首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BP人工神经网络在光谱定量预测中的应用   总被引:1,自引:0,他引:1  
人工神经网络是模仿大脑神经元网络结构和功能而建立的一种信息处理系统,广泛的应用于各种波谱数据处理。误差反向传播多层前馈式网络(back-propagation network,简称BP网络)应用最广,发展最为迅速。将BP神经网络用于紫外-可见吸收光谱和拉曼光谱数据的定量分析和预测,与原文的一元线性回归模型数据处理方法相比,获得了比较满意的预测结果,预测精度有显著提高。这为相关的光谱分析和数据处理提供了一种更有效、更精确的方法。  相似文献   

2.
We have developed a sequence conservation-based artificial neural network predictor called NetDiseaseSNP which classifies nsSNPs as disease-causing or neutral. Our method uses the excellent alignment generation algorithm of SIFT to identify related sequences and a combination of 31 features assessing sequence conservation and the predicted surface accessibility to produce a single score which can be used to rank nsSNPs based on their potential to cause disease. NetDiseaseSNP classifies successfully disease-causing and neutral mutations. In addition, we show that NetDiseaseSNP discriminates cancer driver and passenger mutations satisfactorily. Our method outperforms other state-of-the-art methods on several disease/neutral datasets as well as on cancer driver/passenger mutation datasets and can thus be used to pinpoint and prioritize plausible disease candidates among nsSNPs for further investigation. NetDiseaseSNP is publicly available as an online tool as well as a web service: http://www.cbs.dtu.dk/services/NetDiseaseSNP  相似文献   

3.
Accurate and controllable regulatory elements such as promoters and ribosome binding sites (RBSs) are indispensable tools to quantitatively regulate gene expression for rational pathway engineering. Therefore, de novo designing regulatory elements is brought back to the forefront of synthetic biology research. Here we developed a quantitative design method for regulatory elements based on strength prediction using artificial neural network (ANN). One hundred mutated Trc promoter & RBS sequences, which were finely characterized with a strength distribution from 0 to 3.559 (relative to the strength of the original sequence which was defined as 1), were used for model training and test. A precise strength prediction model, NET90_19_576, was finally constructed with high regression correlation coefficients of 0.98 for both model training and test. Sixteen artificial elements were in silico designed using this model. All of them were proved to have good consistency between the measured strength and our desired strength. The functional reliability of the designed elements was validated in two different genetic contexts. The designed parts were successfully utilized to improve the expression of BmK1 peptide toxin and fine-tune deoxy-xylulose phosphate pathway in Escherichia coli. Our results demonstrate that the methodology based on ANN model can de novo and quantitatively design regulatory elements with desired strengths, which are of great importance for synthetic biology applications.  相似文献   

4.
Neural networks have received much attention in recent years mostly by non-statisticians. The purpose of this paper is to incorporate neural networks in a non-linear regression model and obtain maximum likelihood estimates of the network parameters using a standard Newton-Raphson algorithm. We use maximum likelihood estimators instead of the usual back-propagation technique and compare the neural network predictions with predictions of quadratic regression models and with non-parametric nearest neighbor predictions. These comparisons are made using data generated from a variety of functions. Because of the number of parameters involved, neural network models can easily over-fit the data, hence validation of results is crucial.  相似文献   

5.

Background

This study aimed to develop the artificial neural network (ANN) and multivariable logistic regression (LR) analyses for prediction modeling of cardiovascular autonomic (CA) dysfunction in the general population, and compare the prediction models using the two approaches.

Methods and Materials

We analyzed a previous dataset based on a Chinese population sample consisting of 2,092 individuals aged 30–80 years. The prediction models were derived from an exploratory set using ANN and LR analysis, and were tested in the validation set. Performances of these prediction models were then compared.

Results

Univariate analysis indicated that 14 risk factors showed statistically significant association with the prevalence of CA dysfunction (P<0.05). The mean area under the receiver-operating curve was 0.758 (95% CI 0.724–0.793) for LR and 0.762 (95% CI 0.732–0.793) for ANN analysis, but noninferiority result was found (P<0.001). The similar results were found in comparisons of sensitivity, specificity, and predictive values in the prediction models between the LR and ANN analyses.

Conclusion

The prediction models for CA dysfunction were developed using ANN and LR. ANN and LR are two effective tools for developing prediction models based on our dataset.  相似文献   

6.
7.

Background

Knee osteoarthritis (OA) is the most common joint disease of adults worldwide. Since the treatments for advanced radiographic knee OA are limited, clinicians face a significant challenge of identifying patients who are at high risk of OA in a timely and appropriate way. Therefore, we developed a simple self-assessment scoring system and an improved artificial neural network (ANN) model for knee OA.

Methods

The Fifth Korea National Health and Nutrition Examination Surveys (KNHANES V-1) data were used to develop a scoring system and ANN for radiographic knee OA. A logistic regression analysis was used to determine the predictors of the scoring system. The ANN was constructed using 1777 participants and validated internally on 888 participants in the KNHANES V-1. The predictors of the scoring system were selected as the inputs of the ANN. External validation was performed using 4731 participants in the Osteoarthritis Initiative (OAI). Area under the curve (AUC) of the receiver operating characteristic was calculated to compare the prediction models.

Results

The scoring system and ANN were built using the independent predictors including sex, age, body mass index, educational status, hypertension, moderate physical activity, and knee pain. In the internal validation, both scoring system and ANN predicted radiographic knee OA (AUC 0.73 versus 0.81, p<0.001) and symptomatic knee OA (AUC 0.88 versus 0.94, p<0.001) with good discriminative ability. In the external validation, both scoring system and ANN showed lower discriminative ability in predicting radiographic knee OA (AUC 0.62 versus 0.67, p<0.001) and symptomatic knee OA (AUC 0.70 versus 0.76, p<0.001).

Conclusions

The self-assessment scoring system may be useful for identifying the adults at high risk for knee OA. The performance of the scoring system is improved significantly by the ANN. We provided an ANN calculator to simply predict the knee OA risk.  相似文献   

8.
9.
黄静 《生物数学学报》2003,18(3):351-356
提出了一种利用神经网络为蛋白质家族建立模型的方法,这一方法的理论出发点是利用神经网络从一组同家族蛋白质序列中识别出共同的特征模式,建好的模型可用于预测蛋白质家族,使用这一方法。所能识别的模式在长度、位点等方面都不受限制。而且建模及预测过程中输入神经网络的蛋白质序列不需要作预对齐。对Pfam蛋白质库中的二十个家族运用此方法,预测的平均正确率达到了95.5%。  相似文献   

10.
基于BP神经网络的SARS传播预测   总被引:2,自引:0,他引:2  
政府的控制措施作为影响SARS传播的因素,利用BP网络,对SARS的传播规律进行预测.以北京市的SARS数据来进行验证,结果显示,该方法准确率非常高.  相似文献   

11.
The specificity of GalNAc-transferase is consistent with the existence of an extended site composed of nine subsites, denoted by R4, R3, R2, R1, R0, R1, R2, R3, and R4, where the acceptor at R0 is either Ser or Thr to which the reducing monosaccharide is anchored. To predict whether a peptide will react with the enzyme to form a Ser- or Thr-conjugated glycopeptide, a neural network method—Kohonen's self-organization model is proposed in this paper. Three hundred five oligopeptides are chosen for the training site, with another 30 oligopeptides for the test set. Because of its high correct prediction rate (26/30=86.7%) and stronger fault-tolerant ability, it is expected that the neural network method can be used as a technique for predicting O-glycosylation and designing effective inhibitors of GalNAc-transferase. It might also be useful for targeting drugs to specific sites in the body and for enzyme replacement therapy for the treatment of genetic disorders.  相似文献   

12.

Background

Accurate evaluation of glomerular filtration rates (GFRs) is of critical importance in clinical practice. A previous study showed that models based on artificial neural networks (ANNs) could achieve a better performance than traditional equations. However, large-sample cross-sectional surveys have not resolved questions about ANN performance.

Methods

A total of 1,180 patients that had chronic kidney disease (CKD) were enrolled in the development data set, the internal validation data set and the external validation data set. Additional 222 patients that were admitted to two independent institutions were externally validated. Several ANNs were constructed and finally a Back Propagation network optimized by a genetic algorithm (GABP network) was chosen as a superior model, which included six input variables; i.e., serum creatinine, serum urea nitrogen, age, height, weight and gender, and estimated GFR as the one output variable. Performance was then compared with the Cockcroft-Gault equation, the MDRD equations and the CKD-EPI equation.

Results

In the external validation data set, Bland-Altman analysis demonstrated that the precision of the six-variable GABP network was the highest among all of the estimation models; i.e., 46.7 ml/min/1.73 m2 vs. a range from 71.3 to 101.7 ml/min/1.73 m2, allowing improvement in accuracy (15% accuracy, 49.0%; 30% accuracy, 75.1%; 50% accuracy, 90.5% [P<0.001 for all]) and CKD stage classification (misclassification rate of CKD stage, 32.4% vs. a range from 47.3% to 53.3% [P<0.001 for all]). Furthermore, in the additional external validation data set, precision and accuracy were improved by the six-variable GABP network.

Conclusions

A new ANN model (the six-variable GABP network) for CKD patients was developed that could provide a simple, more accurate and reliable means for the estimation of GFR and stage of CKD than traditional equations. Further validations are needed to assess the ability of the ANN model in diverse populations.  相似文献   

13.
Microscopic detection of Cryptosporidium parvum oocysts is time-consuming, requires trained analysts, and is frequently subject to significant human errors. Artificial neural networks (ANN) were developed to help identify immunofluorescently labeled C. parvum oocysts. A total of 525 digitized images of immunofluorescently labeled oocysts, fluorescent microspheres, and other miscellaneous nonoocyst images were employed in the training of the ANN. The images were cropped to a 36- by 36-pixel image, and the cropped images were placed into two categories, oocyst and nonoocyst images. The images were converted to grayscale and processed into a histogram of gray color pixel intensity. Commercially available software was used to develop and train the ANN. The networks were optimized by varying the number of training images, number of hidden neurons, and a combination of these two parameters. The network performance was then evaluated using a set of 362 unique testing images which the network had never “seen” before. Under optimized conditions, the correct identification of authentic oocyst images ranged from 81 to 97%, and the correct identification of nonoocyst images ranged from 78 to 82%, depending on the type of fluorescent antibody that was employed. The results indicate that the ANN developed were able to generalize the training images and subsequently discern previously unseen oocyst images efficiently and reproducibly. Thus, ANN can be used to reduce human errors associated with the microscopic detection of Cryptosporidium oocysts.  相似文献   

14.
With the continuous deepening of Artificial Neural Network(ANN)research,ANN model structure and function are improv-ing towards diversification and intelligence...  相似文献   

15.
1IntroductionThe three-dimensional(3D)structure of a proteinis perhaps the most important of all its features,since itdetermines completely how the protein functions andinteracts with other molecules.Most biological mech-anisms at the protein level are based on shape-complementarity,so that proteins present particularconcavities and convexities that allow them to bind toeach other and formcomplexstructures,and tendon.Forthis reason,for instance,the drug design problem con-sists primarily in th…  相似文献   

16.
张斌  尹京苑  薛丹 《生物信息学》2011,9(3):224-228,234
蛋白质二级结构对于研究其功能具有重要作用。采用主成分分析方法对氨基酸的基本物化属性及其二级结构倾向性进行降维降噪处理,使用径向基神经网络对蛋白质二级结构进行预测。主成分分析使得之前 20 ×12 矩阵变为 20 ×4 矩阵,极大地减少了神经网络输入端的维数。在仿真过程中,当窗口大小为 21,扩展函数为 7 时,预测精确度达到了 71. 81%。实验结果表明 RBF 神经网络可以有效的用于蛋白质二级结构的预测。  相似文献   

17.
The use of motion analysis to assess balance is essential for determining the underlying mechanisms of falls during dynamic activities. Clinicians evaluate patients using clinical examinations of static balance control, gait performance, cognition, and neuromuscular ability. Mapping these data to measures of dynamic balance control, and the subsequent categorization and identification of community dwelling elderly fallers at risk of falls in a quick and inexpensive manner is needed. The purpose of this study was to demonstrate that given clinical measures, an artificial neural network (ANN) could determine dynamic balance control, as defined by the interaction of the center of mass (CoM) with the base of support (BoS), during gait. Fifty-six elderly adults were included in this study. Using a feed-forward neural network with back propagation, combinations of five functional domains, the number of hidden layers and error goals were evaluated to determine the best parameters to assess dynamic balance control. Functional domain input parameters included subject characteristics, clinical examinations, cognitive performance, muscle strength, and clinical balance performance. The use of these functional domains demonstrated the ability to quickly converge to a solution, with the network learning the mapping within 5 epochs, when using up to 30 hidden nodes and an error goal of 0.001. The ability to correctly identify the interaction of the CoM with BoS demonstrated correlation values up to 0.89 (P<.001). On average, using all clinical measures, the ANN was able to estimate the dynamic CoM to BoS distance to within 1 cm and BoS area to within 75 cm2. Our results demonstrated that an ANN could be trained to map clinical variables to biomechanical measures of gait balance control. A neural network could provide physicians and patients with a cost effective means to identify dynamic balance issues and possible risk of falls from routinely collected clinical examinations.  相似文献   

18.

Objective

This study aimed to construct a model for using in differentiating benign and malignant nodules with the artificial neural network and to increase the objective diagnostic accuracy of US.

Materials and methods

618 consecutive patients (528 women, 161 men) with 689 thyroid nodules (425 malignant and 264 benign nodules) were enrolled in the present study. The presence and absence of each sonographic feature was assessed for each nodule - shape, margin, echogenicity, internal composition, presence of calcifications, peripheral halo and vascularity on color Doppler. The variables meet the following criteria: important sonographic features and statistically significant difference were selected as the input layer to build the ANN for predicting the malignancy of nodules.

Results

Six sonographic features including shape (Taller than wide, p<0.001), margin (Not Well-circumscribed, p<0.001), echogenicity (Hypoechogenicity, p<0.001), internal composition (Solid, p<0.001), presence of calcifications (Microcalcification, p<0.001) and peripheral halo (Absent, p<0.001) were significantly associated with malignant nodules. A three-layer 6-8-1 feed-forward ANN model was built. In the training cohort, the accuracy of the ANN in predicting malignancy of thyroid nodules was 82.3% (AUROC = 0.818), the sensitivity and specificity was 84.5% and 79.1%, respectively. In the validation cohort, the accuracy, sensitivity and specificity was 83.1%, 83.8% and 81.8%, respectively. The AUROC was 0.828.

Conclusion

ANN constructed by sonographic features can discriminate benign and malignant thyroid nodules with high diagnostic accuracy.  相似文献   

19.
To effectively and accurately detect and classify network intrusion data, this paper introduces a general regression neural network (GRNN) based on the artificial immune algorithm with elitist strategies (AIAE). The elitist archive and elitist crossover were combined with the artificial immune algorithm (AIA) to produce the AIAE-GRNN algorithm, with the aim of improving its adaptivity and accuracy. In this paper, the mean square errors (MSEs) were considered the affinity function. The AIAE was used to optimize the smooth factors of the GRNN; then, the optimal smooth factor was solved and substituted into the trained GRNN. Thus, the intrusive data were classified. The paper selected a GRNN that was separately optimized using a genetic algorithm (GA), particle swarm optimization (PSO), and fuzzy C-mean clustering (FCM) to enable a comparison of these approaches. As shown in the results, the AIAE-GRNN achieves a higher classification accuracy than PSO-GRNN, but the running time of AIAE-GRNN is long, which was proved first. FCM and GA-GRNN were eliminated because of their deficiencies in terms of accuracy and convergence. To improve the running speed, the paper adopted principal component analysis (PCA) to reduce the dimensions of the intrusive data. With the reduction in dimensionality, the PCA-AIAE-GRNN decreases in accuracy less and has better convergence than the PCA-PSO-GRNN, and the running speed of the PCA-AIAE-GRNN was relatively improved. The experimental results show that the AIAE-GRNN has a higher robustness and accuracy than the other algorithms considered and can thus be used to classify the intrusive data.  相似文献   

20.
This paper describes a method for growing a recurrent neural network of fuzzy threshold units for the classification of feature vectors. Fuzzy networks seem natural for performing classification, since classification is concerned with set membership and objects generally belonging to sets of various degrees. A fuzzy unit in the architecture proposed here determines the degree to which the input vector lies in the fuzzy set associated with the fuzzy unit. This is in contrast to perceptrons that determine the correlation between input vector and a weighting vector. The resulting membership value, in the case of the fuzzy unit, is compared with a threshold, which is interpreted as a membership value. Training of a fuzzy unit is based on an algorithm for linear inequalities similar to Ho-Kashyap recording. These fuzzy threshold units are fully connected in a recurrent network. The network grows as it is trained. The advantages of the network and its training method are: (1) Allowing the network to grow to the required size which is generally much smaller than the size of the network which would be obtained otherwise, implying better generalization, smaller storage requirements and fewer calculations during classification; (2) The training time is extremely short; (3) Recurrent networks such as this one are generally readily implemented in hardware; (4) Classification accuracy obtained on several standard data sets is better than that obtained by the majority of other standard methods; and (5) The use of fuzzy logic is very intuitive since class membership is generally fuzzy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号