首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Mutation Research Letters》1991,262(2):129-137
Specimens of the seawater fish annular seabream (Diplodus annularis) were caught from a polluted harbor area and from a clean reference area. Seawater concentrates and fish-muscle extracts were not mutagenic in the Salmonella reversion test. Liver preparations of fish from the 2 sources were comparatively assayed for microsomal mixed-function oxidases and cytosolic biochemical parameters, as well as for the ability of S12 fractions to activate promutagens or to detoxify direct-acting mutagens. A shift of the cytochrome P-450 peak from 450.3 to 448.5 was accompanied by a 4.5-fold increase in arylhydrocarbon hydroxylase activity in fish living in the polluted environment. At the same time, glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase were doubled in the cytosol of the same animals, while reduced glutathione (GSH) peroxidase and GSH S-transferase were slightly yet significantly depressed. No significant difference was recorded for other biochemical parameters, including GSH, oxidized glutathione (GSSG) reductase, NADH- and NADPH-dependent diaphorases, and DT diaphorase. In parallel, fish exposed to polluted seawater exhibited a significant and marked enhancement of the metabolic activation of the pyrolysis product Trp-P-2 and of benzo[a]pyrene-trans-7,8-diol, and at the same time were less efficient in detoxifying the antitumor compound ICR 191. Liver S12 fractions from both sources efficiently decreased the direct mutagenicity of sodium dichromate, and failed to activate benzo[a]pyrene and aflatoxin B1 to mutagenic metabolites. These results provide evidence that both biochemical parameters and the overall capacity of fish liver to activate or detoxify certain mutagens can be assumed to be sensitive indicators of exposure to mixed organic pollutants in the marine environment.  相似文献   

2.
Mutagens have been found in smoked, dried bonito products, popular items in Japanese foods. The mutagens were isolated by means of blue cotton, an absorbent cotton preparation with covalently bound trisulfo-copper-phthalocyanine residues, and by means of XAD-2 resin. The mutagenicity was positive in Salmonella typhimurium strain TA98 with metabolic activation. The mutagens are produced during the process of smoking-and-drying bonito (a process called baikan). The activity was much higher than that expected from the content of benzo[a]pyrene. In contrast to benzo[a]pyrene, the mutagens were not inhibited by ellagic acid. The mutagenicity was not abolished by treatment with nitrite. Thin-layer and high-performance liquid chromatographic analysis gave two mutagenic fractions, both of which were distinguishable from benzo[a]pyrene and from the pyrolysis products Trp-P-1, Trp-P-2, Glu-P-1, Glu-P-2, A alpha C and MeA alpha C. The major mutagenic component was not chromatographically distinguishable from IQ and MeIQx, and the minor one was very similar to MeIQ. The smoked, dried bonito products contained free fatty acids, which were inhibitory to the mutagenicity of the bonito products.  相似文献   

3.
Subcellular fractions from Drosophila melanogaster, known to have several xenobiotic-metabolizing enzymatic activities, were investigated with respect to their ability to biotransform compounds that require metabolic activation before exerting mutagenic effects. Nitrofurazone, dimethylnitrosamine, cyclophosphamide and 2-acetylaminofluorene were activated to mutagens upon incubation with Drosophila microsomes or 20000 x g supernatant: mutagenicity was observed in Chinese hamster ovary cells, Escherichia coli strains 343/113/R-9 and 343/113/uvrB, and Salmonella typhimurium TA1538. Under the conditions used, microsomal preparations of Drosophila were not able to activate benzo[a]pyrene to a mutagen for Salmonella typhimurium TA98. The spectrum of mutagenic effects observed shows some correlation with the known mutagenicity of these compounds in vivo in Drosophila melanogaster. Drosophila microsomes appeared to be at least as active as rat-liver microsomes when compared in this type of mutagenicity testing.  相似文献   

4.
F R Ampy  S Saxena  K Verma 《Cytobios》1988,56(225):81-87
The mutagenicity of benzo(a)pyrene [B(a)P] in uninduced tissues from Sprague-Dawley rats and BALB/c mice resulted in no age, sex or tissue-related differences when S9 preparations from lung, kidney and spleen were used in the Salmonella mutagenicity assay. Liver S9 fractions from both species resulted in a significantly greater number of His+ revertants (TA98) per plate than observed on the control plates (spontaneous reversion rate). Liver homogenates from adult Sprague-Dawley rats showed a significantly lower potential to activate B(a)P than homogenates from adult BALB/c mice. In both species, male liver microsomal enzymes had a greater potential to activate B(a)P than female microsomal enzymes. These data indicated that in uninduced tissues B(a)P may not be a very powerful mutagenic agent. More detailed in vitro and in vivo studies are needed to assess the precise health risks associated with this environmental pollutant.  相似文献   

5.
Liver post-mitochondrial supernatants derived from 10 individuals were used as the source of metabolic activation for carcinogens in the Ames quantitative mutagenicity test using Salmonella typhimurium TA 100. The liver samples were obtained from brain-dead donors and autopsy cases. The ability of human enzymes to activate aromatic amines ranged from the undetectable to highly active for 2-acetylaminofluorene. None of the samples exhibited any ability to activate benzidine. A generally low activity was observed in the capability of human enzymes to activate the polynuclear aromatic hydrocarbons, 3-methylcholanthrene and benzo(a)pyrene. Most samples were positive for activating 4-nitrobiphenyl. However, the highest mutagenic activity in the presence of human enzymes was consistently observed for aflatoxin B1 and sterigmatocystin. These results indicated that (a) human enzyme systems, like rodent systems, are more effective in inducing mutagenic activity from mycotoxins than aromatic amines and polynuclear aromatic hydrocarbons, and (b) samples derived from different individuals exhibited considerable variation in the ability to activate carcinogens belonging to a same class of compound.  相似文献   

6.
Genetic evidence has indicated that plants can activate certain xenobiotics to mutagens, but biochemical evidence is as yet scarce. Nevertheless, plant microsomal enzymes and peroxidases have been shown to form reactive intermediates, the best studied examples being 2-aminofluorene, benzo[a]pyrene and pentachlorophenol. The latter two xenobiotics are converted to quinoid derivatives which are, in principle, able to redox cycle and generate active oxygen species. In analogy to results obtained in mammalian systems, covalent binding of reactive intermediates to DNA as well as fragmentation of DNA, are proposed as major mechanisms of action of mutagenic plant metabolites.  相似文献   

7.
The mutagenic activity of ethyl acetate extracts of culture medium from Cunninghamella elegans incubated 72 h with various polycyclic aromatic hydrocarbons (PAHs) was evaluated in the Salmonella typhimurium reversion assay. All of the PAH extracts were assayed in tester strains TA98 and TA100 both with and without metabolic activation using a liver fraction from Aroclor 1254-treated rats. None of the extracts from fungal incubations with the mutagenic PAHs, benzo[a]pyrene, 7,12-dimethylbenz[a]anthracene, 3-methylcholanthrene and benz[a]anthracene, as well as the non-mutagenic PAHs, naphthalene, phenanthrene and anthracene, displayed any appreciable mutagenic activity. In addition, time course experiments indicated that the rate of decrease in mutagenic activity in the extracts from cultures incubated with benzo[a]pyrene or 7,12-dimethylbenz[a]anthracene was coincident with the rate of increase in total metabolism. The results demonstrated the ability of the fungus C. elegans to detoxify known carcinogens and mutagens and suggests that this organism may play an important role in the metabolism and inactivation of PAHs in the environment.Abbreviations hplc high performance liquid chromatography - tlc thin layer chromatography - PAH polycyclic aromatic hydrocarbon  相似文献   

8.
The mutagenicity of interstitial water and organic extracts from the sediments in the Cadeia and Feitoria Rivers, RS, Brazil, were evaluated by Salmonella microsuspension bioassay using TA97a, TA98, TA100 and TA102 strains, in the absence and presence of S9 mix. At the contaminated site, the mutagenic responses for interstitial water, suggested the presence of frameshift and base pair substitution mutagens, including oxidative substances. Organic extracts presented direct or indicative mutagenesis to the TA97a, TA98 and TA100 strains. In general, an exogenous metabolic systems decreased the mutagenicity of the samples. High concentrations of total chromium found in the sediment and interstitial water as well as total mercury in the sediment of the contaminated site, when compared to the control area, may help explain the mutagenic results. The livers of Gymnogeophagus gymnogenys collected in this impacted area, compared to a non-polluted site, were analyzed for oxidative stress parameters. Compared to the controls, there was a significant increase in the activity of superoxide dismutase (SOD) at levels of substances reactive to thiobarbituric acid (TBARS), and in the chemiluminescence of hepatic cells in fish in the polluted area. The concentration of cytochromes P450 and b5 decreased drastically in the fish at the polluted site, while the catalase activity did not change. It was possible to correlate the biological changes in the fish with the presence of mutagenic compounds in sediment and interstitial water in this area.  相似文献   

9.
Epoxide hydrase and glutathione (GSH) S-transferase activities were measured in subcellular fractions prepared from liver or hepatopancreas and some extrahepatic organs of a number of marine species common to Maine or Florida. These activities were easily detected in the species studied. In fish, hepatic GSH S-transferase activities were normally higher than hepatic epoxide hydrase activities for the alkene oxide (styrene oxide and octene oxide) and arene oxide (benzo[a]pyrene 4,5-oxide) substrates studied, whereas in crustacea, hepatopancreas epoxide hydrase activities were higher than hepatopancreas GSH S-transferase activities with the same substrates. Extrahepatic organs from fish and crustacea usually had higher GSH S-transferase activities than epoxide hydrase activities with the alkene and arene oxide substrates. GSH S-transferase activity was also found in liver or hepatopancreas of every aquatic species studied and in a number of extrahepatic organs, when 1,2-dichloro-4-nitrobenzene or 1-chloro-2,4-dinitrobenzene served as substrate.  相似文献   

10.
The mutagenic activities of trans-7,8-dihydro-7,8-dihydroxybenzo[a]-pyrene (BP 7,8-diol) and of trans-3,4-dihydroxy-7,12-dimethylbenz[a]-anthracene (DMBA 3,4-diol) towards S. typhimurium TA100 were measured in assays that were carried out on a micro-scale in liquid medium in the presence of microsomal fractions prepared from mouse skin or rat liver. In the presence of an NADPH-generating system, microsomal enzymes converted both diols into mutagens that were probably the respective 'bay-region' diol-epoxides. The rate of the enzyme-catalysed conversion of the BP 7,8-diol into mutagens by microsomal preparations from mouse epidermis was similar to that occurring with microsomes from rat liver. Pretreatment of mice by the topical application of benz[a]anthracene (BA) or 7,12-dimethylbenz[a]-anthracene (DMBA) increased the mutagenic activity of BP 7,8-diol mediated by mouse skin microsomal preparations by 2-fold and this was paralleled by a 4-fold increase in epidermal aryl hydrocarbon (benzo[a]pyrene) hydroxylase (AHH) activity. The results are discussed in relation to the high susceptibility of mouse skin to polycyclic aromatic hydrocarbon (PAH) carcinogenesis.  相似文献   

11.
Postmitochondrial fractions from marine sponges Geodia cydonium, Tethya aurantium, Verongia aerophoba and Pellina semitubulosa activate precarcinogenic aromatic amine 2-aminoanthracene, but not precarcinogenic polycyclic aromatic hydrocarbon benzo(a)pyrene, to Salmonella typhimurium TA 98 mutagens. All four sponge species lack a benzo(a)pyrene monooxygenase activity, but possesses the enzyme activity whose characteristics (selective activation of aromatic amines, NADPH-dependency, pH optimum at 8.4) are similar to FAD-containing monooxygenase. Tethya postmitochondrial fraction possesses an UDP-glucuronyl transferase activity which catalyzes the conjugation of a considerable part of metabolized 2-acetylamino [9-14C]fluorene to water soluble glucuronides. The possible ecological significance of exuded aromatic amine metabolites as well as the significance of the presence of the selective potential for the activation of aromatic amines to mutagens among sponges for our understanding of the fate and effects of carcinogens in the marine environment are discussed.  相似文献   

12.
We examined the in vivo mutagenicity of 2-[2-(acetylamino)-4-[bis(2-hydroxyethyl)amino]-5-methoxyphenyl]-5-amino-7-bromo-4-chloro-2H-benzotriazole (PBTA-6) and benzo[a]pyrene (BaP) by using transgenic (Tg) zebrafish carrying the mutational target gene rpsL. PBTA-6 is one of the PBTA-type compounds that were recently identified in highly mutagenic river water in Japan. BaP is a well-known contaminant that is frequently found in polluted water. Both compounds are potent mutagens, as determined by using the Ames test employing S9 mix and Salmonella. Adult rpsL Tg zebrafish were exposed to 0, 7, or 10 mg/L PBTA-6 or 0, 1.5, or 3 mg/L BaP for 96 h in a water bath and the mutations in their gills and hepatopancreata were measured 2-4 weeks later. At 3 weeks after exposure, 3 mg/L BaP significantly increased the rpsL mutant frequency (MF) in the gill and hepatopancreas by 5- and 2.3-fold, respectively, as compared to control fish. Sequence analysis showed that BaP mainly induced G:C to T:A and G:C to C:G transversions, which is consistent with the known mutagenic effects of BaP. In contrast, despite its extremely high mutagenic potency in Salmonella strains, PBTA-6 did not significantly increase the MF in the zebrafish gill or hepatopancreas. Although PBTA-6 is 300 times more mutagenic than BaP in the Ames test [T. Watanabe, H. Nukaya, Y. Terao, Y. Takahashi, A. Tada, T. Takamura, H. Sawanishi, T. Ohe, T. Hirayama, T. Sugimura, K. Wakabayashi, Synthesis of 2-phenylbenzotriazole-type mutagens, PBTA-5 and PBTA-6, and their detection in river water from Japan, Mutat. Res. 498 (2001) 107-115], calculation of the mutagenicity per mole of compound indicated that PBTA-6 was 33- and <3.7-fold less mutagenic in the zebrafish gill and hepatopancreas, respectively, than BaP.  相似文献   

13.
The marine ciliate Parauronema acutum converted 2-aminofluorene and 2-acetylaminofluorene to compounds with mutagenic activity in the Ames Salmonella test. The ciliate, however, did not activate benzo (α)pyrene or benzanthracene or destroy the mutagenic properties of nitrosoguanidine. Homogenates, when substituted for the liver S-9 fraction in the Salmonella/microsome test, activated 2-aminofluorene and 2-acetylaminofluorene to mutagens. Benzo(α)pyrene and benzanthracene were not activated, nor was nitrosoguanidine inactivated. Phenobarbitol did not induce or increase the amount of activating activity. The activation showed no requirement for the reduced nicotinamide adenine dinucleotide phosphate-regenerating system required by liver P-450 cytochromes. Upon differential sedimentation of a cell homogenate, the majority of the activity sedimented with a small-particle fraction with sedimentation properties like those of microsomes from higher eucaryotes. Benzo(α)pyrene, although not metabolized, was accumulated by cultures of P. acutum at a linear rate and was not appreciably released (10%) after removal of benzo(α)pyrene from the incubation medium. Hence, this ciliate could convert certain polynuclear aromatic hydrocarbons to mutagens and accumulate others.  相似文献   

14.
The mononitro-substituted isomers of benzo[a]pyrene (B[a]P), 1-, 3- and 6-nitrobenzo[a]pyrene (NB[a]P), are environmental pollutants and are metabolized to mutagens in Salmonella by rat-liver homogenate postmitochondrial supernatant (S9) fractions. In this study, activation of these compounds to mutagens was investigated using the hepatocyte-mediated Salmonella mutagenicity assay. Hepatocytes from rats treated with Aroclor 1254 activated both 3-NB[a]P and 1-NB[a]P to mutagens, while 6-NB[a]P was not mutagenic. The positive mutagenicity responses were functions of both the chemical dose and the hepatocyte concentration. By using a nitroreductase-deficient strain (TA98NR) and a transesterificase-deficient strain (TA98/1,8-DNP6), it was verified that the direct-acting mutagenicities of 1- and 3-NB[a]P primarily were due to metabolic processes involving nitroreduction while the S9- and hepatocyte-mediated mutagenicity responses were also dependent on transesterification. When compared with the mutagenic responses produced with S9, the mutations induced by 1- and 3-NB[a]P in the presence of hepatocytes were relatively more dependent upon nitroreductase metabolism and less on transesterification. Thus, intact hepatocytes were capable of activating 1- and 3-NB[a]P to mutagenic metabolites and some of these metabolites appeared to be different from those produced by S9.  相似文献   

15.
2-Chloroethylnitrosoureas (CNU) are antineoplastic agents whose therapeutic dose is limited by toxic and carcinogenic side effect. The clinically used drugs, bis-(2-chloroethyl)nitrosourea (BCNU) and 1-(2-chloroethyl)-3-(2-hydroxyethyl)-1-nitrosourea (HECNU) and their analogue N-(2-chloroethyl)-N-nitrosocarbamoyl-glycinamide (CNC-GA) were tested for mutagenicity and toxicity in the Salmonella typhimurium tester strain TA1535 in the presence and absence of glutathione (GSH). All 3 compounds proved to be potent mutagens. The cytotoxicity of these CNUs, however, varied depending on their carbamoylating activity. These cytotoxic effects were decreased considerably by the addition of GSH. It has been shown that the isocyanate decomposition product of the 2-chloroethylnitrosoureas reacts with GSH yielding S-carbamoylated GSH derivatives. The adducts resulting from coincubation of BCNU or HECNU with GSH, 2-chloroethyl-S-carbamoyl-GSH and 2-hydroxy-S-carbamoyl-GSH, were also tested for their mutagenic activity. While the hydroxyethylated compound exhibited no effects, 2-chloroethyl-S-carbamoyl-GSH and its cysteine analogue, 2-chloroethyl-S-carbamoyl-GSH, were strong mutagens. Further experiments with 3-chloropropyl-S-carbamoyl-GSH and t-butyl-S-carbamoyl-GSH indicate that a chlorine substituent in the beta position is necessary for the induction of a potent mutagenic response.  相似文献   

16.
The microsome-activatable mutagens (chromatographically distinguishable from benzo[a]pyrene and from the mutagens produced from pyrolysed amino acids and proteins) previously found in beef extract and in bacterial nutrients which contain beef extract are produced when beef stock is heated. Reflux boiling of beef stock at 100°C results in a linear increase in mutagenic activity toward Salmonella strain TA1538. The rate of production of mutagenic activity at temperatures between 68°C and 98°C conforms closely to the Arrhenius equation, yielding an activation energy of 23 738 calories per mole. Extrapolation from these data predicts a sharp rise in the rate of mutagen formation between 140 and 180°C. This expectation is confirmed when ground beef patties (hamburgers) are prepared in various conventional electrically-heated appliances which operate at different cooking temperatures within this range. The mutagenic activity of hamburger cooked at high temperatures is limited to the surface layers; the temperature of the inside of the hamburger does not exceed 100°C during cooking. No mutagenic activity is found in comparable samples of uncooked meat. The results indicated that the mutagens may be formed as a result of the temperatures encountered in certain conventional cooking procedures.  相似文献   

17.
Eight procarcinogens including three nitrosamines, three polycyclic hydrocarbons, and two aromatic amines were tested for mutagenic potential at the thymidine kinase (TK) locus in L5178Y mouse lymphoma cells co-cultivated with viable hamster hepatocytes. All eight chemicals produced substantial mutagenic activity as indicated by increased trifluorothymidine resistance in L5178Y cells treated in the presence of hepatocytes. Mutagenic responses to benzo[a]pyrene, 3-methyl-cholanthrene, N-nitrosodiethylamine, and N-nitrosodipropylamine first increased, then plateaued within the range of mutagen concentrations tested, while consistent dose-dependent increases in mutant frequencies were observed following 2-aminoanthracene, 2-aminofluorene, or N-nitrosodimethylamine treatments. The relatively flat portions of the mutant frequency curves for benzo[a]pyrene and 3-methylcholanthrene coincided with maximum chemical solubility as obvious from visible or microscopically detectable precipitate. These hamster cells readily facilitated the metabolism of 1,2-benzanthracene to a detectable mutagen and were especially competent in the activation of the two aromatic amines. Thus, cultured hamster hepatocytes can activate a variety of chemical carcinogens including polycyclic hydrocarbons to mutagens in a whole cell-mediated in vitro assay using L5178Y/TK+/? cells as the target organism.  相似文献   

18.
The metabolism of carcinogens in fish was examined by measuring the activation of different polycyclic aromatic hydrocarbons (PAH) by carp (Cyprinus carpio L.) liver post-mitochondrial fractions (S9) using the Salmonella typhimurium TA100 reverse mutation assay. For this study, 1 non-carcinogen, anthracene (AN), and 4 carcinogens, chrysene (CHR), benzo[a]pyrene (BaP), 3-methylcholanthrene (3MC) and 7,12-dimethylbenzanthracene (DMBA), were chosen. The bioactivating potency of the metabolic systems of carp pretreated with phenobarbital (PB), 3MC or Aroclor 1254 (ARO) were compared to uninduced carp liver. The results show that carp liver has the ability to metabolize carcinogenic PAH into mutagenic metabolites, which is enhanced when carp are pretreated with 3MC or ARO, but not with PB. A positive correlation between the induction of aryl hydrocarbon hydroxylase (AHH) activity in carp liver and the mutagenic potencies of CHR, BaP, DMBA and 3MC, has been observed. The bioactivating ability of carp liver S9 was compared with the ability of the same fractions from female Wistar rats (this study) as well as from Sprague-Dawley rats (literature data). When the mutagenic potencies of selected PAH had been normalized on the activity of BaP, the following order of mutagenic activities with S9 fractions from ARO-treated animals was obtained: (1) BaP (1) greater than DMBA (0.26) greater than 3MC (0.22) greater than CHR (0.05) greater than AN (0) for carp; (2) BaP (1) greater than 3MC (0.48) greater than CHR (0.31) greater than DMBA (0.16) greater than AN (0) for Sprague-Dawley rats; and (3) BaP (1) greater than 3MC (0.17) greater than DMBA (0.11) greater than CHR (0) = AN (0) for female Wistar rats. We conclude that carp and rats are very similar in their ability to activate carcinogenic PAH into mutagenic metabolites, which suggests that carp may be very susceptible to the carcinogenic activity of these compounds. According to our results from the mutagenicity study, as well as from the enzyme induction study, we propose the use of carp as a suitable model system for the study of chemical carcinogens.  相似文献   

19.
The mutagenic activity of some dietary mutagens, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole (Glu-P-1) and 2-amino-dipyrido[1,2-a:3',2'-d]imidazole (Glu-P-2), was inhibited in the Salmonella-plate test preincubated with heat-inactivated rat intestinal preparations. A similar inhibition was observed by preincubating intestinal preparations with 2-acetylaminofluorene (AAF) and benzo[a]pyrene (B[a]P). The effect was not specific for small intestine and was also obtained with spleen, liver, lung, colon and stomach preparations. Mutagenic activity was not inhibited by beef muscle proteins. Lipids extracted from intestinal mucosa preparations were equally effective as inhibitors of the mutagenic activity. Lipid fractions from intestinal mucosa were capable of inhibiting the formation of activated IQ by mammalian S9, and other components of the intestinal preparations were able to bind the promutagens and their active metabolites. The mutagenic activity of 1-(2-hydroxyethyl)-2-methyl-5-nitroimidazole (metronidazole) and of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was also inhibited by intestinal preparations, but not by their lipid fractions. A binding of IQ to intestinal preparations was also demonstrated with HPLC techniques. The data indicate that tissue components may reduce the mutagenic activity of chemicals by interfering with the activation process and by reducing the concentration of the promutagens and their active metabolites at target sites.  相似文献   

20.
A comparison was made between lung and kidney homogenates on the one hand and liver S9 from rats on the other hand in order to compare their ability to activate promutagens. The Salmonella reversion assay was used on extracts of airborne particles from the top of coke oven batteries, and of expectorate and urine samples from exposed workers in the same coke plant. The contents of benzo[a]anthracene and benzo[a]pyrene in the different test solutions were measured by high-resolution gas chromatography/mass spectrometry. Both mutagens were detected in the filter extract and in the expectorates from the exposed workers but not in the expectorates from the control groups or in the urine samples. The liver S9 gave significantly higher mutagenicity than lung and kidney activation with both filter samples and expectorate and urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号