共查询到20条相似文献,搜索用时 15 毫秒
1.
PEST-dependent cytoplasmic retention of v-Rel by I(kappa)B-alpha: evidence that I(kappa)B-alpha regulates cellular localization of c-Rel and v-Rel by distinct mechanisms. 总被引:1,自引:0,他引:1 下载免费PDF全文
Association of c-Rel with the inhibitor of kappaB-alpha (IkappaB-alpha) protein regulates both cellular localization and DNA binding. The ability of v-Rel, the oncogenic viral counterpart of avian c-Rel, to evade regulation by p40, the avian IkappaB-alpha protein, contributes to v-Rel-mediated oncogenesis. The yeast two-hybrid system was utilized to dissect Rel:IkappaB-alpha interactions in vivo. We find that distinct domains in c-Rel and v-Rel are required for association with p40. Furthermore, while the ankyrin repeat domain of p40 is sufficient for association with c-Rel, both the ankyrin repeat domain and the PEST domain are required for association with v-Rel. Two amino acid differences between c-Rel and v-Rel that are principally responsible for PEST-dependent association of v-Rel with p40 were identified. These same amino acids were principally responsible for PEST-dependent cytoplasmic retention of v-Rel by p40. The presence of mutations in c-Rel that were sufficient to confer PEST-dependent association of the mutant c-Rel protein with p40 did not increase the weak oncogenicity of c-Rel. However, the introduction of these two c-Rel-derived amino acids into v-Rel markedly reduced the oncogenicity of v-Rel. Deletion of the NLS of either c-Rel or v-Rel did not abolish association with p40, but did confer PEST-dependent association of c-Rel with p40. Surprisingly, deletion of the nuclear localization signal in v-Rel did not affect oncogenicity by v-Rel. Analysis of several mutant c-Rel and v-Rel proteins demonstrated that association of Rel proteins with p40 is necessary but not sufficient for cytoplasmic retention. These results are not consistent with the hypothesis that p40 regulates cellular localization of v-Rel and c-Rel by the same mechanism. Rather, these results support the hypothesis that p40 regulates cellular localization of v-Rel and c-Rel by distinct mechanisms. 相似文献
2.
3.
4.
zeta PKC induces phosphorylation and inactivation of I kappa B-alpha in vitro. 总被引:19,自引:6,他引:13 下载免费PDF全文
M T Diaz-Meco I Dominguez L Sanz P Dent J Lozano M M Municio E Berra R T Hay T W Sturgill J Moscat 《The EMBO journal》1994,13(12):2842-2848
The zeta isotype of protein kinase C (zeta PKC), a distinct PKC unable to bind phorbol esters, is required during NF-kappa B activation as well as in mitogenic signalling in Xenopus oocytes and mammalian cells. To investigate the mechanism(s) for control of cellular functions by zeta PKC, this enzyme was expressed in Escherichia coli as a fusion protein with maltose binding protein (MBP), to allow immobilization on amylose beads to study signalling proteins in cell extracts that might form complex(es) with zeta PKC. The following evidence for interaction with the NF-kappa B/I kappa B pathway was obtained. MBP-zeta PKC, but not MBP, bound and activated a potentially novel I kappa B kinase of approximately 50 kDa molecular weight able to regulate I kappa B-alpha function. Activation of the I kappa B kinase was dependent on zeta PKC enzymatic activity and ATP, suggesting that zeta PKC controls, directly or indirectly, the activity of a functionally significant I kappa B kinase. Importantly, zeta PKC immunoprecipitates from TNF-alpha-stimulated NIH-3T3 fibroblasts displayed a higher I kappa B phosphorylating activity than untreated controls, indicating the in vivo relevance of these findings. We also show here that zeta PKC associates with and activates MKK-MAPK in vitro, suggesting that one of the mechanisms whereby overexpression of zeta PKC leads to deregulation of cell growth may be accounted for at least in part by activation of the MKK-MAPK complex. However, neither MKK nor MAPK is responsible for the putative I kappa B phosphorylating activity. These data provide a decisive step towards understanding the functions of zeta PKC. 相似文献
5.
6.
7.
8.
9.
10.
The path that RNA takes from the nucleus to the cytoplasm: a trip with some surprises 总被引:2,自引:2,他引:0
Iborra FJ 《Histochemistry and cell biology》2002,118(2):95-103
11.
Kallesh Danappa Jayappa Zhujun Ao Xiaojian Yao 《International Journal of Biochemistry and Molecular Biology》2012,3(1):70-85
The human immunodeficiency virus 1 (HIV-1) synthesizes its genomic DNA in cytoplasm as soon as it enters the cell. The newly synthesized DNA remains associated with viral/cellular proteins as a high molecular weight pre-integration complex (PIC), which precludes passive diffusion across intact nuclear membrane. However, HIV-1 successfully overcomes nuclear membrane barrier by actively delivering its DNA into nucleus with the help of host nuclear import machinery. Such ability allows HIV-1 to productively infect non-dividing cells as well as dividing cells at interphase. Further, HIV-1 nuclear import is also found important for the proper integration of viral DNA. Thus, nuclear import plays a crucial role in establishment of infection and disease progression. While several viral components, including matrix, viral protein R, integrase, capsid, and central DNA flap are implicated in HIV-1 nuclear import, their molecular mechanism remains poorly understood. In this review, we will elaborate the role of individual viral factors and some of current insights on their molecular mechanism(s) associated with HIV-1 nuclear import. In addition, we will discuss the importance of nuclear import for subsequent step of viral DNA integration. Hereby we aim to further our understanding on molecular mechanism of HIV-1 nuclear import and its potential usefulness for anti-HIV-1 strategies. 相似文献
12.
Relocalization of the dorsal protein from the cytoplasm to the nucleus correlates with its function 总被引:50,自引:0,他引:50
dorsal is one of the maternally active dorsal-ventral polarity genes of Drosophila and is homologous to the vertebrate proto-oncogene c-rel. In wild-type embryos, the dorsal protein is found in the cytoplasm during cleavage. After the nuclei migrate to the periphery of the embryo, a ventral-to-dorsal gradient of nuclear dorsal protein is established. The formation of the nuclear gradient is disrupted in mutant embryos from other maternally active dorsal-ventral polarity genes: in dorsalized embryos only cytoplasmic protein is observed, while in ventralized embryos the nuclear gradient is shifted dorsally. My findings suggest that nuclear localization is critical for dorsal to function as a morphogen and that the distribution of the dorsal protein determines cell fate along the dorsal-ventral axis. 相似文献
13.
蛋白质入核转运的机制和研究进展 总被引:2,自引:0,他引:2
细胞核膜是由外膜和内膜组成的磷脂双分子层结构,同时镶嵌一些核孔复合体(NPC).核孔复合体是胞浆和胞核之间主动和被动转运的生理屏障.核内功能蛋白在胞浆内合成后通过核孔复合体进入胞核,这个过程除了需要NPC上核孔蛋白、胞浆内核转运受体和RanGTP等蛋白的参与外, 货物蛋白本身的结构特征在其入核转运过程中亦发挥重要作用.本文着重就蛋白入核转运的机制及近年来取得的相关进展进行综述. 相似文献
14.
P F Lambert M J Ludford-Menting N J Deacon I Kola R R Doherty 《Molecular biology of the cell》1997,8(2):313-323
The gene encoding NFKB1 is autoregulated, responding to NF-kappa B/Rel activation through NF-kappa B binding sites in its promoter, which also contains putative sites for Ets proteins. One of the Ets sites, which we refer to as EBS4, is located next to an NF-kappa B/Rel binding site, kB3, which is absolutely required for activity of the promoter in Jurkat T cells in response to activation by phorbol 12-myristate 13-acetate (PMA), PMA/ionomycin, or the Tax protein from human T cell leukemia virus type I. We show that EBS4 is, required for the full response of the nfkb1 promoter to PMA or PMA/ionomycin in Jurkat cells. EBS4 is bound by Ets-1, Elf-1, and other species. Overexpression of Ets-1 augments the response to PMA/ionomycin and this is reduced by mutation of EBS4. Elf-1 has less effect in conjunction with PMA/ionomycin, but by itself activates the promoter 12-fold. This activation is only partly affected by mutation of EBS4, and a mutant promoter that binds Ets-1, but not Elf-1, at the EBS4 site responds to PMA/ionomycin as efficiently as the wild-type. Ets proteins may be responsible for fine-tuning the activity of the nfkb1 gene in a cell-type-specific manner. 相似文献
15.
Jan Salaj Iris R von Recklinghausen Valerie Hecht Sacco C de Vries Jan H N Schel André A M van Lammeren 《Plant Physiology and Biochemistry》2008,46(7):709-714
The Arabidopsis thaliana primordia timing (pt) mutant was transformed with an AtSERK1::GUS construct. Liquid cultures of this line were used to study the relationship between somatic embryogenesis and the expression of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (AtSERK1) as a marker for cells competent to form embryos. In order to search for the expression of AtSERK1::GUS during early stages of somatic embryogenesis, histochemical as well as immunochemical approaches were used for the detection of beta-glucuronidase (GUS). Four sites of AtSERK1 expression were found in the embryogenic cultures: in embryogenic callus, where primary somatic embryos developed; in the basal parts of primary somatic embryos; in the outer layers of cotyledons of primary somatic embryos where secondary embryos were formed; and in provascular and vascular strands of developing somatic embryos. The in vitro expression of AtSERK1::GUS coincides with embryogenic development up to the heart-shaped stage. Prior to the expression in embryos, AtSERK1 was expressed in single cells and small cell clusters, indicating that AtSERK1 indeed marks embryogenic competence. Its expression in (pro)vascular strands, suggests that embryogenic cells in tissue culture retain at least in part their original identity. 相似文献
16.
Transport of galectin-3 between the nucleus and cytoplasm. I. Conditions and signals for nuclear import 总被引:1,自引:0,他引:1
Davidson PJ Li SY Lohse AG Vandergaast R Verde E Pearson A Patterson RJ Wang JL Arnoys EJ 《Glycobiology》2006,16(7):602-611
Galectin-3, a factor involved in the splicing of pre-mRNA, shuttles between the nucleus and the cytoplasm. We have engineered a vector that expresses the fusion protein containing the following: (a) green fluorescent protein as a reporter of localization, (b) bacterial maltose-binding protein to increase the size of the reporter polypeptide, and (c) galectin-3, whose sequence we wished to dissect in search of amino acid residues vital for nuclear localization. In mouse 3T3 fibroblasts transfected with this expression construct, the full-length galectin-3 (residues 1-263) fusion protein was localized predominantly in the nucleus. Mutants of this construct, containing truncations of the galectin-3 polypeptide from the amino terminus, retained nuclear localization through residue 128; thus, the amino-terminal half was dispensable for nuclear import. Mutants of the same construct, containing truncations from the carboxyl terminus, showed loss of nuclear localization. This effect was observed beginning with truncation at residue 259, and the full effect was seen with truncation at residue 253. Site-directed mutagenesis of the sequence ITLT (residues 253-256) suggested that nuclear import was dependent on the IXLT type of nuclear localization sequence, first discovered in the Drosophila protein Dsh (dishevelled). In the galectin-3 polypeptide, the activity of this nuclear localization sequence is modulated by a neighboring leucine-rich nuclear export signal. 相似文献
17.
Switch in antiviral specificity of a GTPase upon translocation from the cytoplasm to the nucleus. 总被引:1,自引:2,他引:1 下载免费PDF全文
The Mx2 protein of rats is a cytoplasmic GTPase that protects cells against vesicular stomatitis virus but not against influenza virus. Since vesicular stomatitis virus replicates in the cytoplasm and influenza virus replicates in the nucleus, it was possible that the antiviral specificity of rat Mx2 protein was determined solely by the protein's subcellular localization. Here, we found that, indeed, rat Mx2 protein lost its anti-vesicular stomatitis virus activity and gained anti-influenza virus activity when it was directed to the nucleus by way of a foreign nuclear-transport signal appended to its amino terminus. These data show that rat Mx2 protein possesses an antiviral activity that is revealed only when the protein is shuttled to the nucleus. 相似文献
18.
19.
Nuclear transport is an energy-dependent process mediated by saturable receptors. Import and export receptors are thought to recognize and bind to nuclear localization signals or nuclear export signals, respectively, in the transported molecules. The receptor-substrate interaction can be direct or mediated by an additional adapter protein. The transport receptors dock their cargoes to the nuclear pore complexes (NPC) and facilitate their translocation through the NPC. After delivering their cargoes, the receptors are recycled to initiate additional rounds of transport. Because a transport event for a cargo molecule is unidirectional, the transport receptors engage in asymmetric cycles of translocation across the NPC. The GTPase Ran acts as a molecular switch for receptor-cargo interaction and imparts directionality to the transport process. Recently, the combined use of different in vitro and in vivo approaches has led to the characterization of novel import and export signals and to the identification of the first nuclear import and export receptors. 相似文献
20.
Michael Bachmann Karin Pfeifer Heinz C. Schröder Werner E. G. Müller 《Molecular and cellular biochemistry》1989,85(2):103-114
Summary Recently we established a monoclonal antibody against the La-protein (Bachmannet al., Proc. Natl. Acad. Sci. USA, 83, 7770, 1986). The antibody gives a nuclear speckled type staining and, in addition, a perinuclear cytoplasmic staining on cultured cells in immunofluorescence microscopy. After inhibition of RNA synthesis the La-protein is transported into the cytoplasm. After prolonged inhibition it returns into the nucleus forming large growing speckles. The transport into the nucleus apparently depends on glycosylation.Abbreviations FITC
Fluorescein Isothiocyanate
- RITC
Rhodamine Isothiocyanate
- scRNP
small cytoplasmic Ribonucleoprotein
- snRNP
Small nuclear Ribonucleoprotein
- mab
Monoclonal antibody
- Ig
Immunoglobulin
- BSA
Bovine Serum Albumin
- PBS
Phosphate Buffered Saline
- PMSF
Phenylmethanesulfonyl Fluoride
- SDS
Sodium Dodecyl Sulfate
- EGTA
Ethyleneglycol bis(-aminoethyl ether)-N,N,N,N-tetraacetic Acid
- MCTD
Mixed Connective Tissue Disease
- SLE
Systemic Lupus Erythematosus 相似文献