首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Ant‐lycaenid associations range from mutualism to parasitism and the caterpillars of some species of lycaenids are reported to enter ant nests for shelter, diapause, or pupation. The present study aimed to examine the nature of the association between Euchrysops cnejus (Fabricius) (Lepidoptera: Lycaenidae) and Camponotus compressus (Fabricius) (Hymenoptera: Formicidae) worker ants on the extrafloral nectary‐bearing cowpea plant, Vigna unguiculata (L.) Walp. (Fabaceae). The abundance patterns of the ants and the lycaenid caterpillars together with the spatial patrolling patterns of the ants on the plants revealed that ant abundance increased with the occurrence of the lycaenid caterpillars and the ants preferred the lycaenids over the extrafloral nectar. Camponotus compressus worker ants constructed a shelter at the cowpea plant base after interaction with one or more lycaenid caterpillar(s) and tended the caterpillars and pupae till the emergence of the butterfly. The ant‐constructed shelters (ACSs) inhabited by the minor caste workers (13 ± 1.3 ants per ACS), were utilized by the caterpillars to undergo pupation. The ants confined their activities predominantly to tending the pod‐feeding caterpillars and the solitary pupa within each ACS. It appears that the behavior of the tending worker ants is modulated by the lycaenid vulnerable stages.  相似文献   

2.
In the Brazilian savanna many plant species bear regular associations with patrolling ants that are aggressive towards insect herbivores. However, not only ants but also several species of predatory wasps are attracted to plants due to the extrafloral nectaries (EFNs). Such wasps feed on both herbivores and plant exudates. In this study we describe the foraging behavior of the social Polistinae wasp Brachygastra lecheguana in the extrafloral nectaried shrub Banisteriopsis malifolia, and investigated the influence of patrolling ants Camponotus blandus on the activity of the wasp. Brachygastra lecheguana fed on the endophytic larvae of Anthonomus (Curculionidae) beetles that developed inside flower buds. The wasp lacerated the bud layers to reach the beetle larvae located at the bud core. The wasp visits to Ba. malifolia were statistically related to the abundance of flower buds and beetles. Ant exclusion experiments revealed that the hunting behavior of B. lecheguana on beetles was not related to the absence of C. blandus. However we found that wasps spent more time consuming extrafloral nectar on branches where ants were excluded. This is the first study reporting extrafloral nectar consumption by B. lecheguana, as well as the predation on herbivores in natural areas. In cerrado vegetation, ants benefit the plant by reducing insect herbivores, and our study provides evidence that the B. lecheguana – Ba. malifolia system represents a potential interaction where the wasp may also benefit the host plant. The value of this wasp species as a plant‐guard is discussed.  相似文献   

3.
Females of myrmecophilous butterflies tend to oviposit in plants visited by ant species that engage in stable associations with its larvae. In Banisteriopsis malifolia, caterpillars are attended by the same ants that feed on extrafloral nectaries. A conflict may arise when both the plant and caterpillars compete for ant attention, and ants are assumed to forage on the highest quality resource. By attending caterpillars, ants can be indirectly detrimental to plant fitness because florivorous larvae feed intensively until pupation. In this study, we specifically investigated (i) whether the occurrence of facultative myrmecophilous Synargis calyce (Riodinidae) caterpillars in B. malifolia was based on ant species (Camponotus blandus or Ectatomma tuberculatum) and abundance; (ii) the monopolization of ants by the butterfly larvae and (iii) the florivory rates incurred by the caterpillars on inflorescences. The abundance of S. calyce was six‐fold greater in plants with C. blandus, compared to E. tuberculatum treatments. Caterpillars monopolized up to 50% of C. blandus on the plants, indicating that the resources offered by S. calyce were more attractive to ants than extrafloral nectaries. Florivory by riodinids incurred losses of almost 60% of flower buds. Myrmecophilous riodinids exploited an ant–plant mutualism by attracting aggressive ants that become larvae bodyguards. Thus, this ecological interaction is potentially detrimental to B. malifolia, since the ants, which can provide protection against herbivores, shift to provide defence for one of these herbivores.  相似文献   

4.
Herbivorous insects have evolved various defensive strategies to avoid their primary enemies, parasitoids. Many species of Lycaenidae (Lepidoptera) have food‐for‐protection mutualism with ants in their larval stages, where larvae produce nectar for ants and in return ants exclude parasitoids as well as predators. Myrmecophilous relationships are divided into two categories, obligate and facultative, by degrees of myrmecophily. Although parasitoids attacking obligate lycaenids always encounter lycaenid‐specific ant species, parasitoids that use facultative lycaenids are likely to encounter diverse ant species showing various defense systems. However, we know little about the parasitoid community of facultative lycaenid larvae. In this study, we investigated the mutualistic ant and parasitoid communities of a facultative myrmecophilous species, Arhopala japonica, in seven localities in Japan. The present field observation newly recorded four ant species attending A. japonica larvae, and combined with the previous data, the number of attending ant species reached 16, which is nearly the maximum number of reported attending ant species among myrmecophilous lycaenids. However, the present study revealed that almost all parasitized A. japonica larvae were attacked by a single braconid species, Cotesia sp. near inducta. We also assessed the efficiency of facultative ant defense against the parasitoid in the laboratory and revealed that oviposition by Cotesia sp. near inducta females was almost completely hindered when A. japonica larvae were attended by ants. This suggests that the dominant parasitoid does not have effective traits to overcome defensive behavior of ants and that the female wasps oviposit mainly in A. japonica larvae without intensive attendance.  相似文献   

5.
Summary Larvae and pupae of lycaenid butteflies are often associated with ants: this is usually a mutualism in which ants guard the lycaenids from natural enemies, and the lycaenid larvae and pupae provide sugars and amino acids for the ants. A possible consequence of the interaction is spatially correlated ant and lycaenid distributions, but the phenomenon is poorly documented. We examined the lycaenid Plebejus argus, which is tended by Lasius ants. Within habitat patches, P. argus eggs, larvae and pupae were all spatially associated with Lasius. On a larger scale, the densities of butterflies in different habitat patches and populations, and whether the butterfly was present or not, were correlated with Lasius ant densities. The association of P. argus with Lasius ants is consistent among populations, and occurs at several spatial scales. Other aspects of the ecology of P. argus are more variable.  相似文献   

6.
In the Southeast Asian tropics, Arhopala lycaenid butterflies feed on Macaranga ant-plants inhabited by Crematogaster (subgenus Decacrema) ants tending Coccus-scale insects. A recent phylogenetic study showed that (1) the plants and ants have been codiversifying for the past 20–16 million years (Myr), and that (2) the tripartite symbiosis was formed 9–7 Myr ago, when the scale insects became involved in the plant–ant mutualism. To determine when the lycaenids first parasitized the Macaranga tripartite symbiosis, we constructed a molecular phylogeny of the lycaenids that feed on Macaranga by using mitochondrial and nuclear DNA sequence data and estimated their divergence times based on the cytochrome oxidase I molecular clock. The minimum age of the lycaenids was estimated by the time-calibrated phylogeny to be 2.05 Myr, about one-tenth the age of the plant–ant association, suggesting that the lycaenids are latecomers that associated themselves with the pre-existing symbiosis of plant, ant, and scale insects.  相似文献   

7.
Some phytophagous insects gain defense from natural enemies by associating with otherwise potentially harmful top predators. Many lycaenid butterfly caterpillars are involved in such interactions with ants: larvae provide carbohydrate rewards from the dorsal nectary organ (DNO) to associated ants in return for protection from natural enemies. The stability of these interactions involves signals that identify the lycaenid caterpillar as a mutualist. However, larvae of some lycaenid species, such as Lycaena xanthoides, are found in close association with ants but do not possess the reward producing DNO. Evaluating the relationship in a phylogenetic framework, we show that the association between L. xanthoides and ants likely evolved from a non-ant-associated ancestor. Behavioral trials also show that L. xanthoides larvae are capable of influencing ant behavior to increase ant tending when faced with a simulated predator attack, without providing DNO-derived rewards to ant associates. These results demonstrate that the DNO is not necessary to maintain associations between lycaenid larvae and ants. Third-party interactions may affect the evolution of mutualisms and consideration of underlying evolutionary history is necessary to understand contemporary species associations.  相似文献   

8.
A comprehensive and critical review of all available literature on associations between Australian lycaenid butterflies and ants was undertaken to establish an accurate database of the partners involved. Collections and observations of lycaenids and ants were used to augment this review, resulting in a significant number of newly documented association (and non-association) records. Twenty published records considered to be erroneous or doubtful are noted, with justifications given for their deletion from the association database. In total, 265 different associations between lycaenids and ants, plus 65 non-attendance records are documented for Australia. Nearly 80% of the lycaenid species in Australia, for which the early stages are known, are recorded associating with ants and half of these are obligately ant-associated. Patterns of association are examined from the perspective of both lycaenids and ants, with a focus on ant systematics and ecology. Lycaenids are recorded with five ant subfamilies, including the first record of an association with the Pseudomyrmecinae. The Dolichoderinae, and to some extent the Formicinae, have a disproportionately high percentage of genera that associate with lycaenid butterflies. All ant species that tend lycaenids spend at least some portion of their time foraging on vegetation to collect plant and insect nectar. There is a robust relationship between the competitive status of ants within a community, and their frequency and degree of association with lycaenids. Obligate ant-association is accompanied by a high degree of specificity for ant partner, but two notable exceptions, Ogyris aenone and O. amaryllis are discussed. Facultative myrmecophiles tend to associate with a broad range of ants, although interactions with ecologically dominant ants are less frequent than might be expected based on the abundance of dominant ant species in Australian communities.  相似文献   

9.
Herbivores are attracted to young shoots and leaves because of their tender tissues. However, in extrafloral nectaried plants, young leaves also attract patrolling ants, which may chase or prey on herbivores. We examined this scenario in extrafloral nectaried shrubs of Banisteriopsis malifolia resprouting after fire, which promoted both the aseasonal production of leaves and the activity of extrafloral nectaries (EFNs). Results were compared between resprouting (burned) and unburned control plants. The aggressive ant species Camponotus crassus and the herbivorous thrips Pseudophilothrips obscuricornis were respectively rapidly attracted to resprouting plants because of the active EFNs and their less sclerophyllous leaves. The abundance of these insects was almost negligible in the control (unburned) shrubs. Ants failed to protect B. malifolia, as no thrips were preyed upon or injured by ants in resprouting plants. Consequently, on average, 37 % of leaves from resprouting shrubs had necrosis marks. Upon contact with ants, thrips released small liquid droplets from their abdomen, which rapidly displaced ants from the surroundings. This study shows that P. obscuricornis disrupted the facultative mutualism between C. crassus and B. malifolia, since ants received extrafloral nectar from plants, but were unable to deter herbivore thrips.  相似文献   

10.
In Lycaenidae-ant mutualisms, ovipositing females select plants based on the presence and/or species of ants in order to maximize survival rates of immatures. The ants are supposed to protect the immatures from parasitoids, but there is large variation in the protection provided. Here, we experimentally investigated whether the occurrence of the facultative myrmecophilous Allosmaitia strophius (the dominant species in our study system) was ant-related. The parasitism rates of immatures collected in the field and reared in the laboratory were also investigated. Stems of the extrafloral nectaried shrub Peixotoa tomentosa were designated as either ant-present (control) or absent (treated). The occurrence of A. strophius on ant-present stems was five times greater than on treated stems. Most eggs and larvae were associated with Camponotus blandus and Ectatomma tuberculatum, two aggressive ant species in the Brazilian savanna. Egg parasitism rate was 9%, and all the parasitized eggs were on ant-present stems. Pupal parasitism on ant-present and ant-absent stems was 25.6% and 7%, respectively. The higher parasitism rate in the presence of ants might also have been density-dependent, because caterpillars were more abundant in ant-present stems. Tropical lycaenids are frequently found in association with patrolling ants. Nevertheless, there is growing evidence that parasitism is higher in the presence of ants, owing to caterpillar's density-dependent effects in plants with ants, and/or to the weak lycaenid-ant associations. This indicates that the offspring of myrmecophilous lycaenids may not benefit, at least in terms of lower parasitism, by living with ants.  相似文献   

11.
Workers of three ant species (Lasius niger, Lasius flavus, Myrmica rubra) were caged in the laboratory together with caterpillars and pupae of five species of lycaenid butterflies. Mortality of ants was 3–5 times higher when the ants were confined with larvae lacking a dorsal nectar organ (Lycaena phlaeas, Lycaena tityrus) rather than with caterpillars which possess a nectar gland (Aricia agestis, Polyommatus bellargus, P. icarus). For all five species, ant survival was always lower at the pupal stage (where a nectar organ is always absent) than at the caterpillar stage and was largely equivalent for the butterfly species tested. The experimental data confirm earlier estimates that ants can derive nutritive benefits from tending facultatively myrmecophilous lycaenid caterpillars, even though these caterpillars produce nectarlike secretions at low rates.  相似文献   

12.
Facultative associations are commonly encountered between ants and lycaenids, although the nature and patterns of associations are typically unclear. This study investigated a facultative symbiosis involving the lycaenid Theclinesthes albocincta (Lycaenidae), its host plant Adriana quadripartita and Australian native ants. Ants in the genera Ochetellus and Iridomyrmex were most frequently found in association with T. albocincta larvae, although Iridomyrmex ants were found in much lower abundance than were ants in Ochetellus. The abundances of Ochetellus and Iridomyrmex were highly correlated with larval abundance, but not egg abundance. Observations and experiments recorded oviposi- tion on male inflorescences on more than 95% of occasions, but oviposition was not greater on inflorescences with ants present. Behavioral assays showed that Iridomyrmex ants were aggressive towards female butterflies on significantly more occasions than were Ochetellus ants. These findings indicate potential evolutionary relationships between T. albocincta and two genera of ants that were abundant within the habitat.  相似文献   

13.
Ant-related oviposition in facultatively myrmecophilous lycaenid butterflies is common, but not universal. In fact, our knowledge of ant-related oviposition in lycaenids is based on some common species (e.g., Rekoa marius, Allosmaitia strophius, Parrhasius polibetes), which limits generalizations about these systems. In this study, we experimentally investigated whether the oviposition pattern of the florivorous lycaenid Leptotes cassius was influenced by the presence of Camponotus ants and whether larvae were attended, rather than attacked, by ants. This might be evidence of myrmecophily. Both L. cassius and Camponotus ants occur on Bionia coriacea, an extrafloral nectaried legume shrub that grows in the Brazilian cerrado. Plants were randomly assigned to ant-present and ant-excluded treatments and were observed twice throughout the short reproductive season. Larvae of L. cassius were tended by ants, whose attendance was characterized by active antennation on the last body segments of the caterpillars. Therefore, Camponotus can be considered a partner of L. cassius. Lycaenid abundance was on average 1.9- and 1.21-fold higher in plants with ants in each sampling period, respectively, indicating a tendency of L. cassius to occur in plants with ants. Nonetheless, results were not statistically significant, suggesting that in this case ants are not a major cue for lycaenid oviposition. In many ant–lycaenid mutualisms, butterfly immatures benefit from reduced parasitism rates. However, no L. cassius immature, regardless of ant presence or absence, was parasitized. Furthermore, larvae may occur inside flower buds that may provide protection from natural enemies; thus, ants may not be required for immature protection.  相似文献   

14.
Abstract.
  • 1 Juveniles of the Australian lycaenid butterfly, Jalmenus evagorus (Donovan), secrete to ants a solution of sugars and amino acids, primarily serine. The attendant ants protect the larvae and pupae from parasites and predators.
  • 2 The effect of caterpillar nutrition on the defence provided by ants was investigated. Potted food plants of Acacia decurrens were either given water containing nitrogenous fertilizer or were given water alone. Fertilized plants had a higher nitrogen content than unfertilized plants.
  • 3 Fifth instar larvae of J.evagoras feeding on fertilized plants attracted a larger ant guard than those feeding on unfertilized plants. In the absence of caterpillars, ants were not differentially attracted to fertilized and unfertilized plants.
  • 4 In the presence of ants, over a 10-day period, larvae on fertilized plants survived better than larvae on unfertilized plants. In the absence of ants larvae survived equally on fertilized and unfertilized plants. It is concluded that larvae on fertilized plants attracted a larger ant guard, and thereby survived better, than larvae on unfertilized plants.
  • 5 Adult females of J. evagoras preferred to lay egg batches on fertiized, rather than unfertilized plants, but they did not lay larger egg batches.
  相似文献   

15.
Diane Wagner 《Oecologia》1993,96(2):276-281
The transfer of nutrients between organisms is a common feature of mutualism. The production of these food rewards is often assumed to be costly. Estimation of the costs of producing food rewards is important for understanding the overall effects of the interaction on fitness. When food rewards are harvested by several species differing in foraging behavior, costs to the producer may differ. The larvae of many species in the butterfly family Lycaenidae produce secretions consumed by tending ants. Here I report that three North American ant species, Formica perpilosa, Dorymyrmex sp. (smithi complex), and Forelius foetida, had no negative effect on the duration of development and adult size of the lycaenid Hemiargus isola. Moreover, tending by the ant Formica perpilosa significantly enhanced larval growth, resulting in butterflies that were 20% heavier than their untended counterparts. Tending by the ants Dorymyrmex sp. (smithi complex) and Forelius foetida had no effect on butterfly weight. Tended, nonfeeding larvae lost 69% more weight than untended, nonfeeding larvae. Taken together, the results suggest that, although ant tending imposes a physiological cost, H. isola larvae use behavioral or physiological mechanisms to compensate or overcompensate for nutrients lost to ants.  相似文献   

16.
Aggregation as a cost-reducing strategy for lycaenid larvae   总被引:4,自引:0,他引:4  
If a mutualistic relationship entails providing services ata cost, selection will favor individuals that maximize the netbenefits of the interaction and minimize the costs. Larvae ofmany species of lycaenid butterflies secrete nutritious foodrewards to attending ants and, in return, receive protectionagainst predators and parasitoids. Because ants typically recruitmore workers to larger resources, by forming groups the larvaemay ensure more reliable access to ants and thereby gain betterprotection. A further consequence of aggregating should be achange of the cost-benefit relationship for individual larvae.The larger the group, the smaller a single larva's influencewill be on total ant density, which could lead to a smallerinvestment in secretion, thus reducing the per capita cost ofcooperation. In this study, die influence of ant attendance,group size, and companion quality on larval investment was investigated.The interaction between the obligately ant-dependent lycaenid,Jalmanus evagoras, and its attendant Iridomyrmax ants was manipulatedand the effect on larval secretion measured. As the level ofant attendance increased, the delivery of food rewards increased,bodi for solitary and for aggregated larvae. When aggregated,larvae provided less food rewards to ants dun when solitary,and secretion rate decreased with increasing group size. Furthermore,larvae had lower secretion rates when paired with a bigger,more attractive larva than when paired with a smaller one. Theconsiderable reduction in secretion rates for larvae in groupssuggests that gaining protection at a lower secretion cost couldbe one factor that promotes aggregation in myrmecophilous lycaenids.  相似文献   

17.
Chemical mimicry and camouflage based on cuticular hydrocarbons (CHCs) are adaptive strategies that are frequently observed in myrmecophilous insects. The larvae of several lycaenid butterfly species that exhibit obligate associations with specific ant species have been reported to use chemical mimicry. However, little is known about the strategies used by the larvae of species that have facultative associations with multiple ant species. We attempted to reveal the effects of larval CHC profiles on interactions with Formica japonica workers, using three lycaenid species, two facultative ant‐associated (Lycaeides argyrognomon and Zizeeria maha) and one non‐ant‐associated (Lycaena phlaeas), which commonly possess n‐alkanes as the major CHCs. In field bioassays, the lycaenid larvae were attacked by ant workers less often than larvae of Papilio polytes (Papilionidae), the CHCs of which were rich in 7‐alkenes. Treating the lycaenid larvae with 7‐heptacosene and 9‐heptacosene significantly activated ant aggression (biting), whereas treating them with n‐heptacosane, n‐octacosane and 13‐methylheptacosane had little effect. Furthermore, larvae of Pieris rapae (Pieridae), possessing n‐alkanes as the dominant CHCs, suffered an intermediate level of ant biting between the lycaenid and Pa. polytes larvae. However, treatments of the P. rapae larvae with 7‐heptacosene and 9‐heptacosene significantly affected the frequency of ant biting. These findings suggest that the absence of alkenes in larval CHC profiles is an effective means of circumventing predation by ants and allows lycaenid larvae to inhabit the foraging territory of predaceous ants, at least to some extent.  相似文献   

18.
The larvae of the lycaenid subfamily Curetinae have never been reported to be associated with ants. Observations on Curetis regula Evans from Brunei are presented which show that this species may be tended by ants both as larvae and adults. The observations are discussed in relation to a recent review on lycaenid/ant associations, u is suggested that the Curetinae will be found to be associated with ants when more species have been reared, on evidence of the larval tentacle organs and apparent ‘pore cupolas’, both of which are ant adaptations. More studies are needed on Curetis biology and larval morphology to resolve the relationships of this enigmatic genus within the Lycaenidae.  相似文献   

19.
1. The lycaenid butterfly Hemiargus isola associates facultatively with the ant species Formica perpilosa in arid areas of south-western North America. Ants solicit liquid food rewards from butterfly larvae as larvae feed on the host plant, Acacia constricta . Previous studies have shown that tending by F. perpilosa enhances larval growth and pupal survivorship.
2. The effects of ants and plant water content on oviposition behaviour and survivorship to the last larval instar were tested by excluding ants and supplementing water to host plants in a two-way factorial experiment.
3. Butterflies, which lay eggs singly on host plant inflorescences, laid significantly higher egg numbers and densities (eggs/inflorescence) on plants with ants than on plants without ants. This is the first report of a facultative, generalized ant-associate using ants as oviposition cues. Water supplements increased the number, but not the density, of eggs laid on plants. Therefore, it appears that egg-laying butterflies responded to number of inflorescences, rather than plant tissue water per se .
4. Plants with ants had significantly greater numbers of inflorescences during the experiment than plants without ants. Water supplements increased number of inflorescences slightly, but not significantly.
5. Ants increased larval survivorship. Twice as many fourth-instar larvae survived per egg laid on plants with ants than on plants without ants. Ants did not reduce the number of predators present on acacias, but may have reduced predator effectiveness. Ants also did not reduce the numbers of potential H. isola competitors present.
6. Water supplementation affected neither the survivorship of H. isola larvae, nor the intensity of ant tending. Water supplementation did not affect the abundance of predators on plants, but did increase the abundance of several herbivorous insect taxa.  相似文献   

20.
D. Jordano  C. D. Thomas 《Oecologia》1992,91(3):431-438
Summary Many lycaenid butterflies are believed to be mutualists of ants — the butterfly larvae secrete sugars and amino acids as rewards for the ants, and the ants protect the larvae from predation or parasitism. We examined the specificity of the relationship between the lycaenid Plebejus argus and ants in the genus Lasius. Eggs were not attractive to Lasius ants until the emerging larvae had broken through the chorion. First instar larvae were palpated and picked up by Lasius workers and taken to the nest. First instars were mostly ignored by Myrmica sabuleti ants and they were rarely detected by Formica fusca. Older larvae were more attractive to Lasius than to the other ant genera. Pupae were very attractive to Lasius, moderately so to Myrmica, and were ignored by Formica fusca. Teneral adults were palpated by Lasius, but were attacked by Myrmica and Formica workers. We conclude that P. argus is a specialist associate of Lasius ants. Two populations of Plebejus argus were compared: one is naturally associated with Lasius niger, and the other with Lasius alienus. In reciprocal trials, larvae were slightly more attractive to their natural host ant species. Since test larvae were reared on a single host plant species in captivity, this differentiation probably has a genetic basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号