首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because the detailed molecular mechanisms by which oxidative stress induces apoptosis are not completely known, we investigated how the complex Bcl-2 protein network might regulate oxidative stress-induced apoptosis. Using MEFs (mouse embryonic fibroblasts), we found that the endogenous anti-apoptotic Bcl-2 protein Bcl-xL prevented apoptosis initiated by H(2)O(2). The BH3 (Bcl-2 homology 3)-only Bcl-2 protein Noxa was required for H(2)O(2)-induced cell death and was the single BH3-only Bcl-2 protein whose pro-apoptotic activity was completely antagonized by endogenous Bcl-xL. Upon H(2)O(2) treatment, Noxa mRNA displayed the greatest increase among BH3-only Bcl-2 proteins. Expression levels of the anti-apoptotic Bcl-2 protein Mcl-1 (myeloid cell leukaemia sequence 1), the primary binding target of Noxa, were reduced in H(2)O(2)-treated cells in a Noxa-dependent manner, and Mcl-1 overexpression was able to prevent H(2)O(2)-induced cell death in Bcl-xL-deficient MEF cells. Importantly, reduction of the expression of both Mcl-1 and Bcl-xL caused spontaneous cell death. These studies reveal a signalling pathway in which H(2)O(2) activates Noxa, leading to a decrease in Mcl-1 and subsequent cell death in the absence of Bcl-xL expression. The results of the present study indicate that both anti- and pro-apoptotic Bcl-2 proteins co-operate to regulate oxidative stress-induced apoptosis.  相似文献   

2.
3.
The antiapoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL play important roles in inhibiting mitochondria-dependent extrinsic and intrinsic cell death pathways. It seems that these two proteins have distinct functions for inhibiting extrinsic and intrinsic cell death pathways. The overexpression of Bcl-2 is able to inhibit not only apoptotic cell death but also in part nonapoptotic cell death, which has the role of cell cycle arrest in the G1 phase, which may promote cellular senescence. The overexpression of Bcl-2 may also have the ability to enhance cell death in the interaction of Bcl-xL with other factors. The overexpression of Bcl-xL enhances autophagic cell death when apoptotic cell death is inhibited in Bax(-/-)/Bak(-/-) double knockout cells. This review discusses the previously unexplained aspects of Bcl-2 and Bcl-xL functions associated with cell death, for better understanding of their functions in the regulation.  相似文献   

4.
Zhang L  Wei LJ 《Life sciences》2007,80(13):1189-1197
ACTX-8 is a protein isolated from Agkistrodon acutus snake venom in our laboratory. It demonstrates cytotoxic activity on various carcinoma cell lines in vitro. However, the mechanism by which ACTX-8 inhibits cell proliferation remains poorly understood. In this study the influence of ACTX-8 on the activation of apoptotic pathway in Hela cells was investigated. We demonstrated that cell death induced by ACTX-8 was concentration- and time-dependent. Apoptotic changes such as phosphatidyl serine externalization and DNA fragmentation were detected in ACTX-8-treated cells. Caspase activation and reactive oxygen species (ROS) production were involved in ACTX-8-induced apoptosis, but pan caspase inhibitor, z-VAD-fmk, could not inhibit cell death induced by ACTX-8 completely, which proved the existence of another pathway for ACTX-8-induced cell death. We found cytochrome c release into cytosol and mitochondrial membrane potential (MMP) dissipation in ACTX-8-treated cells, which indicated that mitochondrial pathway played a role in ACTX-8-induced cell apoptosis. The ratio of expression levels of pro- and anti-apoptotic Bcl-2 family members was not changed by ACTX-8 treatment. However Bad and Bax were translocated from cytosol into mitochondria, and the coimmunoprecipitation result indicated that in mitochondria Bak and Bcl-xL dissociation was followed by the binding of Bad and Bcl-xL. Taken together, the study indicated mitochondrial pathway played an important role in the ACTX-8-induced apoptosis, which was regulated by Bcl-2 family members.  相似文献   

5.
The regulation of proliferation and cell death is vital for homeostasis, but the mechanism that coordinately balances these events in rheumatoid arthritis (RA) remains largely unknown. In RA, the synovial lining thickens in part through increased proliferation and/or decreased synovial fibroblast cell death. Here we demonstrate that the anti-apoptotic protein, Bcl-2, is highly expressed in RA compared with osteoarthritis synovial tissues, particularly in the CD68-negative, fibroblast-like synoviocyte population. To determine the importance of endogenous Bcl-2, an adenoviral vector expressing a hammerhead ribozyme to Bcl-2 (Ad-Rbz-Bcl-2) mRNA was employed. Ad-Rbz-Bcl-2 infection resulted in reduced Bcl-2 expression and cell viability in synovial fibroblasts isolated from RA and osteoarthritis synovial tissues. In addition, Ad-Rbz-Bcl-2-induced mitochondrial permeability transition, cytochrome c release, activation of caspases 9 and 3, and DNA fragmentation. The general caspase inhibitor zVAD.fmk blocked caspase activation, poly(ADP-ribose) polymerase cleavage, and DNA fragmentation, but not loss of transmembrane potential or viability, indicating that cell death was independent of caspase activation. Ectopically expressed Bcl-xL inhibited Ad-Rbz-Bcl-2-induced mitochondrial permeability transition and apoptosis in Ad-Rbz-Bcl-2-transduced cells. Thus, forced down-regulation of Bcl-2 does not induce a compensatory mechanism to prevent loss of mitochondrial integrity and cell death in human fibroblasts.  相似文献   

6.
7.
Bcl-2 family of proteins are key regulators of apoptosis. Both proapoptotic and antiapoptotic members of this family are found in mammalian cells, but no such proteins have been described in insects. Here, we report the identification and characterization of Debcl, the first Bcl-2 homologue in Drosophila melanogaster. Structurally, Debcl is similar to Bax-like proapoptotic Bcl-2 family members. Ectopic expression of Debcl in cultured cells and in transgenic flies causes apoptosis, which is inhibited by coexpression of the baculovirus caspase inhibitor P35, indicating that Debcl is a proapoptotic protein that functions in a caspase-dependent manner. debcl expression correlates with developmental cell death in specific Drosophila tissues. We also show that debcl genetically interacts with diap1 and dark, and that debcl-mediated apoptosis is not affected by gene dosage of rpr, hid, and grim. Biochemically, Debcl can interact with several mammalian and viral prosurvival Bcl-2 family members, but not with the proapoptotic members, suggesting that it may regulate apoptosis by antagonizing prosurvival Bcl-2 proteins. RNA interference studies indicate that Debcl is required for developmental apoptosis in Drosophila embryos. These results suggest that the main components of the mammalian apoptosis machinery are conserved in insects.  相似文献   

8.
Among various molecular strategies by which prostate cancer cells evade apoptosis, phosphoinositide 3-kinase (PI3K)/Akt signaling represents a dominant survival pathway. However, different prostate cancer cell lines such as LNCaP and PC-3 display differential sensitivity to the apoptotic effect of PI3K inhibition in serum-free media, reflecting the heterogeneous nature of prostate cancer in apoptosis regulation. Whereas both cell lines are equally susceptible to LY294002-mediated Akt dephosphorylation, only LNCaP cells default to apoptosis, as evidenced by DNA fragmentation and cytochrome c release. In PC-3 cells, Akt deactivation does not lead to cytochrome c release, suggesting that the intermediary signaling pathway is short-circuited by an antiapoptotic factor. This study presents evidence that Bcl-xL overexpression provides a distinct survival mechanism that protects PC-3 cells from apoptotic signals emanating from PI3K inhibition. First, the Bcl-xL/BAD ratio in PC-3 cells is at least an order of magnitude greater than that of LNCaP cells. Second, ectopic expression of Bcl-xL protects LNCaP cells against LY294002-induced apoptosis. Third, antisense down-regulation of Bcl-xL sensitizes PC-3 cells to the apoptotic effect of LY294002. The physiological relevance of this Bcl-xL-mediated survival mechanism is further underscored by the protective effect of serum on LY294002-induced cell death in LNCaP cells, which is correlated with a multifold increase in Bcl-xL expression. In contrast to Bcl-xL, Bcl-2 expression levels are similar in both cells lines, and do not respond to serum stimulation, suggesting that Bcl-2 may not play a physiological role in antagonizing apoptosis signals pertinent to BAD activation in prostate cancer cells.  相似文献   

9.
Increased expression of Bcl-xL in cancer has been shown to confer resistance to a broad range of apoptotic stimuli and to modulate a number of other aspects of cellular physiology, including energy metabolism, cell cycle, autophagy, mitochondrial fission/fusion and cellular adhesion. However, only few of these activities have a mechanistic explanation. Here we used Tandem Affinity purification to identify novel Bcl-xL interacting proteins that could explain the pleiotropic effects of Bcl-xL overexpression. Among the several proteins co-purifying with Bcl-xL, we focused on Praf2, a protein with a predicted role in trafficking. The interaction of Praf2 with Bcl-xL was found to be dependent on the transmembrane domain of Bcl-xL. We found that Bcl-2 also interacts with Praf2 and that Bcl-xL and Bcl-2 can interact also with Arl6IP5, an homologue of Praf2. Interestingly, overexpression of Praf2 results in the translocation of Bax to mitochondria and the induction of apoptotic cell death. Praf2 dependent cell death is prevented by the co-transfection of Bcl-xL but not by its transmembrane domain deleted mutant. Accordingly, knock-down of Praf2 increases clonogenicity of U2OS cells following etoposide treatment by reducing cell death. In conclusion a screen for Bcl-xL-interacting membrane proteins let us identify a novel proapoptotic protein whose activity is strongly counteracted exclusively by membrane targeted Bcl-xL.  相似文献   

10.
Regulation of the cell death program involves physical interactions between different members of the Bcl-2 family that either promote or suppress apoptosis. The Bcl-2 homolog, Bak, promotes apoptosis and binds anti-apoptotic family members including Bcl-2 and Bcl-xL. We have identified a domain in Bak that is both necessary and sufficient for cytotoxic activity and binding to Bcl-xL. Sequences similar to this domain were identified in Bax and Bip1, two other proteins that promote apoptosis and interact with Bcl-xL, and were likewise critical for their capacity to kill cells and bind Bcl-xL. Thus, the domain is of central importance in mediating the function of multiple cell death-regulatory proteins that interact with Bcl-2 family members.  相似文献   

11.
12.
Microtubule inhibiting agents (MIAs) characteristically induce phosphorylation of the major anti-apoptotic Bcl-2 family members Mcl-1, Bcl-2 and Bcl-xL, and although this leads to Mcl-1 degradation, the role of Bcl-2/Bcl-xL phosphorylation in mitotic death has remained controversial. This is in part due to variation in MIA sensitivity among cancer cell lines, the dependency of cell fate on drug concentration and uncertainty about the modes of cell death occurring, thus making comparisons of published reports difficult. To circumvent problems associated with MIAs, we used siRNA knockdown of the anaphase-promoting complex activator, Cdc20, as a defined molecular system to investigate the role, specifically in mitotic death, of individual anti-apoptotic Bcl-2 proteins and their phosphorylated forms. We show that Cdc20 knockdown in HeLa cells induces mitotic arrest and subsequent mitotic death. Knockdown of Cdc20 in HeLa cells stably overexpressing untagged wild-type Bcl-2, Bcl-xL or Mcl-1 promoted phosphorylation of the overexpressed proteins in parallel with their endogenous counterparts. Overexpression of Bcl-2 or Bcl-xL blocked mitotic death induced by Cdc20 knockdown; phospho-defective mutants were more protective than wild-type proteins, and phospho-mimic Bcl-xL was unable to block mitotic death. Overexpressed Mcl-1 failed to protect from Cdc20 siRNA-mediated death, as the overexpressed protein was susceptible to degradation similar to endogenous Mcl-1. These results provide compelling evidence that phosphorylation of anti-apoptotic Bcl-2 proteins has a critical role in regulation of mitotic death. These findings make an important contribution toward our understanding of the molecular mechanisms of action of MIAs, which is critical for their rational use clinically.  相似文献   

13.
细胞凋亡,即细胞程序性死亡,在多细胞生物的发育和稳态调控过程中发挥关键作用.Bcl-2家族蛋白是凋亡过程中的主要调控因子,关于Bcl-2家族蛋白在凋亡过程中的功能及其作用机制一直是研究的热点.已有研究显示Bcl-2家族蛋白不仅作用于线粒体引发凋亡,并且参与了包括对细胞内质网Ca2+的调控、DNA损伤的修复及与自噬的相互...  相似文献   

14.
Autophagy is described to be involved in homeostasis, development and disease, both as a survival and a death process. Its involvement in cell death proceeds from interrelationships with the apoptotic pathway. We focused on survival autophagy and investigated its interplays with the apoptotic machinery. We found that while Mcl-1 remained ineffective, Bcl-2 and Bcl-xL were required for starved cells to display a fully functional autophagic pathway as shown by proteolysis activity and detection of autophagic vesicles. Such pro-autophagic functions of Bcl-2 and Bcl-xL were independent of Bax. However they appeared to operate through non redundant mechanisms as Bcl-xL wielded a tighter control than Bcl-2 over the regulation of autophagy: unlike Bcl-2, Bcl-xL and Atg7 manipulation yielded identical phenotypes suggesting they could be components of the same signalling pathway; Bcl-xL subcellular localisation was modified upon starvation, and importantly Bcl-xL acted independently of Beclin 1. Still an intact BH3-binding site was required for Bcl-xL to stimulate a fully functional autophagic pathway. This study highlights that, in addition to their well-established anti-death function during apoptosis, Bcl-2 and Bcl-xL have a broader role in cell survival. Should Bcl-2 and Bcl-xL stand at the cross-roads between pro-survival and pro-death autophagy, this study introduces the new concept that the regulation of autophagy by Bcl-2 and Bcl-xL is adjusted according to its survival or death outcome.  相似文献   

15.
Galectin-3 internal gene (Galig) was recently identified as an internal gene transcribed from the second intron of the human galectin-3 gene that is implicated in cell growth, cell differentiation, and cancer development. In this study, we show that galig expression causes morphological alterations in human cells, such as cell shrinkage, cytoplasm vacuolization, nuclei condensation, and ultimately cell death. These alterations were associated with extramitochondrial release of cytochrome c, a known cell death effector. Furthermore, Bcl-xL co-transfection significantly reduced the release of cytochrome c induced by galig expression, suggesting a common pathway between the cytotoxic activity of galig and the anti-apoptotic activity of Bcl-xL. This antagonism was not observed upon co-transfection of Bcl-2 and galig. Galig encodes a mitochondrial-targeted protein named mitogaligin. Structure-activity relationship studies showed that the mitochondrial addressing of mitogaligin relies on an internal sequence that is required and sufficient for the release of cytochrome c and cell death upon cell transfection. Moreover, incubation of isolated mitochondria with peptides derived from mitogaligin induces cytochrome c release. Altogether, these results show that galig is a novel cell death gene encoding mitogaligin, a protein promoting cytochrome c release upon direct interaction with the mitochondria.  相似文献   

16.
The Bcl-2 homology 3 (BH3) domain is crucial for the death-inducing and dimerization properties of pro-apoptotic members of the Bcl-2 protein family, including Bak, Bax, and Bad. Here we report that synthetic peptides corresponding to the BH3 domain of Bak bind to Bcl-xL, antagonize its anti-apoptotic function, and rapidly induce apoptosis when delivered into intact cells via fusion to the Antennapedia homeoprotein internalization domain. Treatment of HeLa cells with the Antennapedia-BH3 fusion peptide resulted in peptide internalization and induction of apoptosis within 2-3 h, as indicated by caspase activation and subsequent poly(ADP-ribose) polymerase cleavage, as well as morphological characteristics of apoptosis. A point mutation within the BH3 peptide that blocks its ability to bind to Bcl-xL abolished its apoptotic activity, suggesting that interaction of the BH3 peptide with Bcl-2-related death suppressors, such as Bcl-xL, may be critical for its activity in cells. While overexpression of Bcl-xL can block BH3-induced apoptosis, treatment with BH3 peptides resensitized Bcl-xL-expressing cells to Fas-mediated apoptosis. BH3-induced apoptosis was blocked by caspase inhibitors, demonstrating a dependence on caspase activation, but was not accompanied by a dramatic early loss of mitochondrial membrane potential or detectable translocation of cytochrome c from mitochondria to cytosol. These findings demonstrate that the BH3 domain itself is capable of inducing apoptosis in whole cells, possibly by antagonizing the function of Bcl-2-related death suppressors.  相似文献   

17.
The Bcl-2 related protein Bad is a promoter of apoptosis and has been shown to dimerize with the anti-apoptotic proteins Bcl-2 and Bcl-XL. Overexpression of Bad in murine FL5.12 cells demonstrated that the protein not only could abrogate the protective capacity of coexpressed Bcl-XL but could accelerate the apoptotic response to a death signal when it was expressed in the absence of exogenous Bcl-XL. Using deletion analysis, we have identified the minimal domain in the murine Bad protein that can dimerize with Bcl-xL. A 26-amino-acid peptide within this domain, which showed significant homology to the alpha-helical BH3 domains of related apoptotic proteins like Bak and Bax, was found to be necessary and sufficient to bind Bcl-xL. To determine the role of dimerization in regulating the death-promoting activity of Bad and the death-inhibiting activity of Bcl-xL, mutations within the hydrophobic BH3-binding pocket in Bcl-xL that eliminated the ability of Bcl-xL to form a heterodimer with Bad were tested for the ability to promote cell survival in the presence of Bad. Several of these mutants retained the ability to impart protection against cell death regardless of the level of coexpressed Bad protein. These results suggest that BH3-containing proteins like Bad promote cell death by binding to antiapoptotic members of the Bcl-2 family and thus inhibiting their survival promoting functions.  相似文献   

18.
In our previous study, the sphingosine-like immunosuppressant ISP-1 was shown to induce apoptosis in the mouse cytotoxic T cell line CTLL-2. In this study, we characterized the ISP-1-induced apoptotic pathway. Although caspase-3-like protease activity increases concomitantly with ISP-1-induced apoptosis in CTLL-2 cells, the apoptosis is not inhibited by caspase-3-like protease inhibitors, i.e. DEVD-cho and z-DEVD-fmk. In contrast, sphingosine-induced apoptosis in CTLL-2 cells is caspase-3-like protease-dependent. A caspase inhibitor with broad specificity, z-VAD-fmk, protects cells from apoptosis induced by ISP-1, indicating that ISP-1-induced apoptosis is dependent on caspase(s) other than caspase-3. Overexpression of Bcl-2 or Bcl-xL suppresses the apoptosis induced by ISP-1, although sphingosine-induced apoptosis is not efficiently inhibited by Bcl-2. Finally, ISP-1-induced mitochondrial depolarization, which is thought to be a checkpoint dividing the apoptotic pathway into upstream and downstream stages, is not inhibited by DEVD-cho, but is inhibited by z-VAD-fmk. These data suggest that a pathway dependent on caspase(s) other than caspase-3 is involved upstream of mitochondrial depolarization in ISP-1-induced apoptosis.  相似文献   

19.
Bcl-2 family proteins are key regulators of apoptosis. Both pro-apoptotic and anti-apoptotic members of this family are found in mammalian cells, but only the pro-apoptotic protein Debcl has been characterized in Drosophila: Here we report that Buffy, the second Drosophila Bcl-2-like protein, is a pro-survival protein. Ablation of Buffy by RNA interference leads to ectopic apoptosis, whereas overexpression of buffy results in the inhibition of developmental programmed cell death and gamma irradiation-induced apoptosis. Buffy interacts genetically and physically with Debcl to suppress Debcl-induced cell death. Genetic interactions suggest that Buffy acts downstream of Rpr, Grim and Hid, and upstream of the apical caspase Dronc. Furthermore, overexpression of buffy inhibits ectopic cell death in diap1 (th(5)) mutants. Taken together these data suggest that Buffy can act downstream of Rpr, Grim and Hid to block caspase-dependent cell death. Overexpression of Buffy in the embryo results in inhibition of the cell cycle, consistent with a G(1)/early-S phase arrest. Our data suggest that Buffy is functionally similar to the mammalian pro-survival Bcl-2 family of proteins.  相似文献   

20.
Anti-apoptotic Bcl-2 family proteins have been reported to play an important role in apoptotic cell death of human malignancies. The aim of this study was to delineate the mechanism of anti-apoptotic Bcl-2 family proteins in pancreatic cancer (PaCa) cell survival. We first analyzed the endogenous expression and subcellular localization of anti-apoptotic Bcl-2 family proteins in six PaCa cell lines by Western blot. To delineate the functional role of Bcl-2 family proteins, siRNA-mediated knock-down of protein expression was used. Apoptosis was measured by Cell Death ELISA and Hoechst 33258 staining. In the results, the expression of anti-apoptotic Bcl-2 family proteins varied between PaCa cell lines. Mcl-1 knock-down resulted in marked cleavage of PARP and induction of apoptosis. Down-regulation of Bcl-2 or Bcl-xL had a much weaker effect. Simultaneous knock-down of Bcl-xL and Mcl-1 strongly induced apoptosis, but simultaneous knock-down of Bcl-xL/Bcl-2 or Mcl-1/Bcl-2 had no additive effect. The apoptosis-inducing effect of simultaneous knock-down of Bcl-xL and Mcl-1 was associated with translocation of Bax from the cytosol to the mitochondrial membrane, cytochrome c release, and caspase activation. These results demonstrated that Bcl-xL and Mcl-1 play an important role in pancreatic cancer cell survival. Targeting both Bcl-xL and Mcl-1 may be an intriguing therapeutic strategy in PaCa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号