首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adenosine A2B receptor is the least well characterized of the four adenosine subtypes due to the lack of potent and selective agonists and antagonists. Despite the widespread distribution of A2B receptor mRNA, little information is available with regard to their function. The characterization of A2B receptors, through radioligand binding studies, has been performed, until now, by using low-affinity and non-selective antagonists like 1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX),(4-(2-[7-amino-2-(2-furyl)-[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl)-phenol ([3H]ZM 241385) and 3-(3,4-aminobenzyl)-8-(4-oxyacetate)phenyl-1-propyl-xanthine ([125I]ABOPX). Recently, high-affinity radioligands for A2B receptors, [N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)-phenoxy]acetamide ([3H]MRS 1754), N-(2-(2-Phenyl-6-[4-(2,2,3,3-tetratritrio-3-phenylpropyl)-piperazine-1-carbonyl]-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl)-acetamide ([3H]OSIP339391) and N-benzo[1,3]dioxol-5-yl-2-[5-(1,3-dipropyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide] ([3H]MRE 2029F20), have been introduced. This minireview offers an overview of these recently developed radioligands and the most important applications of drugs towards A2B receptors.  相似文献   

2.
The ONIOM2 (B3LYP/6–31G (d, p): PM3) and B3LYP/6–31G (d, p) methods were applied to investigate the interaction between STI-571 and abelson tyrosine kinase binding site. The complex of N-[4-methyl-3-(4-pyridin-3-yl-pyrimidin-2-ylamino)- phenyl]-benzamide (part of STI-571) and related 16 amino acid residues were found at B3LYP/6–31G (d, p) level to have hydrogen bonds and π....π stacking interaction, their binding energy via HAF optimization was −20.4 kcal mol−1. The results derived from this study agreed well with the reported observation. Figure Optimized structure of STI-571 and Thr315 in abelson tyrosine kinase based on ONIOM2 method  相似文献   

3.
Some new 7-substituted-phenyl-3,4,8,9-tetrahydro-2H-pyridazino[1,6-a][1,3,5]triazin-2-imine/one/thione derivatives were synthesized by a sequence of reactions starting from appropriate aryl hydrocarbons. The final compounds were screened for antihypertensive activities by non-invasive method using Tail Cuff method. All the test compounds showed significant antihypertensive activity; 7-(biphenyl-4-yl)-3,4,8,9-tetrahydro-2H-pyridazino[1,6-a][1,3,5]triazin-2-imine (4p) exhibited antihypertensive activity more than the reference standard drugs.  相似文献   

4.
Tagetes patula L. (Marigold) hairy roots were selected among few hairy root cultures from other plants tested for the decolorization of Reactive Red 198. Hairy roots of Tagetes were able to remove dye concentrations up to 110 mg L−l and could be successively used at least for five consecutive decolorization cycles. The hairy roots of Tagetes decolorized six different dyes, viz. Golden Yellow HER, Methyl Orange, Orange M2RL, Navy Blue HE2R, Reactive Red M5B and Reactive Red 198. Significant induction of the activity of biotransformation enzymes indicated their crucial role in the dye metabolism. UV–vis spectroscopy, HPLC and FTIR spectroscopy analyses confirmed the degradation of Reactive Red 198. A possible pathway for the biodegradation of Reactive Red 198 has been proposed with the help of GC–MS and metabolites identified as 2-aminonaphthol, p-aminovinylsulfone ethyl disulfate and 1-aminotriazine, 3-pyridine sulfonic acid. The phytotoxicity study demonstrated the non-toxic nature of the extracted metabolites. The use of such hairy root cultures with a high ability for bioremediation of dyes is discussed.  相似文献   

5.
Chen K  Liu XM  Li R  Liu Y  Hu H  Li SP  Jiang JD 《Biodegradation》2011,22(6):1135-1142
Buprofezin is a widely used insecticide that has caused environmental pollution in many areas. However, biodegradation of buprofezin by pure cultures has not been extensively studied, and the transformation pathway of buprofezin remains unclear. In this paper, a buprofezin co-metabolizing strain of DFS35-4 was isolated from a buprofezin-polluted soil in China. Strain DFS35-4 was preliminarily identified as Pseudomonas sp. based on its morphological, physiological, and biochemical properties, as well as 16S rRNA gene analysis. In the presence of 2.0 g l−1 sodium citrate, strain DFS35-4 degraded over 70% of 50 mg l−1 buprofezin in 3 days. Strain DFS35-4 efficiently degraded buprofezin in the pH range of 5.0–10.0 and at temperatures between 20 and 30°C. Three metabolites, 2-imino-5-phenyl-3-(propan-2-yl)-1,3,5-thiadiazinan-4-one, 2-imino-5-phenyl-1,3,5-thiadiazinan-4-one, and methyl(phenyl) carbamic acid, were identified during the degradation of buprofezin using gas chromatography–mass spectrometry (GC–MS) and tandem mass spectrometry (MS/MS). A partial transformation pathway of buprofezin in Pseudomonas sp. DFS35-4 was proposed based on these metabolites.  相似文献   

6.
A fast hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-degrading [28.1 mol h–1 g (dry weight) cells–1; biomass, 0.16 g (dry weight) cells–1] and strictly anaerobic bacterial strain, HAW-1, was isolated and identified as Clostridium bifermentans using a 16S-rRNA-based method. Based on initial rates, strain HAW-1 transformed RDX to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) with yields of 56, 7.3 and 0.2%, respectively. Complete removal of RDX and its nitroso metabolites produced (%, of total C or N) methanol (MeOH, 23%), formaldehyde (HCHO, 7.4%), carbon dioxide (CO2, 3.0%) and nitrous oxide (N2O, 29.5%) as end products. Under the same conditions, strain HAW-1 transformed MNX separately at a rate of 16.9 mol h–1 g (dry weight) cells–1 and produced DNX (25%) and TNX (0.4%) as transient products. Final MNX transformation products were (%, of total C or N) MeOH (21%), HCHO (2.9%), and N2O (17%). Likewise strain HAW-1 degraded TNX at a rate of 7.5 mol h–1 g (dry weight) cells–1 to MeOH and HCHO. Furthermore, removal of both RDX and MNX produced nitrite (NO2) as a transient product, but the nitrite release rate from MNX was quicker than from RDX. Thus, the predominant pathway for RDX degradation is based on initial reduction to MNX followed by denitration and decomposition. The continued sequential reduction to DNX and TNX is only a minor route.  相似文献   

7.
Summary.  The paper describes two methods of the synthesis of ethyl (3R,4S)- and (3S,4S)-4-[(benzyloxycarbonyl)amino]-5-[(tert-butyloxycarbonyl)amino]-3-hydroxypentanoates, useful for the syntheses of edeine analogs. Differently N-protected (S)-2,3-diaminopropanoic acid was used as a substrate in both procedures. The absolute configuration of newly generated asymmetric carbon atoms C-3 in β-hydroxy-γ,δ-diamino products was assigned by means of 1H NMR spectroscopy after their transformation into corresponding piperidin-2-ones. Received May 24, 2002 Accepted October 10, 2002 Published online December 18, 2002 Acknowledgment The authors are indebted to the Faculty of Chemistry, Technical University of Gdańsk for financial support. Authors' address: Zbigniew Czajgucki, M. Sc., Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Technical University of Gdańsk, 11/12 Narutowicza St., 80-952 Gdańsk, Poland, Fax +48 58 347 11 44, E-mail: zmczaj@wp.pl  相似文献   

8.
A newly isolated novel bacterium from sediments contaminated with dyestuff was identified as Pseudomonas aeruginosa strain BCH by 16S rRNA gene sequence analysis. The bacterium was extraordinarily active and operative over a wide rage of temperature (10–60°C) and salinity (5–6%), for decolorization of Direct Orange 39 (Orange TGLL) at optimum pH 7. This strain was capable of decolorizing Direct Orange 39; 50 mg l−1 within 45 ± 5 min, with 93.06% decolorization, while maximally it could decolorize 1.5 g l−1 of dye within 48 h with 60% decolorization. Analytical studies as, UV–Vis spectroscopy, FTIR, HPLC were employed to confirm the biodegradation of dye and formation of new metabolites. Induction in the activities of lignin peroxidases, DCIP reductase as well as tyrosinase was observed, indicating the significant role of these enzymes in biodegradation of Direct Orange 39. Toxicity studies with Phaseolus mungo and Triticum aestivum revealed the non-toxic nature of degraded metabolites.  相似文献   

9.
Microbial treatment of environmental pollutants including dyes with white rot fungi has received wide attention as a potential alternative for conventional methods in wastewater treatment. The degradation products from dyes and mechanism underlying fungal degradation of dyes is desirable to be understood. Capillary electrophoresis coupled with mass spectrometry (CE-MS) was used in this study to determine biodegradation products of 4-[(4-hydroxyphenyl)azo]-benzenesulfonic acid, sodium salt (4HABA) and Acid Orange 7 (C.I. 15510), produced by a white rot fungus, Pleurotus ostreatus. Two major degradation products, benzenesulfonic acid and 4-hydroxy-benzenesulfonic acid, from both sulfonated compounds, were identified and their kinetic profiles in biodegradation were followed by CE-MS. Another product, 1,2-naphthoquinone, from Acid Orange 7 was identified using HPLC. Formation of these products in fungal degradation is discussed.Revisions requested 8 October 2004; Revision received 12 November 2004  相似文献   

10.
The monohydroxo-bridged dicopper(II) complex (1), its reduced dicopper(I) analogue (2) and the trans-μ-1,2-peroxo-dicopper(II) adduct (3) with the macrocyclic N-donor ligand [22]py4pz (9,22-bis(pyridin-2′-ylmethyl)-1,4,9,14,17,22,27,28,29,30- decaazapentacyclo -[22.2.114,7.111,14.117,20]triacontane-5,7(28),11(29),12,18,20(30), 24(27),25-octaene), have been prepared and characterized, including a 3D structure of 1 and 2. These compounds represent models of the three states of the catechol oxidase active site: met, deoxy (reduced) and oxy. The dicopper(II) complex 1 catalyzes the oxidation of catechol model substrates in aerobic conditions, while in the absence of dioxygen a stoichiometric oxidation takes place, leading to the formation of quinone and the respective dicopper(I) complex. The catalytic reaction follows a Michaelis–Menten behavior. The dicopper(I) complex binds molecular dioxygen at low temperature, forming a trans-μ-1,2-peroxo-dicopper adduct, which was characterized by UV–Vis and resonance Raman spectroscopy and electrochemically. This peroxo complex stoichiometrically oxidizes a second molecule of catechol in the absence of dioxygen. A catalytic mechanism of catechol oxidation by 1 has been proposed, and its relevance to the mechanisms earlier proposed for the natural enzyme and other copper complexes is discussed. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

11.
By proteomic analysis, we found a rhodanese-like protein(RhdA) from Acidithiobacillus ferrooxidans ATCC 23270 whose C-terminal contained a cysteine motif (Cys-XX-Trp-XX-Cys), known to bind iron–sulfur clusters. But so far, there were no articles to confirm the existence of iron–sulfur cluster in RhdA. In this study, RhdA gene from A. ferrooxidans ATCC 23270 was cloned and expressed in Escherichia coli, the protein was purified by one-step affinity chromatography to homogeneity. The UV–Vis scanning and EPR spectra results indicated that the wild-type proteins contained an iron–sulfur cluster. Site-directed mutagenesis results revealed that the four cysteines Cys92, Cys101, Cys197, and Cys203 were crucial residues for iron–sulfur cluster binding.  相似文献   

12.
In this study, we investigated the efficacy of phenolic extract of wheat bran and lignin-related phenolic compounds as natural redox mediators on laccase-mediated transformation of malachite green (MG) using purified laccase from the white-rot fungus Ganoderma lucidum. G. lucidum laccase was able to decolorize 40.7% MG dye (at 25 mg l−1) after 24 h of incubation. Whereas, the addition of phenolic extract of wheat bran enhanced the decolorization significantly (p < 0.001) by two- to threefold than that of purified laccase alone. Among various natural phenolic compounds, acetovanillone, p-coumaric acid, ferulic acid, syringaldehyde, and vanillin were the most efficient mediators, as effective as the synthetic mediator 1-hydroxybenzotriazole. Characterization of MG transformation products by HPLC, UV–Vis, and liquid chromatography-mass spectrometry-electrospray ionization analysis revealed that N-demethylation was the key mechanism of decolorization of MG by laccase. Growth inhibition test based on mycelial growth inhibition of white rot fungus Phanerochaete chrysosporium revealed that treatment with laccase plus natural mediators effectively reduced the growth inhibitory levels of MG than that of untreated one. Among all the tested compounds, syringaldehyde showed the highest enhanced decolorization, as a consequence reduced growth inhibition was observed in syringaldehyde-treated samples. The results of the present study revealed that the natural phenolic compounds could alternatively be used as potential redox mediators for effective laccase-mediated decolorization of MG.  相似文献   

13.
NAD-dependent aminoaldehyde dehydrogenase (AMADH, EC 1.2.1.-) from Avena shoots was purified by DEAE Sephacel, hydroxyapatite, 5′-AMP Sepharose 4B, Mono Q, and TSK-GEL column chromatographies to homogeneity by the criterion of native PAGE. SDS–PAGE yielded a single band at a molecular mass of 55 kDa. IEF studies showed a band with a pI value of 5.3. In contrast to AMADHs from other species, the TSK-GEL chromatography showed that Avena AMADH exists as a monomer in the native state. The purified enzyme catalyzed the oxidations of 3-aminopropionaldehyde (APAL), 4-aminobutyraldehyde (ABAL) N-(3-aminopropyl)-4-aminobutyraldehyde (APBAL), and 4-guanidinobutyraldehyde (GBAL), but not of betaine aldehyde or indoleacetaldehyde. The K m values for APAL, ABAL, and GBAL were 1.5×10–6, 2.2×10–6, and 1.3×10–5 M, respectively. Although N-terminal amino acid sequence of Avena AMADH could not be determined due to a modification of the amino residue, the sequence of the fragment of AMADH cleaved by V8 protease showed greater similarity to the barley BADH than to the pea AMADH. Electronic Publication  相似文献   

14.
The interaction between 4-(4-fluorobenzylideneamino)-5-propyl-4H-1,2,4-triazole-3-thiol (FBTZ) and human serum albumin (HSA) under simulative physiological conditions was investigated by fluorescence, UV–vis absorption and circular dichroism (CD) spectroscopy as well as molecular modeling method. Fluorescence spectroscopic data showed that the fluorescence quenching of HSA was a result of the formation of FBTZ–HSA complex. According to the modified Stern–Volmer equation, the effective quenching constants (K a) of FBTZ to HSA were obtained at three different temperatures. The enthalpy change (ΔH) and entropy change (ΔS) were calculated on the basis of van′t Hoff equation, and the results showed that hydrogen-bonding and van der Waals forces were the dominant intermolecular forces to stabilize the complex. Site marker competitive replacement experiments demonstrated that the binding of FBTZ to HSA primarily took place in sub-domain IIA (Sudlow’s site I). The binding distance (r) between FBTZ and the tryptophan residue of HSA was estimated according to the theory of fluorescence resonance energy transfer. The conformational investigation showed that the presence of FBTZ induced some changes of secondary structure of HSA. Molecular modeling study further confirmed the binding mode obtained by experimental study.  相似文献   

15.
Preparative-scale fermentation of gallic acid (3,4,5-trihydroxybenzoic acid) (1) with Beauveria sulfurescens ATCC 7159 gave two new glucosidated compounds, 4-(3,4-dihydroxy-6-hydroxymethyl-5-methoxy-tetrahydro-pyran-2-yloxy)-3-hydroxy-5-methoxy-benzoic acid (4), 3-hydroxy-4,5-dimethoxy-benzoic acid 3,4-dihydroxy-6-hydroxymethyl-5-methoxy-tetrahydro-pyran-2-yl ester (7), along with four known compounds, 3-O-methylgallic acid (2), 4-O-methylgallic acid (3), 3,4-O-dimethylgallic acid (5), and 3,5-O-dimethylgallic acid (6). The new metabolite genistein 7-O-β-D-4″-O-methyl-glucopyranoside (8) was also obtained as a byproduct due to the use of soybean meal in the fermentation medium. The structural elucidation of the metabolites was based primarily on 1D-, 2D-NMR, and HRFABMS analyses. Among these compounds, 2, 3, and 5 are metabolites of gallic acid in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, B. sulfurescens might be a useful tool for generating mammalian metabolites of related analogs of gallic acid (1) for complete structural identification and for further use in investigating pharmacological and toxicological properties in this series of compounds. In addition, a GRE (glucocorticoid response element)-mediated luciferase reporter gene assay was used to initially screen for the biological activity of the 6 compounds, 26 and 8, along with 1 and its chemical O-methylated derivatives 913. Among the 12 compounds tested, 1113 were found to be significant, but less active than the reference compounds of methylprednisolone and dexamethasone.  相似文献   

16.

Abstract  

We present, simple approach for the accession of 1,2,3-triazole fused quinoline peptide analogues from 3-(azidomethyl)-2-chloroquinoline in a three-step mechanistic pathway. The UV–Visible absorbance plot shows dynamic interaction of parent triazole derivative with CT DNA as efficient DNA intercalator (K b = 4.6 × 10−4 M−1). Finally, the efficient DNA damage was observed on photo-irradiation at 360 nm in the presence of 2-(9H-Fluoren-9-ylmethoxycarbonylamino)-propionic acid 1-(2-chloro-quinolin-3-ylmethyl)-1H-[1,2,3]triazole-4-ylmethyl ester (6a).  相似文献   

17.
Abstract  A series of oxovanadium complexes with mixed ligands, a tridentate ONO-donor Schiff base ligand [viz., salicylidene anthranilic acid (SAA)], and a bidentate NN ligand [viz., 2,2′-bipyridine (bpy), 1,10-phenanthroline (phen), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq), dipyrido[3,2-a:2′,3′-c]phenazine (dppz), or 7-methyldipyrido[3,2-a:2′,3′-c]phenazine (dppm)], have been synthesized and characterized by elemental analysis, electrospray ionization mass spectrometry, UV–vis spectroscopy, Fourier transform IR spectroscopy, EPR spectroscopy, and X-ray crystallography. Crystal structures of both complexes, [VIVO(SAA)(bpy)]·0.25bpy and [VIVO(SAA)(phen)]·0.33H2O, reveal that oxovanadium(IV) is coordinated with one nitrogen and two oxygen atoms from the Schiff base and two nitrogen atoms from the bidentate planar ligands, in a distorted octahedral geometry (VO3N3). The oxidation state of V(IV) with d 1 configuration was confirmed by EPR spectroscopy. The speciation of VO–SAA–bpy in aqueous solution was investigated by potentiomtreic pH titrations, and the results revealed that the main species are two ternary complexes at a pH range of 7.0–7.4, and one is the isolated crystalline complex. The complexes have been found to be potent inhibitors against human protein tyrosine phosphatase 1B (PTP1B) (IC50 approximately 30–61 nM), T-cell protein tyrosine phosphatase (TCPTP), and Src homology phosphatase 1 (SHP-1) in vitro. Interestingly, the [VIVO(SAA)(bpy)] complex selectively inhibits PTP1B over the other two phosphatases (approximate ninefold selectivity against SHP-1 and about twofold selectivity against TCPTP). Kinetics assays suggest that the complexes inhibit PTP1B in a competitive and reversible manner. These suggest that the complexes may be promising candidates as novel antidiabetic agents. Graphical Abstract   Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
The phaZ Sex gene encoding poly(3-hydroxybutyrate) depolymerase from Streptomyces exfoliatus has been successfully cloned and expressed in Rhodococcus sp. T104 for the first time. Likewise, the recombinant enzyme was efficiently produced as an extracellular active form and purified to homogeneity by two hydrophobic chromatographic steps. MALDI-TOF analysis showed that the native enzyme is a monomer. Circular dichroism studies have revealed a secondary structure showing 25.6% α-helix, 21.4% β-sheet, 17.1% β-turns, and 35.2% random coil, with a midpoint transition temperature (T m) of 55.8 °C. Magnesium and calcium ions enhanced the enzyme activity, whereas manganese inhibited it. EDTA moderately decreased the activity, and the enzyme was completely deactivated at 3 M NaCl. Chemical modification studies indicated the presence of the catalytic triad serine–histidine–carboxylic acid in the active site. High-performance liquid chromatography (HPLC)–mass spectrometry (MS) analysis of PHB products of enzymatic hydrolysis showed monomers and dimers of 3-hydroxybutyric acid, demonstrating that PHB depolymerase is an exo-hydrolase. Addition of methyl-β-cyclodextrin simultaneously increased the activity as well as preserved the enzyme during lyophilization. Finally, thermoinactivation studies showed that the enzyme is highly stable at 40 °C. All these features support the potential industrial application of this recombinant enzyme in the production of (R)-3-hydroxyalkanoic acid derivatives as well as in the degradation of bioplastics.  相似文献   

19.
The development of an eco-friendly and reliable process for the synthesis of gold nanomaterials (AuNPs) using microorganisms is gaining importance in the field of nanotechnology. In the present study, AuNPs have been synthesized by bio-reduction of chloroauric acid (HAuCl4) using the fungal culture filtrate (FCF) of Alternaria alternata. The synthesis of the AuNPs was monitored by UV–visible spectroscopy. The particles thereby obtained were characterized by UV, dynamic light scattering (DLS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM) and transmission electron microscopy (TEM). Energy-dispersive X-ray study revealed the presence of gold in the nanoparticles. Fourier transform infrared spectroscopy confirmed the presence of a protein shell outside the nanoparticles which in turn also support their stabilization. Treatment of the fungal culture filtrate with aqueous Au+ ions produced AuNPs with an average particle size of 12 ± 5 nm. This proposed mechanistic principal might serve as a set of design rule for the synthesis of nanostructures with desired architecture and can be amenable for the large scale commercial production and technical applications.  相似文献   

20.
A new amperometric biosensor for the detection of sugars was prepared. A glassy carbon electrode was modified with Prussian blue (PB) nanoparticles protected by chitosan (CS) and poly(diallyldimethylammonium chloride) (PDDA), and then gold nanoparticles were assembled onto the electrode followed by the assembly of 4-mercaptophenylboronic acid (MPBA) onto the surface of gold nanoparticles through a sulfur–Au bond to fabricate a self-assembled biosensor. The PB nanoparticles protected by CS and PDDA were characterized using transmission electron microscopy and UV–vis absorption spectroscopy. The characterization of the self-assembled electrode was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The pK a values of the MPBA monolayer before and after combining with sugars were determined. The fabricated electrode exhibited excellent performances for determining d(+)-glucose, d(+)-mannose, and d(−)-fructose on the basis of the change in i p of the Fe(CN)63−/4− ion in the presence of sugars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号