首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
THE NORMAL FINE STRUCTURE OF OPOSSUM TESTICULAR INTERSTITIAL CELLS   总被引:3,自引:20,他引:3       下载免费PDF全文
The interstitial tissue of the opossum testis includes interstitial or Leydig cells, macrophages, and small cells which morphologically resemble mesenchymal cells. The latter are thought to give rise to mature interstitial cells. The most prominent feature of the interstitial cell cytoplasm is an exceedingly abundant agranular endoplasmic reticulum. This reticulum is generally in the form of a meshwork of interconnected tubules about 300 to 450 A in diameter, but occasionally it assumes the form of flattened, fenestrated cisternae resembling those of pancreatic acinar cells, except for the lack of ribonucleoprotein particles on the surface of the membranes. The interstitial cells vary considerably in their cytoplasmic density. The majority are quite light, but some appear extremely dense, and in addition usually have a more irregular cell surface, with numerous small pseudopodia. These differences may well reflect variations in physiological state. Cytoplasmic structures previously interpreted as "crystalloids" consist of long bundles of minute parallel tubules, each about 180 A in diameter, which seem to be local differentiations of the endoplasmic reticulum. The mitochondria are rod-shaped, and contain a moderately complex internal membrane structure, and also occasional large inclusions that are spherical and homogeneous. The prominent juxtanuclear Golgi complex contains closely packed flattened sacs and small vesicles. The results of the present study, coupled with biochemical evidence from other laboratories, make it seem highly probable that the agranular endoplasmic reticulum is involved in the synthesis of the steroid hormones produced by the interstitial cell. This finding therefore constitutes one of the first functions of the agranular reticulum for which there is good morphological and biochemical evidence.  相似文献   

2.
OVARIAN STEROID CELLS : II. The Lutein Cell   总被引:4,自引:2,他引:2       下载免费PDF全文
The lutein cells of the rabbit exhibit fine structural variations during their life-span of 28 to 30 days. A systematic examination of the corpus luteum reveals that cellular distinctions may be recognized during the first, second, and third stages of pregnancy. The agranular endoplasmic reticulum reveals vesicular, tubular, and cisternal profiles after fixation with each of the following fixatives: glutaraldehyde, osmium tetroxide, and permanganate. The osmolality of the fixing solutions was varied with sucrose and recorded with an osmometer in order to determine the effect of osmotic concentration on the intracellular membranous profiles. It was determined that vesicles and short, branched tubules of similar structure are present in the agranular reticulum when the osmolalities are 300 to 800 milliosmols (iso-osmotic considered 300 milliosmols). At 900 milliosmols, the vesicular or tubular lumen is obliterated. Intracellular membrane profiles do not exhibit interconversions due to hyperosmotic fixative solutions. The agranular endoplasmic reticulum is randomly distributed as short tubular profiles during the first third of pregnancy. A continuity between these membranes and irregular, electron-opaque lipid masses is evident. When physiological and histochemical data indicate that the lutein cell may be storing sterol precursors, cytological observations show that the agranular endoplasmic reticulum exists in a more organized pattern within the cytoplasmic matrix. Vesicular and short tubular, circular aggregations as well as whorled cisternal patterns surround the larger, less electron-opaque lipid droplets. Surface views of cisternal agranular endoplasmic reticulum exhibit tubular extensions, accentuating the continuity between these two profiles. During the progress of pregnancy, the lutein cell increases in diameter, and accumulates both lipid inclusions and aggregations of intracellular membranes. The agranular endoplasmic reticulum may be peripherally packed and arranged parallel to the cell surface during later stages. In the postpartum, degenerating lutein cell, large myelin figures are present which form from the agranular endoplasmic reticulum. These cellular events are discussed in relation to lutein cell activity, including both secretion of product and storage of precursors.  相似文献   

3.
In guinea pig testes perfused with either glutaraldehyde or osmium tetroxide fixative, the cytoplasm of the interstitial cells contains an exceptionally abundant agranular endoplasmic reticulum. The reticulum in central regions of the cell is a network of interconnected tubules, but in extensive peripheral areas the reticulum is commonly organized into closely packed, flattened cisternae which are fenestrated. Occasional small patches of the granular reticulum occur in the cytoplasm and connect freely with the agranular reticulum. The mitochondria have a dense matrix and contain cristae and some tubules. The Golgi complex is disperse and shows no evidence of secretory material. The cytoplasm also contains lipid droplets. Lipofuscin pigment granules are probably polymorphic residual bodies and contain three components: (1) a dense material which at high magnification shows a 75-A periodicity; (2) a medium-sized lipid droplet; and (3) a cap-like structure. In glutaraldehyde-perfused testis the interstitial cell cytoplasm appears to have the same density from cell to cell, and the agranular reticulum is tubular or cisternal but not in the form of empty vesicles. Thus the "dark" and "light" cells and the vesicular agranular reticulum sometimes encountered in other fixations may be artifacts. Biochemical results from other laboratories, correlated with the present findings, indicate that the membranes of the agranular endoplasmic reticulum in guinea pig interstitial cells are the site of at least two enzymes of androgen biosynthesis, the 17-hydroxylase and the 17-desmolase.  相似文献   

4.
The transition from ovarian granulosa to lutein cell during the estrus cycle of 60 pregnant and non-pregnant beagle bitches was analyzed by light and electron microscopy (both 100 and 1000 KV). Early proestrus was characterized by a gradual rise in serum estrogen levels, hyperplasia of the granulosa cells, the accumulation of follicular fluid, and the development of tortuous intercellular channels. During the second half of proestrus, serum estrogen levels continued to rise, but growth, division, and differentiation of the granulosa cells was minimal. Estrus was marked by the first acceptance of the male and a well-defined LH peak In the subsequent 24 hour period, the granulosa-lutein cells hypertrophy rapidly and develop a large Golgi apparatus, small profiles of granular endoplasmic reticulum, numerous microfilaments, and large gap junctions between the cells. Mitochondria also proliferate, enlarge, and elongate, but retain lamelliform cristae. Luteinization of the cells and progesterone secretion begin just after ovulation which in turn occurs about 24 hours after the LH peak. On the third and fourth day of estrus, numerous small vesicles of agranular endoplasmic reticulum fill the extoplasm and the mitochondria swell up and round off. The vesicles rapidly fuse into whorled and flattened cisternae or anastomosing tubules of agranular endoplasmic reticulum, while the mitochondria develop tubulovesicular cristae. These structures gradually become organized with respect to the basal lamina. The Golgi apparatus is centered over the pole of the nucleus that faces the pericapillary space. Stacked and whorled cisternae of agranular ER develop in the lateral margins and avascular end of the cell while mitochondria and tubular elements of agranular ER predominate in the central medial and most basal portions of the cytoplasm. Microfilaments are ubiquitous and appear to be instrumental in this orientation process. The cell surface develops three distinct regional specializations that coincide with the underlying cellular compartments: interconnecting pleomorphic folds fill the pericapillary space; long tenous microvilli project from the lateral cell surface and form tortuous intercellular channels and canaliculi; and large gap junctions form along the margins of the cell furthest removed from the basal lamina. By the sixth day of estrus, the granulosa-luteal cell transition is nearly complete and serum progesterone levels are on the rise.  相似文献   

5.
The granulosa follicle cell of the Graafian follicle of the rabbit ovary differentiates into a lutein cell involved in steroid synthesis. Cytological events which occur within the granulosa cell of the normally stimulated follicle prior to ovulation have been duplicated by the intrafollicular injection of exogenous gonadotrophin. The luteinization of the granulosa cells involves the accumulation of 250- to 300-A, electron-opaque, spherical granules, dispersed within the cytoplasmic matrix, which have been identified as glycogen with the PAS-staining procedure. Further development of the granulosa cell following ovulation involves an increase in cell size, a decrease in the number of RNP particles, and an accumulation of an abundant system of intracellular membranes (agranular endoplasmic reticulum). Glycogen granules first appear in the granulosa cells as the separate, monoparticulate form. After follicle rupture and the formation of agranular endoplasmic reticulum, glycogen particles are present in a rosette arrangement within membrane-bounded vacuoles. The rosette arrangement of glycogen particles is also found dispersed within the cytoplasmic matrix of the lutein cell during the later stages of the cell life-span. Injection of luteinizing hormone or human chorionic gonadotrophin into a mature follicle also produces a marked accumulation of monoparticulate glycogen in the majority of granulosa cells, within 30 min. Cytoplasmic extensions which contain the glycogen masses are noticeably free of RNP particles.  相似文献   

6.
Summary The fine structure of the testicular interstitium was studied in normal adult golden hamsters sacrificed in the reproductive season (spring and summer) and in the winter. The Leydig cells in the reproductively active testes contain abundant endoplasmic reticulum (ER) and numerous mitochondria. The ER occurs in the form of flattened cisternae and tubules, the former prevailing. The cisternae are extremely extensive and are partly granular and partly agranular, their ends being continuous with the tubular reticulum. Mitochondria intervening between the cisternae are closely associated with the agranular portions of the latter. Adjacent to the Golgi complex and continuous with the centrosome a unique filamentous body with a dense laminar core is often observed. In the regressive testes, the Leydig cells show a great reduction of cytoplasmic volume and a remarkable decline of the organelles, especially agranular tubules. The possible functional significance of the tubular and cisternal ER with the associated mitochondria is discussed in relation to the biosynthesis of androgens. Macrophages appear to constitute another important population of the interstitial cell clusters.This study was supported in part by a grant from the National Science Council, the Republic of China  相似文献   

7.
E V Zybina  T G Zybina 《Tsitologiia》1988,30(11):1283-1290
Ultrastructural organization of the rat trophoblast cells in the connective zone of placenta and labyrinth was investigated on the 12-14th days of gestation. A clear distinction was revealed in the cytoplasm ultrastructure of two cell subpopulations within the connective zone of placenta, i.e. glycogen and trophospongium cells. The former display a well defined network of long thin channels of granular endoplasmic reticulum situated mainly around the glycogen clusters. On the contrary, the latter are rich in the smooth endoplasmic reticulum but lacking glycogen accumulation. Differences in the nucleolar ultrastructure in these two cell subpopulations are not very considerable. A characteristic feature of glycogen cells is the presence of numerous round or oval small-fibrillar nucleolus-like bodies with the diameter of granules 20 nm. The trophoblast cells of the labyrinth are heavily laden with polysomes, which sometimes attach to short channels of the granular endoplasmic reticulum. Not often there occur short profiles of the agranular endoplasmic reticulum. Nucleolus-like bodies are found in all the cell types examined. This means that the nucleolus-like bodies may arise not only on the lampbrush chromosomes in the oocytes or polytene chromosomes, but also in the somatic cells which are capable of dividing mitotically.  相似文献   

8.
Pig embryos aged 24 days were obtained from artifically inseminated sows for ultrastructural study of the indifferent gonads. Sex was identified by chromosome analysis. The gonads are composed in both sexes of three different tissues: the surface epithelium, the gonadal blastema and the mesenchyme. The surface epithelial cells contained elongate mitochondria, granular endoplasmic reticulum, free polysomes, the Golgi complex, fine filaments and coated vesicles. The primitive cords were continuous with the surface epithelium and the interior of the gonad was occupied by blastema cells. They had prominent nucleoli, elongate mitochondria, granular endoplasmic reticulum, the Golgi complex, free polysomes, some lipid droplets and occasionally circular smooth membrane profiles resembling the agranular endoplasmic reticulum. Individual primordial germ cells were seen in all parts of the gonad. They were roundish with prominent nucleoli, globular mitochondria, granular endoplasmic reticulum, free polysomes, the Golgi complex, coated vesicles, lipid droplets and dense bodies. Degenerating cells and cells having pseudopods were also encountered. In comparison to the gonad at the age of 22 days, the primordium had grown into a longitudinal roundish protrusion and the number of primoridal germ cells had increased. Histological and ultrastructural observations showed that the pig gonads at the age of 24 days were similar in both sexes.  相似文献   

9.
Summary The endoplasmic reticulum in granulosa cells of primary, secondary, and small tertiary follicles of the porcine ovary is sparse and largely of the granular type.In granulosa cells of large tertiary follicles the endoplasmic reticulum shows distinct signs of proliferation. Some cells even contain whorls of endoplasmic reticulum membranes, essentially of the agranular variety.Direct continuity between endoplasmic reticulum membranes of the granular and agranular type as well as the continuous increase in agranular membranes suggest that these membranes may originate from the granular membranes.Granulosa cells isolated from large tertiary follicles by microdissection and keptin vitro show essentially the same ultrastructure as granulosa cells of intact large tertiary follicles.Some lipid droplets appear to be localized in cavities of the endoplasmic reticulum. It is suggested that the droplets contain precursor material for steroid hormone synthesis.Finally, the development of the agranular endoplasmic reticulum including the appearance of whorls in some granulosa cells of large tertiary follicles indicates that steroid synthesis may occur in such follicular granulosa cells.Read at the Meeting of the Swedish Society for Pathology in Umeå, September 25, 1965 (Bjersing, 1966).This investigation was supported by grants from the Swedish Medical Research Council (Projects No. 13 X-78-01, 12 X-78-02, and 12 X-78-03).  相似文献   

10.
Summary Ultrastructure of the granulosa lutein cells of the raccoon from throughout pregnancy has been described. The lutein cells often from epithelial cords which are separated by the connective tissues, capillaries and lymphatics. Based on the arrangements and modifications of the cytoplasmic organelles and inclusions, three types of lutein cells have been recognized. The type I lutein cells predominantly contain tubular, agranular endoplasmic reticulum, juxtanuclear Golgi complexes, a few round to rod-shaped mitochondria, some free ribosomes, and occasional lipid droplets. Occasionally the tubular cristae of mitochondria and tubular smooth endoplasmic reticulum appear contiguous. The type II cells contain abundant lace-like and/or stacked fenestrated endoplasmic reticulum cisternae that frequently form membranous whorls, some tubular, agranular endoplasmic reticulum, mitochondria, and lipid droplets. Mitochondria are usually small, but unusual large ones also occur. The small, rod-to round-shaped mitochondria usually have tubular cristae; but the large, oval, elongate, and cup shaped mitochondria possess tubular, lamellar, plate like, and whorl-like cristae. The plasma membranes of the cells are complexly elaborated and folded, especially when apposing each other. In favorable sections, strands of fenestrated cisternae appose the folds of the plasma membranes. In general, the amount of cytoplasmic organelles and inclusions vary greatly in the cells. The type III cells predominantly contain lipid droplets and sparse cytoplasmic organelles. The type I and II cells are found throughout pregnancy, but the type III cells are observed from mid gestation to term. The cytological features of type I and II cells suggest that they probably secrete most of the steroids, whereas the type III cells primarily store lipids.This research was supported by UPSHS grant AM-11376 and NIH contract 69-2136.  相似文献   

11.
12.
Corpus luteum formation was induced in 26-day-old rats which were subsequently hypophysectomized and injected with mammotrophic hormone (MH, LTH). Sections of corpora lutea from these animals were examined with the electron microscope and compared with similarly prepared (Caulfield's fixed, Araldite embedded) corpora from normal pregnancy and from controls, the latter consisting of corpora prior to hypophysectomy and corpora from uninjected rats 7 to 14 days after hypophysectomy. Lutein cells from corpora lutea of injected animals and of normal pregnancy are characterized by abundant, tortuous, tubular agranular endoplasmic reticulum and by mitochondria, many of which are disc-shaped with dense matrices and both villiform and lamelliform cristae. The endoplasmic reticulum is most abundant in lutein cells from pregnant animals, in which cells it is in the form of thin, highly tortuous tubules. The form of the lipid droplets seen in cells of stimulated animals varies greatly. Marginal foldings of the lutein cells on the perivascular space were found in all instances. Lutein cells from hypophysectomized animals have a less highly developed agranular endoplasmic reticulum. The mitochondria have irregular outlines and a relatively lucid matrix. The lipid droplets in these cells show less tendency to be extracted, but are not so large or abundant as in the cells of onset controls. Granules believed to contain lipid pigments are common in the lutein cells of these control animals. It is suggested that lutein cells from corpora lutea which are actively secreting progesterone may be readily distinguished from lutein cells from non-active corpora by means of the multiple characteristics enumerated. It is further suggested that mammotrophic hormone has a general effect on the metabolism of lutein cells rather than solely affecting a specific organelle, the abundance or composition of which may be the limiting factor in the production of progesterone.  相似文献   

13.
THE FINE STRUCTURE OF THE GALL BLADDER EPITHELIUM OF THE MOUSE   总被引:50,自引:20,他引:30       下载免费PDF全文
Sections of mouse gall bladder epithelium fixed by perfusion with buffered osmium tetroxide have been studied in the electron microscope as an example of simple columnar epithelium. The free surface presents many microvilli, each presenting a dense tip, the capitulum, and displaying a radiating corona of delicate filaments, the antennulae microvillares. Very small pit-like depressions, representing caveolae intracellulares, are encountered along the cell membrane of the microvilli. The free cell surface between microvilli shows larger cave-like depressions, likewise representing caveolae intracellulares, containing a dense material. The lateral cell borders are extensively folded into pleats, which do not interdigitate extensively with corresponding folds of the adjacent cell membrane. The terminal bars are shown to consist of thickened densities of the cell membrane itself in the region of insertion of the lateral cell wall with the free cell surface. This thickening is associated with an accumulation of dense cytoplasmic material in the immediate vicinity. The terminal bar is thus largely a cytoplasmic and cell membrane structure, rather than being primarily intercellular in nature. The basal cell membrane is relatively straight except for a conical eminence near the center of the cell, projecting slightly into the underlying tunica propria. The basal cell membrane itself is overlain by a delicate limiting membrane, which does not follow the lateral contours of the cell. Unmyelinated intercellular nerve terminals with synaptic vesicles have been encountered between the lateral walls of epithelial cells. A division of the gall bladder epithelial cell into five zones according to Ferner has been found to be convenient for this study. The following cytoplasmic components have been noted, and their distribution and appearance described: dense absorption granules, mitochondria, Golgi or agranular membranes, endoplasmic reticulum or ergastoplasm, ring figures, and irregular dense bodies, perhaps lipoid in nature. The nucleus of these cells is also described.  相似文献   

14.
Summary Subsurface cisterns (SSC's) and less frequent lamellar bodies (LB's) were identified in the granule cells of the guinea-pig fascia dentata. Both structures, composed of flattened or collapsed agranular cisterns, are continuous with the regular rough endoplasmic reticulum and occasionally connected with each other forming LB-SSC complexes. The SSC's are apposed to glia, synaptic boutons, and nerve cell processes as well as to neighboring granule cells appearing here singly and in confronting pairs. The quantitative analysis of the various cisternal appositions compared to the distribution of the tissue components on the granule cell soma shows that the overwhelming majority of SSC's are related to glial cells.  相似文献   

15.
The centrally directed neurite of the dorsal root neuroblast has been described from the period of its initial entrance into the neural tube until a well-defined dorsal root is formed. Large numbers of microtubules, channels of agranular reticulum, and clusters of ribosomes are found throughout the length of the early axons. The filopodia of the growth cone appear as long thin processes or as broad flanges of cytoplasm having a finely filamentous matrix material and occasionally small ovoid or elongate vesicles. At first the varicosity is a small expansion of cytoplasm, usually containing channels of agranular reticulum and a few other organelles. The widely dilated cisternae of agranular reticulum frequently found within the growth cone probably correspond to the pinocytotic vacuoles seen in neurites in tissue culture. The varicosities enlarge to form bulbous masses of cytoplasm, which may measure up to 5 µ in width and 13 µ in length. They contain channels of agranular reticulum, microtubules, neurofilaments, mitochondria, heterogeneous dense bodies, and a few clusters of ribosomes. Large ovoid mitochondria having ribonucleoprotein particles in their matrix are common. Dense membrane specializations are found at the basal surface of the neuro-epithelial cell close to the area where the early neurites first enter the neural tube.  相似文献   

16.
It has been proposed that the UDP-Glc:glycoprotein glucosyltransferase, an endoplasmic reticulum enzyme that only glucosylates improperly folded glycoproteins forming protein-linked Glc1Man7-9-GlcNAc2 from the corresponding unglucosylated species, participates together with lectin- like chaperones that recognize monoglucosylated oligosaccharides in the control mechanism by which cells only allow passage of properly folded glycoproteins to the Golgi apparatus. Trypanosoma cruzi cells were used to test this model as in trypanosomatids addition of glucosidase inhibitors leads to the accumulation of only monoglucosylated oligosaccharides, their formation being catalyzed by the UDP- Glc:glycoprotein glucosyltransferase. In all other eukaryotic cells the inhibitors produce underglycosylation of proteins and/or accumulation of oliogosaccharides containing two or three glucose units. Cruzipain, a lysosomal proteinase having three potential N-glycosylation sites, two at the catalytic domain and one at the COOH-terminal domain, was isolated in a glucosylated form from cells grown in the presence of the glucosidase II inhibitor 1-deoxynojirimycin. The oligosaccharides present at the single glycosylation site of the COOH-terminal domain were glucosylated in some cruzipain molecules but not in others, this result being consistent with an asynchronous folding of glycoproteins in the endoplasmic reticulum. In spite of not affecting cell growth rate or the cellular general metabolism in short and long term incubations, 1-deoxynojirimycin caused a marked delay in the arrival of cruzipain to lysosomes. These results are compatible with the model proposed by which monoglucosylated glycoproteins may be transiently retained in the endoplasmic reticulum by lectin-like anchors recognizing monoglucosylated oligosaccharides.  相似文献   

17.
Scanning electron microscopy shows that lingual papillae occur all over the dorsal surface of the tongue of the freshwater turtle, Geoclemys reevesii. The surface of each papilla is composed of compactly distributed hemispherical bulges, each composed of a single cell. Microvilli are widely distributed over the surface of cells. Histological examination reveals that the connective tissue penetrates deep into the center of papillae and that the epithelium is stratified columnar. Under the transmission electron microscope, the cells of the basal and the deep intermediate layers of the epithelium appear rounded. A large nucleus lies in the central area of each cell. The cytoplasm contains mitochondria, endoplasmic reticulum and free ribosomes. The cell membrane form numerous processes. The shallow intermediate layer contains two types of cell. The cytoplasm of the first has numerous fine granules, in addition to mitochondria, ribosomes, and endoplasmic reticulum. The other type of cell contains highly electron-dense granules. The surface layer shows two cell types. One type consists of typical mucous cells. The other type of cell contains fine, electron-lucent granules. The latter cells lie on the free-surface side, covering the mucous cells, and have microvilli on their free surfaces.  相似文献   

18.
FINE STRUCTURE OF CHLORIDE CELLS FROM THREE SPECIES OF FUNDULUS   总被引:8,自引:6,他引:2       下载免费PDF全文
A morphological basis for osmoregulation in the teleosts was studied by comparing the fine structure of chloride cells found in epithelia of the gills of three species of fish: Fundulus heteroclitus which can survive in a wide range of salinities, and F. similis and F. chrysotus which are usually restricted to salt water and fresh water environments, respectively. Gills were removed from F. heteroclitus which had been laboratory adapted to either sea water or pond water. For a comparison, gills were also removed from the marine F. similis and the fresh water F. chrysotus which had been adapted to their natural environments. Gill-filaments were fixed in Millonig's phosphate buffered (pH 7.4), 1 per cent osmium tetroxide and were embedded in Epon. Thin sections of filaments were stained with lead hydroxide. The cytoplasm of chloride cells of all three species of Fundulus is heavily populated with mitochondria and is filled with tubules of the agranular endoplasmic reticulum (ER). An orderly secretory cycle was indicated for chloride cells of salt water adapted F. heteroclitus and the marine F. similis. An amorphous material is observed in the agranular ER. Its density increases towards the apical end of the cell. In the apical cytoplasm, tubules of the agranular ER appear to converge and to discharge the amorphous material into an apical cavity. Except for the actual opening of the apical cavity, the distal end of salt water adapted chloride cells is characteristically shielded from the hypertonic environment by thin cytoplasmic flanges projecting from the neighboring epithelial cells. Chloride cells of the fresh water F. chrysotus resemble chloride cells of pond water adapted F. heteroclitus, in that these cells do not have apical cavities with the functional appearance of those in the sea water adapted forms. The distal end of fresh water adapted chloride cells is typically exposed to the free surface of the gill-filament. The possible function of the cell type is discussed.  相似文献   

19.
Dynamics of the endoplasmic reticulum in living non-muscle and muscle cells   总被引:3,自引:0,他引:3  
The dynamic changes of the endoplasmic reticulum (ER) in interphase and mitotic cells was detected by the vital fluorescent dye 3,3'-dihexyloxacarbocyanine iodide. Two types of arrays characterize the continuous ER system in the non-muscle PtK2 cell: 1) a lacy network of irregular polygons and 2) long strands of ER that are found aligned along stress fibers. In cross-striated myotubes there was a periodic localization of fluorescence over each I-band corresponding to the positions of the terminal cisternae of the sarcoplasmic reticulum (SR). In contrast to the arrangement in muscle cells, the alignment of the long strands of ER alon stress fibers showed no strict periodicity that could be correlated with the sarcomeric units of the stress fibers. The ER and SR arrays seen in living cells were also detected in fixed cells stained with antibodies directed against proteins of the endoplasmic reticulum and sarcoplasmic reticulum, respectively. Observations of vitally stained PtK2 cells at 1 to 2 minute intervals using low light level video cameras and image processing techniques enabled us to see the polygonal ER units form and undergo changes in their shapes. During cell division, the ER, rhodamine 123-stained mitochondria, and phagocytosed fluorescent beads were excluded from the mitotic spindle while soluble proteins were not. No obvious concentration or alignment of membranes could be found associated with the contractile proteins in the cleavage furrow. After completion of cell division there was a redeployment of the ER network in each daughter cell.  相似文献   

20.
Summary An electron microscopical study of the corpus allatum (CA) of the adult female Calliphora was undertaken.The cells have a very irregular shape. Light and dark cells are found. Mitochondria occur in great numbers. Microtubules are frequently observed. Free ribosomes are plenty, but rough-surfaced reticulum is scarce. Golgi complexes are not very conspicuous. Axons, mostly containing neurosecretory granules, are frequently found between the cells.The active corpus allatum is remarkable by the numerous lipid droplets and the abundance of tubular agranular reticulum. The reticulum sometimes forms aggregates from which vacuoles are budded off. The vacuoles lose their membrane, at the same time becoming slightly electron opaque, thus being transformed into lipid droplets.It is tentatively postulated that the hormone (or a precursor) is synthesized in the tubules of the agranular reticulum, collected in the vacuoles, and, when the membrane disintegrates, it is dissolved in lipid. The lipid droplets are thought to be released into the haemolymph through the surface of the gland or via intercellular channels.The inactive corpus allatum of the six days old sugar fed flies is small and more or less shrunken. The agranular reticulum is poorly developed, vacuoles are small, and lipid droplets few. The reticulum tends to form whorls, which eventually may possibly be transformed into myelin figures.We wish to express our gratitude to the Danish Natural Science Research Council for placing a Zeiss electron microscope at our disposal, and to the Carlsberg Foundation for supporting our work with grants. We are grateful to Prof. C. Overgaard Nielsen for laboratory facilities, and we are indebted to Mrs. Eva Jensen for her skilful technical assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号