling in C. purpurea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号