首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 170 毫秒
1.
2021年8月,本项目组在四川千佛山国家级自然保护区采集到1只彩蝠属(Kerivoula)雄性成体蝙蝠,其前臂长29.95 mm,全身被覆密而柔软的暗褐色长毛,耳廓圆,呈漏斗状。采用Pettersson D1000X超声波探测仪录制该蝙蝠的声波,并通过BatSound 3.3软件分析声波特征。其回声定位声波为调频型(FM),飞行时声脉冲频率从(231.4 ± 8.5)kHz下调至(88.8 ± 1.9)kHz,主频率集中在(118.7 ± 2.3)kHz。同时基于COI、Cyt bRag2基因构建系统发育树。综合外形特征、形态测量数据、声波特征及分子系统发育分析结果,将此蝙蝠鉴定为暗褐彩蝠(K. furva)。此发现证实了四川省内有暗褐彩蝠这一稀有物种的分布。  相似文献   

2.
自由声场刺激条件下,采用单单位胞外微电极记录方法,研究了一种未被研究过的恒频/调频(CF/FM)蝙蝠——菲菊头蝠(Rhinolophus pusillus)的下丘神经元基本声反应特性,其结果发现,在所得的110个下丘神经元中,发放类型包括相位型(54.5%)、紧张型(25.5%)、持续型(7.3%)、梳齿型(7.3%)和暂停型(5.4%)等5种类型。记录深度在208~1 855(829.0±328.1)μm之间,最佳频率在16.7~75.6(38.9±15.7)kHz之间,最小阈值在5~74(34.7±13.6)dB SPL之间,阈上10 dB SPL潜伏期在5.0~27.5(15.2±3.9)ms之间。最佳频率随记录深度的增加而增大(r=0.957 8,P<0.001);记录的54个频率调谐曲线(FTCs)均为开放型,其中52个为单峰型,2个为双峰型。52个单峰型FTC的Q10-dB值介于1.56~31.61之间,并且大部分是狭窄型(Q 10-dB值>5),占69.2%(36/52),少部分为宽阔型(Q 10-dB值<5),占30.8%(16/52)。2个双峰型神经元FTC在低频处为宽阔型,高频处为狭窄型,Q 10-dB值分别为1.95、8和2.89、6.51。共获得34个神经元的强度-发放率函数(RIFs),可分为单调型、非单调型和饱和型。结合先前所研究的FM蝙蝠——普通伏翼蝠(Pipistrellus abramus)下丘神经元的基本声反应特性,比较分析了CF/FM蝙蝠与FM蝙蝠下丘神经元的声反应差异及其行为学意义。  相似文献   

3.
2017-2020年期间,每年1月份对河南省济源市邵原镇布袋沟水库人工引水渠隧道内蝙蝠进行冬眠生态学特征调查,共发现2科5属7种蝙蝠在此冬眠,包括马铁菊头蝠(Rhinolophus ferrumequinum)、小菊头蝠(R.pusillus)、华南水鼠耳蝠(Myotis laniger)、白腹管鼻蝠(Murina leucogaster)、金管鼻蝠(Mu.aurata)、奥氏长耳蝠(Plecotus ognevi)和亚洲宽耳蝠(Barbastella leucomelas)。马铁菊头蝠是优势种(约52%-73%的冬眠个体),其次是小菊头蝠(约19%-37%)、华南水鼠耳蝠(约5%-8%),其余蝙蝠物种数量不足3%。2017-2020年冬眠蝙蝠个体总数呈增长趋势,但仍少于早期报道的数量。有42个隧道每年均有蝙蝠冬眠,而且不同年度冬眠数量也不尽相同。通过多元线性回归分析发现,隧道长度可能是影响蝙蝠冬眠栖息场所选择的主要影响因子(Adjusted R2=0.208,P=0.001)。每个隧道内,蝙蝠具有不同的冬眠栖点位置,约4/5的蝙蝠选择温暖且环境相对稳定的隧道深处(> 30 m)作为冬眠栖点,超过95%的个体选择长度> 60 m的隧道冬眠。蝙蝠具有不同的冬眠方式,绝大多数个体采用独栖方式进行冬眠(> 90%),少数采用聚集方式。不同的冬眠栖点和冬眠方式可能有利于冬眠成本优化。此外,栖点温度与蝙蝠体温之间呈显著正相关(R2=0.98,P < 0.001),而且蝙蝠冬眠期间的栖点温度具有种内和种间差异。研究结果为我国蝙蝠种群保护和冬眠场所管理提供科学依据。  相似文献   

4.
本文旨在探讨声刺激时程及模式参量对恒频-调频(constant frequency-frequency modulation,CF-FM)蝙蝠下丘(inferior colliculus,IC)神经元恢复周期的影响。实验选用5只听力正常的大蹄蝠为实验动物,采用不同时程或不同模式的双声刺激,记录IC神经元的反应和恢复周期。结果共记录到169个IC声敏感神经元。依据神经元恢复率达到50%时的双声刺激间隔(interpulse interval,IPI)将神经元恢复周期分为三种类型:快速恢复型(fast,F),50%IPI为0~15ms;短时恢复型(short,S),50%IPI为15.1~30ms;长时恢复型(long,L),50%IPI30ms。在2、5和7ms时程的CF声刺激下,神经元50%IPI平均值随声刺激时程的增加,分别为(30.2±27.6)、(39.9±29.1)和(49.4±34.7)ms,F和S型神经元比例逐渐下降,而L型神经元比例逐渐上升。当声刺激模式由2msCF声转变为2msFM声时,F、S和L三种类型神经元比例分别由32.3%、41.5%、26.2%转变为47.7%、24.6%、27.7%,平均恢复周期缩短,由(30.2±27.6)减至(23.9±19.0)ms(P0.05,n=65)。与7msCF声刺激相比,5+2msCF-FM声刺激使F型神经元比例上升(18.2%→29.1%),S型神经元(29.1%→27.3%)和L型神经元(52.7%→43.6%)比例下降,平均恢复周期缩短,由(49.4±34.7)减至(36.3±29.4)ms(P0.05,n=55)。结果提示,CF-FM蝙蝠回声定位信号中的CF和FM成分在蝙蝠导航和捕食过程中分别扮演不同的角色,其中终末相中的FM成分主要使F型神经元数量增多,平均恢复周期缩短。FM成分在蝙蝠靠近靶物的过程中发挥重要作用以快速处理高脉冲重复率回声信息,它有利于准确计算目标距离和识别目标表面质地。  相似文献   

5.
两种鼠耳蝠回声定位叫声的比较   总被引:7,自引:3,他引:4  
对鼠耳蝠属两种蝙蝠飞行状态下的声发射进行了比较研究.结果表明两种鼠耳蝠声发射信号的声谱图都呈调频(FM)型,但在波形及频率范围上有明显差异.大鼠耳蝠(四川亚种)的声脉冲宽度很小(1.6±0.3ms),能率环较低(4.0%),其主频率(DF=44.6±4.3kHz)也较低;而水鼠耳蝠的声脉冲宽度较大(4.2±1.6ms),能率环(9.6%)及主频率(DF=83.0±4.0kHz)也较高.文中结合两种蝙蝠的形态及食性分析了回声定位对捕食生境及捕食策略的适应性.  相似文献   

6.
两种扁颅蝠回声定位叫声的比较   总被引:8,自引:1,他引:8  
对扁颅蝠 (Tylonycterispachypusa)和褐扁颅蝠 (T robustula)在飞行状态下的回声定位叫声进行了比较研究。结果表明 ,2种扁颅蝠的回声定位叫声的声谱图均呈调频 (FM)型 ,且波形相似 ;但叫声的最低频率、最高频率和主频率差异极显著 (P <0 0 1)。扁颅蝠的频率范围较高 ,为 6 2 4~ 91 6kHz ,主频率为 (76 5± 2 1)kHz ;褐扁颅蝠的频率范围较低 ,为 4 2 7~ 72 4kHz ,主频率为 (49 2± 1 8)kHz ;而 2种蝙蝠的声脉冲时程、声脉冲间隔和声脉冲重复率差异不显著 (P >0 0 5 )。回声定位叫声差异与其体型、所处的生境有关  相似文献   

7.
APP蛋白经过降解,形成老年痴呆症患者脑内老年斑的主要成分.由PS(早老素),NCT, PEN-2和APH-1 4种膜蛋白组成的γ分泌酶催化该降解过程.为了了解人类nicastrin( NCT )基因的转录调控机制,确定了其在人脑中的转录起始位点以及其编码区上游大小不等片段的转录起始活性.EMSA分析证实NCT启动子区的4个AP-1结合位点和2个NFAT结合位点能够与相应的转录因子结合,能够改变转录因子调控能力的定点突变和PDTC诱导使得NCT启动子在HeLa细胞和大鼠皮质神经元中的启动活性都有所改变.以上结果说明:AP-1和NFAT确实参与了人类NCT基因的转录调控.  相似文献   

8.
为了研究普氏蹄蝠(Hipposideros pratti)下丘(IC)中恒频-恒频(CF-CF)联合敏感神经元声反应特性,以及易化型和抑制型CF-CF联合敏感神经元在IC高频表征区神经元中所占的比例,实验记录了普氏蹄蝠IC神经元在不同频率和声强下的单声反应以及在不同延迟下的双声反应。本实验采用在体细胞内电生理技术从7只听力正常的蝙蝠上共获得77个IC声敏感神经元。所获得的数据经过处理并应用Sigma Plot 10.0软件作图。研究结果显示,77个神经元中37(48.1%)个为CF-CF联合敏感神经元,且多数为抑制型(24/37),少数为(13/37)易化型。实验结果说明普氏蹄蝠IC中既存在易化型也存在抑制型CF-CF联合敏感神经元,其中抑制型CF-CF联合敏感神经元比易化型所占比例更高。这些CF-CF联合敏感神经元有助于蝙蝠在巡航过程中处理回声信息时进行频谱和时相的整合。  相似文献   

9.
在通过RNA-Seq技术得到的镉响应转录组图谱中,用50 μmol/L Cd处理24 h后,一个镉响应金属离子转运蛋白OsPDR被鉴定出其在水稻(Oryza sativa ssp. japonica cv. Nipponbare)茎中的表达量显著上调.本研究中,从水稻(Oryza sativa cv. Nipponbare)中分离了OsPDR基因,并对其金属离子转移活性进行了分析.金属耐受性实验结果表明,过表达OsPDR能提高酵母对Co的耐受性,但对Zn、Ni和Cd的耐受性不强,并且经电感耦合等离子体质谱法(ICP-MS)测定Co含量后,与空载体转化酵母相比,过表达OsPDR的酵母中Co的积累更高.利用共聚焦显微镜观察发现,EGFP-OsPDR融合蛋白定位于液泡膜上.这些数据表明OsPDR可能在Co稳态中起着重要作用.OsPDR在植物中的作用,还需要进一步的研究.  相似文献   

10.
自由声场刺激条件下,采用单单位胞外微电极记录方法,研究了一种未被研究过的恒频/调频(CF/FM)蝙蝠———菲菊头蝠(Rhinolophuspusillus)的下丘神经元基本声反应特性,其结果发现,在所得的110个下丘神经元中,发放类型包括相位型(54·5%)、紧张型(25·5%)、持续型(7·3%)、梳齿型(7·3%)和暂停型(5·4%)等5种类型。记录深度在208~1855(829·0±328·1)μm之间,最佳频率在16·7~75·6(38·9±15·7)kHz之间,最小阈值在5~74(34·7±13·6)dBSPL之间,阈上10dBSPL潜伏期在5·0~27·5(15·2±3·9)ms之间。最佳频率随记录深度的增加而增大(r=0·9578,P<0·001);记录的54个频率调谐曲线(FTCs)均为开放型,其中52个为单峰型,2个为双峰型。52个单峰型FTC的Q10-dB值介于1·56~31·61之间,并且大部分是狭窄型(Q10-dB值>5),占69·2%(36/52),少部分为宽阔型(Q10-dB值<5),占30·8%(16/52)。2个双峰型神经元FTC在低频处为宽阔型,高频处为狭窄型,Q10-dB值分别为1·95、8和2·89、6·51。共获得34个神经元的强度-发放率函数(RIFs),可分为单调型、非单调型和饱和型。结合先前所研究的FM蝙蝠———普通伏翼蝠(Pipistrellusabramus)下丘神经元的基本声反应特性,比较分析了CF/FM蝙蝠与FM蝙蝠下丘神经元的声反应差异及其行为学意义。  相似文献   

11.
Tang J  Fu ZY  Wu FJ 《生理学报》2010,62(5):469-477
The effects of sound duration and sound pattern on the recovery cycles of inferior collicular (IC) neurons in constant frequency-frequency modulation (CF-FM) bats were explored in this study. Five leaf-nosed bats, Hipposideros armiger (4 males, 1 female, 43-50 g body weight), were used as subjects. The extracellular responses of IC neurons to paired sound stimuli with different duration and patterns were recorded, and the recovery was counted as the ratio of the second response to the first response. Totally, 169 sound-sensitive IC neurons were recorded in the experiment. According to the interpulse interval (IPI) of paired sounds when neurons reached 50% recovery (50% IPI), the recovery cycles of these IC neurons were classified into 3 types: fast recovery (F, the 50% IPI was less than 15 ms), short recovery (S, the 50% IPI was between 15.1 and 30 ms) and long recovery (L, the 50% IPI was more than 30 ms). When paired CF stimuli with 2 ms duration was used, the ratio of F neurons was 32.3%, and it decreased to 18.1% and 18.2% respectively when 5 and 7 ms CF stimuli were used. The ratios of S and L neurons were 41.5%, 33.7%, 29.1% and 26.2%, 48.2%, 52.7% respectively when 2, 5 and 7 ms CF stimuli were used. The average 50% IPI determined after stimulation with paired 2 ms, 5 ms and 7 ms CF sounds were (30.2 ± 27.6), (39.9 ± 29.1) and (49.4 ± 34.7) ms, respectively, and the difference among them was significant (P< 0.01). When the stimuli of paired 2 ms CF sounds were shifted to paired 2 ms FM sounds, the proportion of F, S and L neurons changed from 32.3%, 41.5%, 26.2% to 47.7%, 24.6%, 27.7%, respectively, and the average 50% IPI decreased from (30.2 ± 27.6) to (23.9 ± 19.0) ms (P< 0.05, n = 65). When paired 5+2 ms CF-FM pulses were used instead of 7 ms CF sounds, the proportion of F, S and L neurons changed from 18.2%, 29.1%, 52.7% to 29.1%, 27.3%, 43.6%, respectively, and the average 50% IPI decreased from (49.4 ± 34.7) to (36.3 ± 29.4) ms (P< 0.05, n = 55). All these results suggest that the CF and FM components in echolocation signal of CF-FM bats play different roles during bats' hunting and preying on. The FM component of CF-FM signal presenting in the terminal phase can increase the number of F type neurons and decrease the recovery cycles of IC neurons for processing high repetition echo information, which ensures the bat to analyze the target range and surface texture more accurately.  相似文献   

12.
恒频-调频(constant frequency-frequency modulation,CF-FM)蝙蝠独特的多普勒频移补偿(Doppler-shift compensation,DSC)行为可保证其对回声信息的精确提取.那么听中枢加工DSC信号的适应性机制是什么?本实验模拟CF-FM蝙蝠DSC后的回声定位信号,研究下丘(inferior colliculus,IC)神经元加工DSC信号的特点及生理机制.实验共获得117个IC神经元,在CF-FM声刺激下,神经元表现为single-on(SO,n=83)和double-on(DO,n=34)两种反应模式.无论是在蝙蝠的正向还是负向补偿过程中,SO和DO神经元对回声反应恢复到50%时的双声刺激间隔(inter-pulse interval,IPI)值,均会随补偿条件的改变而发生变化.当双声刺激由无补偿转变为最佳补偿条件时,两类神经元的50%IPI显著缩短(P0.001),但SO神经元50%IPI缩短率超过70%的神经元数目较DO神经元多,且偏好正向补偿的IC神经元中,SO神经元的平均DSC范围也要显著宽于DO神经元(P0.05).该研究结果提示,IC中SO神经元可能较DO神经元更能充分利用蝙蝠DSC行为,来提高对回声反应的恢复能力,以最大程度地获取猎物信息并准确判断与猎物的相对速度.  相似文献   

13.
The recovery cycle of auditory neurons is an important neuronal property which underlies a bat's ability in analyzing returning echoes and to determine target distance (i.e., echo ranging). In the same token, duration selectivity of auditory neurons plays an important role in pulse recognition in bat echolocation. Because insectivorous bats progressively vary the pulse parameters (repetition rate, duration, and amplitude) during hunting, the recovery cycle of auditory neurons is inevitably affected by their selectivity to other co-varying echo parameters. This study examines the effect of pulse duration and amplitude on recovery cycle of neurons in the central nucleus of the inferior colliculus (IC) of the FM bat, Pipistrellus abramus, using biologically relevant pulse-echo (P-E) pairs with varied duration and amplitude difference. We specifically examine how duration selectivity may affect a neuron's recovery cycle. IC neurons have wide range of recovery cycle and best duration (BD) covering P-E intervals and duration occurring different phases of hunting. The recovery cycle of most IC neurons increases with P-E duration and amplitude difference. Most duration-selective IC neurons recover rapidly when stimulated with biologically relevant P-E pairs. As such, neurons with short BD recover rapidly when stimulated with P-E pairs of short duration and small P-E amplitude difference. Conversely, neurons with long BD recover rapidly when stimulated with P-E pairs of long duration and large P-E amplitude difference. These data suggest that bats may potentially utilize the response of IC neurons with different BD and recovery cycle to effectively perform echo detection, recognition of echo duration and echo ranging throughout a target approaching sequence.  相似文献   

14.
电刺激大马蹄蝠听皮层对下丘神经元听觉敏感性的影响   总被引:3,自引:2,他引:3  
实验在12只大马蹄蝠上进行。用常规电生理学方法研究了电刺激听皮层对下丘212个神经元的听反应的影响,结果表明,有32个神经元的听反应被抑制,19个神经元的听反应褐易化。  相似文献   

15.
During hunting, bats of suborder Microchiropetra emit intense ultrasonic pulses and analyze the weak returning echoes with their highly developed auditory system to extract the information about insects or obstacles. These bats progressively shorten the duration, lower the frequency, decrease the intensity and increase the repetition rate of emitted pulses as they search, approach, and finally intercept insects or negotiate obstacles. This dynamic variation in multiple parameters of emitted pulses predicts that analysis of an echo parameter by the bat would be inevitably affected by other co-varying echo parameters. The progressive increase in the pulse repetition rate throughout the entire course of hunting would presumably enable the bat to extract maximal information from the increasing number of echoes about the rapid changes in the target or obstacle position for successful hunting. However, the increase in pulse repetition rate may make it difficult to produce intense short pulse at high repetition rate at the end of long-held breath. The increase in pulse repetition rate may also make it difficult to produce high frequency pulse due to the inability of the bat laryngeal muscles to reach its full extent of each contraction and relaxation cycle at a high repetition rate. In addition, the increase in pulse repetition rate increases the minimum threshold (i.e. decrease auditory sensitivity) and the response latency of auditory neurons. In spite of these seemingly physiological disadvantages in pulse emission and auditory sensitivity, these bats do progressively increase pulse repetition rate throughout a target approaching sequence. Then, what is the adaptive value of increasing pulse repetition rate during echolocation? What are the underlying mechanisms for obtaining maximal information about the target features during increasing pulse repetition rate? This article reviews the electrophysiological studies of the effect of pulse repetition rate on multiple-parametric selectivity of neurons in the central nucleus of the inferior colliculus of the big brown bat, Eptesicus fuscus using single repetitive sound pulses and temporally patterned trains of sound pulses. These studies show that increasing pulse repetition rate improves multiple-parametric selectivity of inferior collicular neurons. Conceivably, this improvement of multiple-parametric selectivity of collicular neurons with increasing pulse repetition rate may serve as the underlying mechanisms for obtaining maximal information about the prey features for successful hunting by bats.  相似文献   

16.
This study examines the effect of pulse repetition rate (PRR), pulse intensity, and bicuculline on the minimum threshold (MT) and latency of inferior collicular neurons of the big brown bat, Eptesicusfuscus, under free-field stimulation conditions. It tests the hypothesis that changes in MT and latency of collicular neurons are co-dependent on PRR. The number of impulses in inferior collicular neurons (n = 245) increased either monotonically (25%) or non-monotonically (75%) with pulse intensity. Latencies either decreased to a plateau (72%), fluctuated unpredictably within 3 ms (21%) or changed very little (7%) with increasing pulse intensity. Latencies and MTs of most collicular neurons increased by 1.5–24 ms (mean ± SD = 4.8 ± 3.3 ms) and 4–75 dB (mean ± SD = 22.1 ± 16.2 dB) with increasing PRR. In most neurons (94%), the latency increase was completely (42%) or partially (52%) eliminated when pulse intensity was compensated for the MT increase with PRR. Complete elimination of latency was achieved by bicuculline application. In a few neurons (6%), the latency increase with PRR was not affected by compensated pulse intensity or bicuculline application. Accepted: 8 October 1997  相似文献   

17.
皮氏菊头蝠回声定位声波与年龄的关系   总被引:2,自引:0,他引:2  
皮氏菊头蝠 (Rhinolophuspearsoni)雌性成体 5只和幼体 2只采自贵州省贞丰县珉谷镇。采用超声波探测仪 (D980 ,ULTRASOUNDDETECTOR)接收皮氏菊头蝠的回声定位声波 ,转换到原频率的 1 / 1 0后导入计算机 ,然后用专业声谱分析软件 (Batsound 3 1 0 )进行分析。成蝠在飞行和悬挂状态下的声波结构相似 ,只是声波各项参数值略有不同 :它们发射FM CF FM型声波 ,具有 2~ 3个谐波 ,主频率在飞行时为 5 6 80± 0 6 2kHz ,悬挂时为 5 8 0 5± 0 2 4kHz ;声脉冲时间和间隔在飞行时分别为 3 4 6 2± 5 2 9ms和 86 5 0± 1 9 72ms ,悬挂时分别为 4 1 0 8± 5 87ms和 1 1 7 2 9± 6 6 4 4ms ;能率环飞行时为 ( 4 4 0 6± 1 2 5 8) % ,悬挂时为 ( 4 6 0 0±2 4 2 5 ) %。幼蝠声波为CF FM型 ,谐波数为 5~ 8个 ,主频率明显低于成体 ,FM带宽窄于成体 ,声脉冲时间和间隔短于成体 ,能率环低于成体。皮氏菊头蝠回声定位声波与年龄有关 ,这可能因成体的声波主要是探测食物和周围环境的详细信息 ,而幼体主要是与母蝠进行交流。  相似文献   

18.
When insectivorous bats such as Eptesicus fuscus emit ultrasonic signals and analyze the returning echoes to hunt insects, duration selectivity of auditory neurons plays an important role in echo recognition. The success of prey capture indicates that they can effectively encode progressively shortened echo duration throughout the hunting process. The present study examines the echo duration selectivity of neurons in the central nucleus of the bat inferior colliculus (IC) under stimulation conditions of single pulses and pulse–echo (P–E) pairs. This study also examines the role of gamma-aminobutyric acid (GABA)ergic inhibition in shaping echo duration selectivity of IC neurons. The data obtained show that the echo duration selectivity of IC neurons is sharper when determined with P–E pairs than with single pulses. Echo duration selectivity also sharpens with shortening of pulse duration and P–E gap. Bicuculline application decreases and GABA application increases echo duration selectivity of IC neurons. The degree of change in echo duration selectivity progressively increases with shortening of pulse duration and P–E gap during bicuculline application while the opposite is observed during the GABA application. These data indicate that the GABAergic inhibition contributes to sharpening of echo duration selectivity of IC neurons and facilitates echo recognition by bats throughout different phases of hunting.  相似文献   

19.
Insectivorous big brown bats, Eptesicus fuscus, progressively increase the pulse repetition rate (PRR) throughout the course of hunting. While increasing PRR conceivably facilitates bats to extract information about the targets, it also inevitably affects sensitivity of their auditory neurons to pulse parameters. The present study examined the effect of increasing PRR on duration selectivity of this bat's inferior collicular (IC) neurons by comparing their impulse-duration functions determined at different PRRs. Impulse-duration functions plotted with the number of impulses in response to single pulses against pulse duration at different PRRs were described as short-pass, band-pass, long-pass, and all-pass. Short- or long-pass neurons discharged maximally to a range of short or long pulse durations. Band-pass neurons discharged maximally to one pulse duration. These three types of IC neurons were called duration tuned neurons. All-pass neurons were not duration tuned because they did not discharge maximally to any pulse duration. Increasing PRR improved duration selectivity of IC neurons by (1) increasing the number of duration tuned neurons; (2) decreasing the critical duration concomitant with increasing slope of the impulse-duration function; and (3) decreasing the 50% duration range of the impulse-duration function. This improved duration selectivity with PRR may potentially facilitate prey capture by bats.  相似文献   

20.
GABA能抑制调制大棕蝠下丘听神经元时间编码模式   总被引:3,自引:1,他引:2  
大棕幅(Eptesicus fuscus)下丘神经元对重复率为10pps(pulse per second)、30pps的串声刺激均产生跟随反应,但对90pps串声刺激的跟随反应则不尽相同,微电泳bicuculline阻断GABA能抑制作用后,所记录的58个神经元中,有13个(22%)放电率及串声刺激反应模式无;45个(78%)神经元放电率有不同程度的增加。对10pps、30pps串声刺激仍能产生跟随反应,但对90pps串声刺激的跟随反应模式有多种变化。其中:17个(29%)神经元为放电率增加的跟随反应;9个(15%)神经元放电率增加,对前100ms的串刺激产生反应且放电密集,而对随后200ms的串刺激只产生少量的放电;15个(26%)神经元放电率增加,在前几十毫秒范围内有较多的放电反应,后续的反应很弱;4个(7%)神经元只对第一个声刺激产生反应,且放电率增加,随后放电急剧减少。结果提示中脑下丘神经元对听觉信息的时间编码可能具有更复杂的机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号