首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that Steatoda (Lityphantes) paykulliana and Latrodectus mactans tredecimguttatus spider venoms are toxic to mammals and insects. These venoms act presynaptically eliciting massive release of transmitters. They also form channels in bilayer lipid membranes (BLM) that are selective for cations. Venoms of both spider species were fractionated by gel filtration on a Sephadex G-100 column. The fraction obtained were tested on neuromuscular preparations of frog and locust and on BLM. A fraction of low molecular weight components (about 5000 daltons and less) was disclosed. This fraction showed presynaptic and channel-forming effects similar to those of crude venoms and of high molecular weight toxin fractions, obtained simultaneously from these venoms. It was shown that channels formed in BLM by crude venoms and its different fractions are identical. Also, it was found that the low molecular weight channel-forming component is a construction element of high molecular weight toxins. On the basis of data obtained a toxin structure model of the Theridiidae family spider venoms was proposed.  相似文献   

2.
The interaction of cholera toxin with planar bilayer lipid membranes (BLM) at low pH results in the formation of ionic channels, the conductance of which can be directly measured in voltage-clamp experiments. It is found that the B-subunit of cholera toxin (CT-B) also is able to induce ionic channels in BLM whereas the A-subunit is not able to do it. The increase of pH inhibited the channel-forming activity of CT-B. The investigation of pH-dependences of both the conductance and the cation-anion selectivity of the CT-B channel allowed us to suggest that the water pore of this channel is confined to the B-subunit of cholera toxin. The effective diameter of the CT-B channels water pores was directly measured in BLM and is equal to 2.1 +/- 0.2 nm. The channels formed by whole toxin and its B-subunit exhibit voltage-dependent activity. We believe these channels are relevant to the mode of action of cholera toxin and especially to the endosomal pathway of the A-subunit into cells.  相似文献   

3.
The effect of filamentous (F) actin on the channel-forming activity of syringomycin E (SRE) in negatively charged and uncharged bilayer lipid membranes (BLM) was studied. F-actin did not affect the membrane conductance in the absence of SRE. No changes in SRE-induced membrane conductance were observed when the above agents were added to the same side of BLM. However, the opposite side addition of F-actin and SRE provokes a multiple increase in membrane conductance. The similar voltage dependence of membrane conductance, equal values of single channel conductance and the effective gating charge of the channels upon F-actin action suggests that the actin-dependent increase in BLM conductance may result from an increase in the number of opened SRE-channels. BLM conductance kinetics depends on the sequence of SRE and F-actin addition, suggesting that actin-dependent rise of conductance may be induced by BLM structural changes that follow F-actin adsorption. F-actin exerted similar effect on membrane conductance of both negatively charged and uncharged bilayers, as well as on conductance of BLM with high ionic strength bathing solution, suggesting the major role for hydrophobic interactions in F-actin adsorption on lipid bilayer.  相似文献   

4.
The action of metal polycations and pH on ionic channels produced in bilayer lipid membranes (BLM) by three different toxins was studied by measuring membrane capacitance and channel conductance. Here, we show that critical concentrations of Cd2+, La3+ or Tb3+ induce complex changes in membrane capacitance. The time course of capacitance changes is similar to the time course of channel blocking by these ions at low concentration. No changes in BLM capacitance or conductance were observed in the range of pH 5.8–9.0. A pH shift from 7.4 to 3–4 or 11–12 induced large changes in BLM capacitance and channel conductance. For all studied channel-forming proteins, the initial capacitance increase preceded the conductance decrease caused by addition of polycations or by a change in pH. A close relationship between membrane lipid packing and ion channel protein is suggested.  相似文献   

5.
Exposure to oxygen has been implicated as an important mechanism of mutations, cancer and aging. Most data supporting this notion have been obtained in vitro, but the elaborate defense systems against oxygen stress in aerobic organisms make it difficult to extrapolate in vitro data to in vivo conditions. In the present investigation the somatic mutation and recombination test (SMART) in Drosophila with the wing spot system (Graf et al., 1984) has been used as an in vivo system to study the effect of oxygen radicals generated by bleomycin (BLM). BLM causes a dose-related increase of wing spots and this effect drastically increases by increasing oxygen in the atmosphere to 70%. Data from treatment of larvae of different ages, as well as post-treatment with oxygen, indicate that BLM can persist, presumably intercalated in DNA, and subsequently be activated by oxygen to generate free radicals. By the use of inversion heterozygosity, which eliminates somatic recombination, it was shown that the majority of wing spots induced by BLM emanate from somatic recombination. A small number of flies deviated from the rest by an abnormally high frequency of BLM-induced wing spots. Preliminary results from a selection of such flies indicate that this extreme response to BLM is genetically determined. Treatment with BLM was also combined with agents known to interfere with the defense mechanisms against radicals or function as radical scavengers. Only ascorbic acid cotreatment had a modifying effect on BLM mutagenicity. The other agents did not alter or at most had a marginal effect on BLM mutagenicity. These data indicate that the defense mechanisms do not constitute a limiting factor in this case. BLM intercalates between DNA bases, presumably giving little time and opportunity for modifying agents to react with radicals generated in direct contact with the gene targets. No effect of BLM was observed on male germ cells by measuring loss and non-disjunction of ring-X/Y, neither in air nor in a 70% oxygen atmosphere.  相似文献   

6.
The interaction of 11 overlapping synthetic peptides corresponding to N-terminal segment of HIV transmembrane glycoprotein gp41 (fusion domain) with artificial lipid membranes has been studied. For this purpose the increase of a bilayer lipid membrane (BLM) conductivity and the changes in ESR spectra of spin-labelled liposomes were registrated. Peptide fragment 523-532 gp160 (BRU strain) had the critical length with regard to channel-forming activity on BLM. The degree of such membranotropic action increased simultaneously with the growth of peptide length and the temperature in the cell. Peptides 518-532 and 517-532 lysed TEMPOcholine-containing liposomes at 37 degrees C. The significance of observed effects for explanation of the mechanism of HIV-induced membrane fusion is discussed.  相似文献   

7.
Chen XL  Huang SS  Liu K  Ai J 《生理学报》2005,57(5):619-626
分别用一氧化氮(nitric oxide,NO)供体硝普钠(sodium nitroprusside,SNP)和前体L-精氨酸(L-arginin,L-Arg)孵育来自正常大鼠(alveolar macrophages from normal rats,normal AMs)和滴注博莱霉素大鼠的肺泡巨噬细胞(alveolar macrophages from BLM-treated rats,BLM AMs),以探讨NO对不同状态细胞生存的调节。用凋亡和细胞周期评价细胞生存,细胞内Bcl-2和Bax蛋白含量探讨其分子机制。结果如下:(1)BLM AMs的凋亡多于normal AMs;G0/G1期BLM AMs数少于normal AMs;S+G2M期BLM AMs数与相应的normal AMs数问的差异无统计学意义;(2)与normal AMs相比,BLM AMs内Bcl-2下调,Bax上调;(3)与相应的对照比,SNP和L-Arg能诱导normal AMs和BLM AMs凋亡;L-Arg仅能增加S+G2M期BLM AMs数;(4)SNP和L-Arg诱导normal AMs内Bcl-2下调和Bax上调,但不能使BLM AMs内的Bcl-2和Bax发生上述变化;(5)L-Arg下调BLM AMs内的Bax。上述结果显示:NO能诱导BLM AMs和normal AMs凋亡;Bcl-2和Bax与NO诱导的normal AMs凋亡有关,而与NO诱导的BLM AMs的凋亡无关,提示NO诱导normal AMs和BLM AMs分子机制不同;内源性NO促进BLM AMs增殖,这可能与其下调Bax有关。  相似文献   

8.
A panel of monoclonal antibodies (mAb) against alpha-latrotoxin (LT) has been produced and their main characteristics have been determined. The influence of mAb on the functional effects of LT in synaptosomes from rat brain and on the channel formation in bilayer lipid membrane has been investigated. These mAbs do not inhibit binding of LT to rat synaptosomes but modify LT-receptor interaction in terms of LT's channel-forming and secretogenic effects. Antibodies A6 and A24 block these effects, whereas A4 partially preserves the secretogenic action of LT and completely blocks its channel-forming action. Only antibodies A15 affect the LT ability to form cationic channels in BLM, inducing considerable decrease in the frequency of the channel formation. These data and their analysis allow to identify several functional (and, probably, structural) domains of LT responsible for: 1) toxin-receptor interaction; 2) channel-forming and related calcium-dependent secretogenic effects; 3) calcium-independent secretogenic effects; 4) formation of cationic channels in the artificial lipid bilayer.  相似文献   

9.
Insertion of charged groups at the N-terminus of the gramicidin A (gA) amino acid sequence is considered to be fatal for peptide channel-forming activity because of hindrance to the head-to-head dimer formation. Here the induction of ionic conductivity in planar bilayer lipid membranes (BLM) was studied with gA analogs having lysine either in the first ([Lys1]gA) or the third ([Lys3]gA) position. If added to the bathing solution at neutral or acidic pH, these analogs, being protonated and thus positively charged, were unable to induce ionic current across BLM. By contrast, at pH 11 the induction of BLM conductivity was observed with both lysine-substituted analogs. Based on the dependence of the macroscopic current on the side of the peptide addition, sensitivity to calcium ions and susceptibility to sensitized photoinactivation, as well as on the single-channel properties of the analogs, we surmise that at alkaline pH [Lys1]gA formed channels with predominantly single-stranded structure of head-to-head helical dimers, whereas [Lys3]gA open channels had the double-stranded helical structure. CD spectra of the lysine-substituted analogs in liposomes were shown to be pH-dependent.  相似文献   

10.
Bleomycin (BLM) is known to induce lung inflammation and subsequent fibrosis. Endothelial cells have been reported to play an important role, producing cytokines and adhesion molecules during the inflammatory process in pulmonary fibrosis. To examine the effects of BLM on endothelial cells, we investigated the expression profiles of various cytokines and adhesion molecules produced by endothelial cells stimulated with BLM. Increased expressions of interleukin-8 and monocyte chemoattractant protein-1 measured as protein as well as mRNA by human umbilical vein endothelial cells (HUVECs) were detected after exposure to BLM. Similarly, increased expressions of E-selectin and intercellular adhesion molecule-3 were detected both at the protein and mRNA levels. Under these conditions, a small but significant decrease of [3H]thymidine uptake was detected. These findings indicate that HUVEC were stimulated to secrete cytokines and express adhesion molecules in the presence of low concentrations of BLM which have a mildly inhibitory effect on cellular proliferation.  相似文献   

11.
The kinetics of DNA damage by bleomycin (BLM) was assessed by measuring the amount of DNA breakage induced by BLM at different doses, treatment lengths, and treatment temperatures. DNA degradation was measured with the alkaline unwinding method. Comparison of the curves of DNA cleavage by BLM leads to the conclusion that low doses (1-5 micrograms/ml) and short treatments (5-15 min) produce marked damage in the DNA. High increases in BLM concentration produce relatively small increases in DNA damage above the levels obtained with low doses. Extension of treatment times does not increase the DNA degradation above the rate observed with 15-min treatments. The repair of DNA damage starts at about 15 min after the initiation of treatment. The mending of DNA breaks is very fast and extensive when BLM is no longer present. Repair not only implies the closing of DNA nicks, but very likely the degradation of the BLM molecules intercalated in the DNA interrupting the reactions responsible for the generation of free radicals. Persistence of BLM in the cell environment facilitates the replacement of degraded BLM molecules by new ones. This produces the persistent production of free radicals and the establishment of a balance between the processes of DNA damage and repair.  相似文献   

12.
The bleomycins (BLMs) are a family of natural glycopeptides used clinically as antitumor agents. In the presence of required cofactors (Fe2+ and O2), BLM causes both single-stranded (ss) and double-stranded (ds) DNA damage with the latter thought to be the major source of cytotoxicity. Previous biochemical and structural studies have demonstrated that BLM can mediate ss cleavage through multiple binding modes. However, our studies have suggested that ds cleavage occurs by partial intercalation of BLM's bithiazole tail 3′ to the first cleavage site that facilitates its re-activation and re-organization to the second strand without dissociation from the DNA where the second cleavage event occurs. To test this model, a BLM A5 analog (CD-BLM) with β-cyclodextrin attached to its terminal amine was synthesized. This attachment presumably precludes binding via intercalation. Cleavage studies measuring ss:ds ratios by two independent methods were carried out. Studies using [32P]-hairpin technology harboring a single ds cleavage site reveal a ss:ds ratio of 6.7 ± 1.2:1 for CD-BLM and 3.4:1 and 3.1 ± 0.3:1 for BLM A2 and A5, respectively. In contrast with BLM A5 and A2, however, CD-BLM mediates ds-DNA cleavage through cooperative binding of a second CD-BLM molecule to effect cleavage on the second strand. Studies using the supercoiled plasmid relaxation assay revealed a ss:ds ratio of 2.8:1 for CD-BLM in comparison with 7.3:1 and 5.8:1, for BLM A2 and A5, respectively. This result in conjunction with the hairpin results suggest that multiple binding modes of a single BLM can lead to ds-DNA cleavage and that ds cleavage can occur using one or two BLM molecules. The significance of the current study to understanding BLM's action in vivo is discussed.  相似文献   

13.
Using dialkylphospholipid (diphytanyl phosphatidylcholine) instead of the conventional diacylphospholipid (diphytanoyl phosphatidylcholine) in planar lipid bilayer membranes (BLM) led to an increase in the diffusion potential of the penetrating cation plastoquinonyl-decyl-triphenylphosphonium (SkQ1), making it close to the Nernst value, and accelerated translocation of SkQ1 across the BLM as monitored by the kinetics of a decrease in the transmembrane electric current after applying a voltage (current relaxation). The consequences of changing from an ester to an ether linkage between the head groups and the hydrocarbon chains are associated with a substantial reduction in the membrane dipole potential known to originate from dipoles of tightly bound water molecules and carbonyl groups in ester bonds. The difference in the dipole potential between BLM formed of the ester phospholipid and that of the ether phospholipid was estimated to be 100 mV. In the latter case, suppression of SkQ1-mediated proton conductivity of the BLM was also observed.  相似文献   

14.
S M Sebti  J S Lazo 《Biochemistry》1987,26(2):432-437
Bleomycin (BLM) hydrolase inactivates the BLM class of antitumor antibiotics and protects against BLM-induced pulmonary fibrosis. This enzyme is poorly characterized but believed to be an aminopeptidase B. In the present report, both BLM hydrolase and aminopeptidase B from rabbit pulmonary cytosol were retained by arginyl-Sepharose and BLM-Sepharose affinity columns, further suggesting that these two enzymes are similar. When, however, BLM hydrolase was purified over 1800-fold by using our newly developed high-speed liquid chromatography assay for BLM hydrolase coupled with fast protein liquid chromatography, we found that this partially purified BLM hydrolase preparation lacked aminopeptidase B activity. Furthermore, BLM hydrolase was completely separated, by using anion-exchange Mono Q chromatography, from all the aminopeptidases identified in rabbit pulmonary cytosol: one aminopeptidase B, two aminopeptidases N, and one aminopeptidase with both aminopeptidase B and aminopeptidase N activities. Pulmonary BLM hydrolase also had a higher molecular weight than pulmonary aminopeptidase B. In contrast to aminopeptidase B, BLM hydrolase was not activated by NaCl and was much less stable at 4 degrees C. In addition, bestatin was a potent inhibitor of aminopeptidase B but had little effect on BLM hydrolase, while leupeptin was a potent inhibitor of BLM hydrolase but was less effective against aminopeptidase B. Thus, pulmonary BLM hydrolase and aminopeptidase B have affinity for each other's substrate, but they are clearly distinct enzymes on the basis of charge characteristics, molecular weight, stability, and sensitivity to inhibitors and activators.  相似文献   

15.
The ability of human fibroblasts to repair bleomycin-damaged DNA was examined in vivo. Repair of the specific lesions caused by bleomycin (BLM) was investigated in normal cell strains as well as those isolated from patients with apparent DNA repair defects. The diseases ataxia telangiectasia (AT), Bloom syndrome (BS), Cockayne syndrome (CS), Fanconi anemia (FA), and xeroderma pigmentosum (XP) were those selected for study. The method used for studying the repair of DNA after BLM exposure was alkaline sucrose gradient centrifugation. After exposure to BLM, a fall in the molecular weight of DNA was observed, and after drug removal the DNA reformed rapidly to high molecular weight. The fall in molecular weight upon exposure to BLM was observed in all cells examined with the exception of some XP strains. Prelabeled cells from some XP complementation groups were found to have a higher percentage of low molecular weight DNA on alkaline gradients than did normal cells. This prelabeled low molecular weight DNA disappeared upon exposure to BLM.  相似文献   

16.
BACKGROUND: Bloom syndrome (BS) is characterized by mutations within the BLM gene. The Bloom syndrome protein (BLM) has similarity to the RecQ subfamily of DNA helicases, which contain seven conserved helicase domains and share significant sequence and structural similarity with the Rep and PcrA DNA helicases. We modeled the three-dimensional structure of the BLM helicase domain to analyze the structural basis of BS-causing mutations. MATERIALS AND METHODS: The sequence alignment was performed for RecQ DNA helicases and Rep and PcrA helicases. The crystal structure of PcrA helicase (PDB entry 3PJR) was used as the template for modeling the BLM helicase domain. The model was used to infer the function of BLM and to analyze the effect of the mutations. RESULTS: The structural model with good stereochemistry of the BLM helicase domain contains two subdomains, 1A and 2A. The electrostatic potential of the model is highly negative over most of the surface, except for the cleft between subdomains 1A and 2A which is similar to the template protein. The ATP-binding site is located inside the model between subdomains 1A and 2A; whereas, the DNA-binding region is situated at the surface cleft, with positive potential between 1A and 2A. CONCLUSIONS: The three-dimensional structure of the BLM helicase domain was modeled and applied to interpret BS-causing mutations. The mutation I841T is likely to weaken DNA binding, while the mutations C891R, C901Y, and Q672R presumably disturb the ATP binding. In addition, other critical positions are discussed.  相似文献   

17.
A simple colorimetric sensing platform for trace bleomycin (BLM) was proposed with the unmodified gold nanoparticles (AuNPs) as the sensing element. BLM has multiple N-donor functionality and exhibited strong coordination effect on AuNPs, which made it possible for the occurrence of ligand exchange of BLM with the weakly surface-bound citrate ions on AuNPs. Meanwhile, the positively charged BLM molecules further neutralized the surface charge, leading to increased van der Waals attractive force among AuNPs for rapid aggregation. This was reflected by the obvious color change from wine red to blue and rapid aggregation kinetics within 7.5 min. The BLM sensing based on unmodified AuNPs can be seen with the naked eye and monitored by UV-vis extinction spectra. The linear range of the colorimetric sensor for BLM was from 2 to 150 nM. The as-established colorimetric strategy opened a new avenue for trace BLM determination.  相似文献   

18.
Hybrid molecules consisting of an address peptide and an active oxygen-generating fragment may be used for selective destruction of cells. We tested the possibility of using the antibiotic bleomycin (BLM) as an active oxygen-generating fragment of such a molecule. It was found that bleomycin can induce destruction of cell membranes. BLM-mediated cell destruction was inhibited by addition of catalase, superoxide dismutase, and OH. scavangers (mannitol and ethanol), suggesting that hydroxy radical is involved in the process. BLM can induce membrane impairment at the expense of electrons supplied by NADPH-cytochrome P450 reductase. Covalent binding of BLM to an address fragment (concanavalin A, immunoglobulin G) increases the ability of BLM to destroy erythrocyte membranes. The data obtained lead to the conclusion that BLM can be used as an active oxygen-generating fragment of a proposed cell-destroying hybrid molecule.  相似文献   

19.
Bloom syndrome (BS) is an autosomal recessive disorder characterized by genomic instability and the early development of many types of cancer. Missense mutations have been identified in the BLM gene (encoding a RecQ helicase) in affected individuals, but the molecular mechanism and the structural basis of the effects of these mutations remain to be elucidated. We analysed five disease-causing missense mutations that are localized in the BLM helicase core region: Q672R, I841T, C878R, G891E and C901Y. The disease-causing mutants had low ATPase and helicase activities but their ATP binding abilities were normal, except for Q672, whose ATP binding activity was lower than that of the intact BLM helicase. Mutants C878R, mapping near motif IV, and G891E and C901Y, mapping in motif IV, displayed severe DNA-binding defects. We used molecular modelling to analyse these mutations. Our work provides insights into the molecular basis of BLM pathology, and reveals structural elements implicated in coupling DNA binding to ATP hydrolysis and DNA unwinding. Our findings will help to explain the mechanism underlying BLM catalysis and interpreting new BLM causing mutations identified in the future.  相似文献   

20.
Organic solvent extracts of whole cells of the gram-positive bacterium Rhodococcus erythropolis contain a channel-forming protein. It was identified by lipid bilayer experiments and purified to homogeneity by preparative sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). The pure protein had a rather low molecular mass of about 8.4 kDa, as judged by SDS-PAGE. SDS-resistant oligomers with a molecular mass of 67 kDa were also observed, suggesting that the channel is formed by a protein oligomer. The monomer was subjected to partial protein sequencing, and 45 amino acids were resolved. According to the partial sequence, the sequence has no significant homology to known protein sequences. To check whether the channel was indeed localized in the cell wall, the cell wall fraction was separated from the cytoplasmic membrane by sucrose step gradient centrifugation. The highest channel-forming activity was found in the cell wall fraction. The purified protein formed large ion-permeable channels in lipid bilayer membranes with a single-channel conductance of 6.0 nS in 1 M KCl. Zero-current membrane potential measurements with different salts suggested that the channel of R. erythropolis was highly cation selective because of negative charges localized at the channel mouth. The correction of single-channel conductance data for negatively charged point charges and the Renkin correction factor suggested that the diameter of the cell wall channel is about 2.0 nm. The channel-forming properties of the cell wall channel of R. erythropolis were compared with those of other members of the mycolata. These channels have common features because they form large, water-filled channels that contain net point charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号