首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two chemotaxis-defective mutants of Pseudomonas aeruginosa, designated PC3 and PC4, were selected by the swarm plate method after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. These mutants were not complemented by the P. aeruginosa cheY and cheZ genes, which had been previously cloned (Masduki et al., J. Bacteriol., 177, 948-952, 1995). DNA sequences downstream of the cheY and cheZ genes were able to complement PC3 but not PC4. Sequence analysis of a 9.7-kb region directly downstream of the cheZ gene found three chemotaxis genes, cheA, cheB, and cheW, and seven unknown open reading frames (ORFs). The predicted translation products of the cheA, cheB, and cheW genes showed 33, 36, and 31% amino acid identity with Escherichia coli CheA, CheB, and CheW, respectively. Two of the unknown ORFs, ORF1 and ORF2, encoded putative polypeptides that resembled Bacillus subtilis MotA (40% amino acid identity) and MotB (34% amino acid identity) proteins, respectively. Although P. aeruginosa was found to have proteins similar to the enteric chemotaxis proteins CheA, CheB, CheW, CheY, and CheZ, the gene encoding a CheR homologue did not reside in the chemotaxis gene cluster. The P. aeruginosa cheR gene could be cloned by phenotypic complementation of the PC4 mutant. This gene was located at least 1,800 kb away from the chemotaxis gene cluster and encoded a putative polypeptide that had 32% amino acid identity with E. coli CheR.  相似文献   

2.
During bacterial chemotaxis in Escherichia coli, adaptation is accomplished by reversible methylation of the transmembrane signal transducers. Methyl groups are added by the CheR protein in a slow response to attractants and removed by the CheB protein in response to repellents. The methylesterase activity of the CheB protein is modulated by a factor that is controlled in a global fashion throughout the cell. By controlling the level of expression of the cheR, cheB, and transducer genes with exogenous promoters on multicopy plasmids, we demonstrate that the modulating factor exists in stoichiometric concentrations relative to CheB protein and that the generation or efficacy of this factor requires the cheA and/or cheW gene products, suggesting that phosphorylation of the methylesterase by CheA may be involved in its global activation. We show that in the absence of any modulation of the CheB activity, the CheR methyltransferase activity is modulated in a local fashion at the transducers, most likely as a result of a conformational change in the transducer protein brought about by the binding of ligand, and does not require CheA or CheW.  相似文献   

3.
It has previously been reported that the alpha-proteobacterium Azospirillum brasilense undergoes methylation-independent chemotaxis; however, a recent study revealed cheB and cheR genes in this organism. We have constructed cheB, cheR, and cheBR mutants of A. brasilense and determined that the CheB and CheR proteins under study significantly influence chemotaxis and aerotaxis but are not essential for these behaviors to occur. First, we found that although cells lacking CheB, CheR, or both were no longer capable of responding to the addition of most chemoattractants in a temporal gradient assay, they did show a chemotactic response (albeit reduced) in a spatial gradient assay. Second, in comparison to the wild type, cheB and cheR mutants under steady-state conditions exhibited an altered swimming bias, whereas the cheBR mutant and the che operon mutant did not. Third, cheB and cheR mutants were null for aerotaxis, whereas the cheBR mutant showed reduced aerotaxis. In contrast to the swimming bias for the model organism Escherichia coli, the swimming bias in A. brasilense cells was dependent on the carbon source present and cells released methanol upon addition of some attractants and upon removal of other attractants. In comparison to the wild type, the cheB, cheR, and cheBR mutants showed various altered patterns of methanol release upon exposure to attractants. This study reveals a significant difference between the chemotaxis adaptation system of A. brasilense and that of the model organism E. coli and suggests that multiple chemotaxis systems are present and contribute to chemotaxis and aerotaxis in A. brasilense.  相似文献   

4.
Rhodobacter sphaeroides has multiple homologues of most of the Escherichia coli chemotaxis genes, organized in two major operons and other, unlinked, loci. These include cheA1 and cheW1 (che Op1) and cheA2, cheW2 and cheW3 (che Op2). We have deleted each of these cheA and cheW homologues in-frame and examined the chemosensory behaviour of these strains on swarm plates and in tethered cell assays. In addition, we have examined the effect of these deletions on the polar localization of the chemoreceptor McpG. In E. coli, deletion of either cheA or cheW results in a non-chemotactic phenotype, and these strains also show no receptor clustering. Here, we demonstrate that CheW2 and CheA2 are required for the normal localization of McpG and for normal chemotactic responses under both aerobic and photoheterotrophic conditions. Under aerobic conditions, deletion of cheW3 has no significant effect on McpG localization and only has an effect on chemotaxis to shallow gradients in swarm plates. Under photoheterotrophic conditions, however, CheW3 is required for McpG localization and also for chemotaxis both on swarm plates and in the tethered cell assay. These phenotypes are not a direct result of delocalization of McpG, as this chemoreceptor does not mediate chemotaxis to any of the compounds tested and can therefore be considered a marker for general methyl-accepting chemotaxis protein (MCP) clustering. Thus, there is a correlation between the normal localization of McpG (and presumably other chemoreceptors) and chemotaxis. We propose a model in which the multiple different MCPs in R. sphaeroides are contained within a polar chemoreceptor cluster. Deletion of cheW2 and cheA2 under both aerobic and photoheterotrophic conditions, and cheW3 under photoheterotrophic conditions, disrupts the cluster and hence reduces chemotaxis to any compound sensed by these MCPs.  相似文献   

5.
A well-characterized protein phosphorelay mediates Escherichia coli chemotaxis towards the amino acid attractant aspartate. The protein CheY shuttles between flagellar motors and methyl-accepting chemoreceptor (MCP) complexes containing the linker CheW and the kinase CheA. CheA-CheY phosphotransfer generates phospho-CheY, CheY-P. Aspartate triggers smooth swim responses by inactivation of the CheA bound to the target MCP, Tar; but this mechanism alone cannot explain the observed response sensitivity. Here, we used behavioral analysis of mutants deleted for CheZ, a catalyst of CheY-P dephosphorylation, or the methyltransferase CheR and/or the methylesterase CheB to examine the roles of accelerated CheY-P dephosphorylation and MCP methylation in enhancement of the chemotactic response. The extreme motile bias of the mutants was adjusted towards wild-type values, while preserving much of the aspartate response sensitivity by expressing fragments of the MCP, Tsr, that either activate or inhibit CheA. We then measured responses to small jumps of aspartate, generated by flash photolysis of photo-labile precursors. The stimulus-response relation for Delta cheZ mutants overlapped that for the host strains. Delta cheZ excitation response times increased with stimulus size consistent with formation of an occluded CheA state. Thus, neither CheZ-dependent or independent increases in CheY-P dephosphorylation contribute to the excitation response. In Delta cheB Delta cheR or Delta cheR mutants, the dose for a half-maximal response, [Asp](50), was ca 10 microM; but was elevated to 100 microM in Delta cheB mutants. In addition, the stimulus-response relation for these mutants was linear, consistent with stoichiometric inactivation, in contrast to the non-linear relation for wild-type E. coli. These data suggest that response sensitivity is controlled by differential binding of CheR and/or CheB to distinct MCP signaling conformations.  相似文献   

6.
The genome sequence of Campylobacter jejuni NCTC 11168 reveals the presence of orthologues of the chemotaxis genes cheA, cheW, cheV, cheY, cheR and cheB, ten chemoreceptor genes and two aerotaxis genes. The presence of cheV and a response regulator domain in CheA, combined with the absence of a cheZ gene and the lack of a response regulator domain in CheB, reveals significant differences in the C. jejuni chemotaxis system compared with that found in other bacteria.  相似文献   

7.
A large chemotaxis operon was identified in Rhodobacter sphaeroides WS8-N using a probe based on the 3' terminal portion of the Rhizobium meliloti cheA gene. Two genes homologous to the enteric cheY were identified in an operon also containing cheA , cheW , and cheR homologues. The deduced protein sequences of che gene products were aligned with those from Escherichia coli and shown to be highly conserved. A mutant with an interrupted copy of cheA showed normal patterns of swimming, unlike the equivalent mutants in E. coli which are smooth swimming. Tethered cheA mutant cells showed normal responses to changes in organic acids, but increased, inverted responses to sugars. The unusual behaviour of the cheA mutant and the identification of two homologues of cheY suggests that R. sphaeroides has at least two pathways controlling motor activity. To identify functional similarity between the newly identified R. sphaeroides Che pathway and the methyl-accepting chemotaxis protein (MCP)-dependent pathway in enteric bacteria, the R. sphaeroides cheW gene was expressed in a cheW mutant strain of E. coli and found to complement, causing a partial return to a swarming phenotype. In addition, expression of the R. sphaeroides gene in wild-type E. coli resulted in the same increased tumbling and reduced swarming as seen when the native gene is over-expressed in E. coli . The identification of che homologues in R. sphaeroides and complementation by cheW suggests the presence of MCPs in an organism previously considered to use only MCP-independent sensing. The MCP-dependent pathway, appears conserved. In R. sphaeroides this pathway may mediate responses to sugars, while responses to organic acids may in involve a second system, possibly using the second CheY protein identified in this study.  相似文献   

8.
Rhodobacter sphaeroides chemotaxis is significantly more complex than that of enteric bacteria. Rhodobacter sphaeroides has multiple copies of chemotaxis genes (two cheA, one cheB, two cheR, three cheW, five cheY but no cheZ), controlling a single 'stop-start' flagellum. The growth environment controls the level of expression of different groups of genes. Tethered cell analysis of mutants suggests that CheY(4) and CheY(5) are the motor-binding response regulators. The histidine protein kinase CheA(2) mediates an attractant ('normal') response via CheY(4), while CheA(1) and CheY(5) appear to mediate a repellent ('inverted') response. CheY(3) facilitates signal termination, possibly acting as a phosphate sink, although CheY(1) and CheY(2) can substitute. The normal and inverted responses may be initiated by separate sets of chemoreceptors with their relative strength dependent on growth conditions. Rhodobacter sphaeroides may use antagonistic responses through two chemosensory pathways, expressed at different levels in different environments, to maintain their position in a currently optimum environment. Complex chemotaxis systems are increasingly being identified and the strategy adopted by R.sphaeroides may be common in the bacterial kingdom.  相似文献   

9.
A Borczuk  A Stock    J Stock 《Journal of bacteriology》1987,169(7):3295-3300
We previously showed that a mutant strain of Salmonella typhimurium completely deficient in both the chemoreceptor methylating (CheR) and demethylating (CheB) enzymes can still exhibit chemotaxis to aspartate and other attractants (J. Stock, A. Borczuk, F. Chiou, and J. E. B. Burchenal, Proc. Natl. Acad. Sci. USA 82:8364-8368, 1985). We used this cheR cheB mutant to examine the possibility of an additional requirement for S-adenosylmethionine in chemotaxis besides its role in chemoreceptor methylation. A metE mutation was transduced into a cheR cheB double mutant, and the cells were starved for methionine. Despite the fact that intracellular S-adenosylmethionine dropped from approximately 100 microM to less than 0.2 microM, chemotaxis was largely unaffected. In contrast, a corresponding cheR+ cheB+ metE mutant completely lost its chemotaxis ability after being starved for methionine. We conclude from this observation that the primary requirement for S-adenosylmethionine during bacterial chemotaxis is in the methylation of receptor proteins.  相似文献   

10.
Phosphorylation in halobacterial signal transduction.   总被引:11,自引:2,他引:9       下载免费PDF全文
Regulated phosphorylation of proteins has been shown to be a hallmark of signal transduction mechanisms in both Eubacteria and Eukarya. Here we demonstrate that phosphorylation and dephosphorylation are also the underlying mechanism of chemo- and phototactic signal transduction in Archaea, the third branch of the living world. Cloning and sequencing of the region upstream of the cheA gene, known to be required for chemo- and phototaxis in Halobacterium salinarium, has identified cheY and cheB analogs which appear to form part of an operon which also includes cheA and the following open reading frame of 585 nucleotides. The CheY and CheB proteins have 31.3 and 37.5% sequence identity compared with the known signal transduction proteins CheY and CheB from Escherichia coli, respectively. The biochemical activities of both CheA and CheY were investigated following their expression in E.coli, isolation and renaturation. Wild-type CheA could be phosphorylated in a time-dependent manner in the presence of [gamma-32P]ATP and Mg2+, whereas the mutant CheA(H44Q) remained unlabeled. Phosphorylated CheA was dephosphorylated rapidly by the addition of wild-type CheY. The mutant CheY(D53A) had no effect on phosphorylated CheA. The mechanism of chemo- and phototactic signal transduction in the Archaeon H.salinarium, therefore, is similar to the two-component signaling system known from chemotaxis in the eubacterium E.coli.  相似文献   

11.
Aer is a membrane-associated protein that mediates aerotactic responses in Escherichia coli. Its C-terminal half closely resembles the signaling domains of methyl-accepting chemotaxis proteins (MCPs), which undergo reversible methylation at specific glutamic acid residues to adapt their signaling outputs to homogeneous chemical environments. MCP-mediated behaviors are dependent on two specific enzymes, CheR (methyltransferase) and CheB (methylesterase). The Aer signaling domain contains unorthodox methylation sites that do not conform to the consensus motif for CheR or CheB substrates, suggesting that Aer, unlike conventional MCPs, might be a methylation-independent transducer. Several lines of evidence supported this possibility. (i) The Aer protein was not detectably modified by either CheR or CheB. (ii) Amino acid replacements at the putative Aer methylation sites generally had no deleterious effect on Aer function. (iii) Aer promoted aerotactic migrations on semisolid media in strains that lacked all four of the E. coli MCPs. CheR and CheB function had no influence on the rate of aerotactic movements in those strains. Thus, Aer senses and signals efficiently in the absence of deamidation or methylation, methylation changes, methylation enzymes, and methyl-accepting chemotaxis proteins. We also found that chimeric transducers containing the PAS-HAMP sensing domain of Aer joined to the signaling domain and methylation sites of Tar, an orthodox MCP, exhibited both methylation-dependent and methylation-independent aerotactic behavior. The hybrid Aear transducers demonstrate that methylation independence does not emanate from the Aer signaling domain but rather may be due to transience of the cellular redox changes that are thought to trigger Aer-mediated behavioral responses.  相似文献   

12.
The Escherichia coli chemotaxis signal transduction pathway has: CheA, a histidine protein kinase; CheW, a linker between CheA and sensory proteins; CheY, the effector; and CheZ, a signal terminator. Rhodobacter sphaeroides has multiple copies of these proteins (2 x CheA, 3 x CheW and 3 x CheY, but no CheZ). In this study, we found a fourth cheY and expressed these R. sphaeroides proteins in E. coli. CheA2 (but not CheA1) restored swarming to an E. coli cheA mutant (RP9535). CheW3 (but not CheW2) restored swarming to a cheW mutant of E. coli (RP4606). R. sphaeroides CheYs did not affect E. coli lacking CheY, but restored swarming to a cheZ strain (RP1616), indicating that they can act as signal terminators in E. coli. An E. coli CheY, which is phosphorylated but cannot bind the motor (CheY109KR), was expressed in RP1616 but had no effect. Overexpression of CheA2, CheW2, CheW3, CheY1, CheY3 and CheY4 inhibited chemotaxis of wild-type E. coli (RP437) by increasing its smooth-swimming bias. While some R. sphaeroides proteins restore tumbling to smooth-swimming E. coli mutants, their activity is not controlled by the chemosensory receptors. R. sphaeroides possesses a phosphorelay cascade compatible with that of E. coli, but has additional incompatible homologues.  相似文献   

13.
The two-component sensing system controlling bacterial chemotaxis is one of the best studied in biology. Rhodobacter sphaeroides has a complex chemosensory pathway comprising two histidine protein kinases (CheAs) and eight downstream response regulators (six CheYs and two CheBs) rather than the single copies of each as in Escherichia coli. We used in vitro analysis of phosphotransfer to start to determine why R.sphaeroides has these multiple homologues. CheA(1) and CheA(2) contain all the key motifs identified in the histidine protein kinase family, except for conservative substitutions (F-L and F-I) within the F box of CheA(2), and both are capable of ATP-dependent autophosphorylation. While the K(m) values for ATP of CheA(1) and CheA(2) were similar to that of E.coli, the k(cat) value was three times lower, but similar to that measured for the related Sinorhizobium meliloti CheA. However, the two CheAs differed both in their ability to phosphorylate the various response regulators and the rates of phosphotransfer. CheA(2) phosphorylated all of the CheYs and both CheBs, whilst CheA(1) did not phosphorylate either CheB and phosphorylated only the response regulators encoded within its own genetic locus (CheY(1), CheY(2), and CheY(5)) and CheY(3). The dephosphorylation rates of the R.sphaeroides CheBs were much slower than the E.coli CheB. The dephosphorylation rate of CheY(6), encoded by the third chemosensory locus, was ten times faster than that of the E.coli CheY. However, the dephosphorylation rates of the remaining R.sphaeroides CheYs were comparable to that of E.coli CheY.  相似文献   

14.
Sensory adaptation in bacterial chemotaxis is mediated by covalent modifications of specific glutamate and glutamine residues within the cytoplasmic domains of methyl-accepting chemotaxis proteins (MCPs). In Escherichia coli and Salmonella enterica, efficient methylation of MCPs depends on the localization of methyltransferase CheR to MCP clusters through an interaction between the CheR beta-subdomain and a pentapeptide sequence (NWETF or NWESF) at the C-terminus of the MCP. In vitro methylation analyses utilizing S. enterica and Thermotoga maritima CheR proteins and MCPs indicate that MCP methylation in T. maritima occurs independently of a pentapeptide-binding motif. Kinetic and binding measurements demonstrate that despite efficient methylation, the interaction between T. maritima CheR and T. maritima MCPs is of relatively low affinity. Comparative protein sequence analyses of CheR beta-subdomains from organisms having MCPs that contain and/or lack pentapeptide-binding motifs identified key similarities and differences in residue conservation, suggesting the existence of two distinct classes of CheR proteins: pentapeptide-dependent and pentapeptide-independent methyltransferases. Analysis of MCP C-terminal ends showed that only approximately 10% of MCPs contain a putative C-terminal binding motif, the majority of which are restricted to the different proteobacteria classes (alpha, beta, gamma, delta). These findings suggest that tethering of CheR to MCPs is a relatively recent event in evolution and that the pentapeptide-independent methylation system is more common than the well-characterized pentapeptide-dependent methylation system.  相似文献   

15.
A chemotaxis signal transduction pathway (hereafter called Che1) has been previously identified in the alphaproteobacterium Azospirillum brasilense. Previous experiments have demonstrated that although mutants lacking CheB and/or CheR homologs from this pathway are defective in chemotaxis, a mutant in which the entire chemotaxis pathway has been mutated displayed a chemotaxis phenotype mostly similar to that of the parent strain, suggesting that the primary function of this Che1 pathway is not the control of motility behavior. Here, we report that mutants carrying defined mutations in the cheA1 (strain AB101) and the cheY1 (strain AB102) genes and a newly constructed mutant lacking the entire operon [Δ(cheA1-cheR1)::Cm] (strain AB103) were defective, but not null, for chemotaxis and aerotaxis and had a minor defect in swimming pattern. We found that mutations in genes of the Che1 pathway affected the cell length of actively growing cells but not their growth rate. Cells of a mutant lacking functional cheB1 and cheR1 genes (strain BS104) were significantly longer than wild-type cells, whereas cells of mutants impaired in the cheA1 or cheY1 genes, as well as a mutant lacking a functional Che1 pathway, were significantly shorter than wild-type cells. Both the modest chemotaxis defects and the observed differences in cell length could be complemented by expressing the wild-type genes from a plasmid. In addition, under conditions of high aeration, cells of mutants lacking functional cheA1 or cheY1 genes or the Che1 operon formed clumps due to cell-to-cell aggregation, whereas the mutant lacking functional CheB1 and CheR1 (BS104) clumped poorly, if at all. Further analysis suggested that the nature of the exopolysaccharide produced, rather than the amount, may be involved in this behavior. Interestingly, mutants that displayed clumping behavior (lacking cheA1 or cheY1 genes or the Che1 operon) also flocculated earlier and quantitatively more than the wild-type cells, whereas the mutant lacking both CheB1 and CheR1 was delayed in flocculation. We propose that the Che1 chemotaxis-like pathway modulates the cell length as well as clumping behavior, suggesting a link between these two processes. Our data are consistent with a model in which the function of the Che1 pathway in regulating these cellular functions directly affects flocculation, a cellular differentiation process initiated under conditions of nutritional imbalance.  相似文献   

16.
Pseudomonas aeruginosa, a gamma-proteobacterium, is motile by means of a single polar flagellum and is chemotactic to a variety of organic compounds and phosphate. P. aeruginosa has multiple homologues of Escherichia coli chemotaxis genes that are organized into five gene clusters. Previously, it was demonstrated that genes in cluster I and cluster V are essential for chemotaxis. A third cluster (cluster II) contains a complete set of che genes, as well as two genes, mcpA and mcpB, encoding methyl-accepting chemotaxis proteins. Mutations were constructed in several of the cluster II che genes and in the mcp genes to examine their possible contributions to P. aeruginosa chemotaxis. A cheB2 mutant was partially impaired in chemotaxis in soft-agar swarm plate assays. Providing cheB2 in trans complemented this defect. Further, overexpression of CheB2 restored chemotaxis to a completely nonchemotactic, cluster I, cheB-deficient strain to near wild-type levels. An mcpA mutant was defective in chemotaxis in media that were low in magnesium. The defect could be relieved by the addition of magnesium to the swarm plate medium. An mcpB mutant was defective in chemotaxis when assayed in dilute rich soft-agar swarm medium or in minimal-medium swarm plates containing any 1 of 60 chemoattractants. The mutant phenotype could be complemented by the addition of mcpB in trans. Overexpression of either McpA or McpB in P. aeruginosa or Escherichia coli resulted in impairment of chemotaxis, and these cells had smooth-swimming phenotypes when observed under the microscope. Expression of P. aeruginosa cheA2, cheB2, or cheW2 in E. coli K-12 completely disrupted wild-type chemotaxis, while expression of cheY2 had no effect. These results indicate that che cluster II genes are expressed in P. aeruginosa and are required for an optimal chemotactic response.  相似文献   

17.
In contrast to the situation in enteric bacteria, chemotaxis in Rhodobacter sphaeroides requires transport and partial metabolism of chemoattractants. A chemotaxis operon has been identified containing homologues of the enteric cheA , cheW , cheR genes and two homologues of the cheY gene. However, mutations in these genes have only minor effects on chemotaxis. In enteric species, CheW transmits sensory information from the chemoreceptors to the histidine protein kinase, CheA. Expression of R. sphaeroides cheW in Escherichia coli showed concentration-dependent inhibition of wild-type behaviour, increasing counter-clockwise rotation and thus smooth swimming — a phenotype also seen when E. coli cheW is overexpressed in E. coli . In contrast, overexpression of R. sphaeroides cheW in wild-type R. sphaeroides inhibited motility completely, the equivalent of inducing tumbly motility in E. coli . Expression of R. sphaeroides cheW in an E. coli Δ cheW chemotaxis mutant complemented this mutation, confirming that CheW is involved in chemosensory signal transduction. However, unlike E. coli Δ cheW mutants, in-frame deletion of R. sphaeroides cheW did not affect either swimming behaviour or chemotaxis to weak organic acids, although the responses to sugars were enhanced. Therefore, although CheW may act as a signal-transduction protein in R. sphaeroides , it may have an unusual role in controlling the rotation of the flagellar motor. Furthermore, the ability of a Δ cheW mutant to swim normally and show wild-type responses to weak acids supports the existence of additional chemosensory signal-transduction pathways.  相似文献   

18.
Sensory adaptation by the chemotaxis system of Escherichia coli requires adjustments of the extent of methyl esterification of the chemotaxis receptor proteins. One mechanism utilized by E. coli to make such adjustments is to control the activity of CheB, the enzyme responsible for removing receptor methyl ester groups. Previous work has established the existence of a multicomponent signal transduction pathway that enables the chemotaxis receptor proteins to control the methylesterase activity in response to chemotactic stimuli. We isolated and characterized CheB mutants that do not respond normally to this control mechanism. In intact cells these CheB variants could not be activated in response to negative chemotaxis stimuli. Further characterization indicated that these CheB variants could not be phosphorylated by the chemotaxis protein kinase CheA. Disruption of the mechanism responsible for regulating methylesterase activity was also observed in cells carrying chromosomal deletions of either cheA or cheW as well as in cells expressing mutant versions of CheA that lacked kinase activity. These results provide further support for recent proposals that activation of the methylesterase activity of CheB involves phosphorylation of CheB by CheA. Furthermore, our findings suggest that CheW plays an essential role in enabling the chemotaxis receptor proteins to control the methylesterase activity, possibly by controlling the CheA-CheB phosphotransfer reaction.  相似文献   

19.
Rhodobacter sphaeroides has a complex chemosensory system comprising two classic CheAs, two atypical CheAs, and eight response regulators (six CheYs and two CheBs). The classic CheAs, CheA(1) and CheA(2), have similar domain structures to Escherichia coli CheA, whereas the atypical CheAs, CheA(3) and CheA(4), lack some of the domains found in E. coli CheA. CheA(2), CheA(3), and CheA(4) are all essential for chemotaxis. Here we demonstrate that CheA(3) and CheA(4) are both unable to undergo ATP-dependent autophosphorylation, however, CheA(4) is able to phosphorylate CheA(3). The in vitro kinetics of this phosphorylation reaction were consistent with a reaction mechanism in which CheA(3) associates with a CheA(4) dimer forming a complex, CheA(3)A(4). To the best of our knowledge, CheA(3)A(4) is the first characterized histidine protein kinase where the subunits are encoded by distinct genes. Selective phosphotransfer was observed from CheA(3)-P to the response regulators CheY(1), CheY(6), and CheB(2). Using phosphorylation site and kinase domain mutants of CheA we show that phosphosignaling involving CheA(2), CheA(3), and CheA(4) is essential for chemotaxis in R. sphaeroides. Interestingly, CheA(3) was not phosphorylated in vitro by CheA(1) or CheA(2), although CheA(1) and CheA(2) mutants with defective kinase domains were phosphorylated by CheA(4). Because in vivo CheA(3) and CheA(4) localize to the cytoplasmic chemotaxis cluster, while CheA(2) localizes to the polar chemotaxis cluster, it is likely that the physical separation of CheA(2) and CheA(4) prevents unwanted cross-talk between these CheAs.  相似文献   

20.
In the chemotaxis of Escherichia coli, adaptation requires the methylation and demethylation of transmembrane receptors, which are catalysed by the methyltransferase CheR and the methylesterase CheB respectively. CheR binds to major chemoreceptors through their C-terminal motif NWETF, which is distinct from the methylation sites. In this study, we carried out a systematic mutagenesis of the pentapeptide sequence of Tar. Receptor methylation and adaptation were severely impaired by the alanine substitution of residue W550 and, to a lesser extent, by that of F553. Substitution of residues N549, E551 and T552 had only a slight or little effect. The defects of the W550A and F553A mutations were suppressed by high- and low-level overproduction of CheR respectively. Expression of a fusion protein containing the NWETF sequence, but not its W550A and F553A versions, inhibited chemotaxis of the Che+ strain. In an in vitro assay, CheR bound to the wild-type version but not to the mutant versions. These results and further mutagenesis suggest that the hydrophobicity and the size of residues W550 and F553 are critical in the interaction with CheR, a conclusion that is consistent with the crystal structure of a CheR-NWETF complex. On the other hand, the negatively charged side chain of E551 and the polar side chains of N549 and T552 may not be strictly required, although the presence of a salt bridge and hydrogen bonds between these residues and residues from CheR has been noted in the co-crystal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号