首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Four monoclonal antibodies (OKB7, HB-5, AB-1, and anti-B2) that recognize a 145-kDa B cell-specific membrane structure have markedly different abilities to 1) inhibit C3d and EBV binding to B cells, 2) immunoprecipitate a 145-kDa B cell protein, and 3) stimulate B cell proliferation and differentiation into Ig-secreting cells. This study was initiated to determine whether these four monoclonal antibodies (MoAb) react with the same protein; a related goal was to determine whether the structure(s) recognized by these antibodies constitutes an antigenically related family of structurally distinct molecules. In the studies presented here, the four MoAb were found to fully immunoprecipitate the purified 145-kDa B cell molecule isolated by immunoaffinity chromatography on either OKB7, HB-5, or AB-1 columns, findings that show conclusively that the antibodies all react with the same B cell protein. The variable ability to immunoprecipitate this B cell membrane protein was found to result from differences in exposure or accessibility of the relevant antigenic epitopes in the detergent extract. The 145-kDa molecule immunoprecipitated with the four MoAb was equivalently sensitive to endoglycosidase F and yielded the same banding pattern after digestion with endoglycosidase F and after partial digestion with either S. aureus V8 protease or with trypsin. Within the limits of the sensitivity of these techniques, therefore, there is no evidence for carbohydrate or protein differences in the EBV/C3d receptor (CR2) molecule recognized by the four MoAb. Additional studies showed that the four MoAb react with distinct and nonoverlapping antigenic epitopes on the 145-kDa molecule. The variable abilities of the four MoAb to inhibit CR2 function and EBV binding and to trigger B cell activation, together with the other findings noted above, indicates that the 145-kDa EBV/C3d receptor possesses discretely localized functional domains.  相似文献   

2.
A panel of B cell-specific monoclonal antibodies that identify the CR2/EBV receptor were examined for their ability to mimic the T-independent mitogenic agent, EBV, and thus activate human peripheral blood B lymphocytes. Two of four different anti-CR2/EBV monoclonal antibodies, OKB7 and AB-1, produced a 50-fold to 200-fold dose-dependent stimulation of DNA synthesis of peripheral blood mononuclear cells. One of the other monoclonal antibodies, anti-B2, had slight activity, and the other, HB-5, was completely inactive. One of the mitogenic antibodies, OKB7, which directly inhibits binding and infection of B cells by EBV in the absence of a second anti-immunoglobulin antibody, was examined in further detail. Both the intact antibody in soluble form and its pepsin-derived F(ab')2 fragment stimulated DNA synthesis of unseparated B and T lymphocytes. Peak stimulation of DNA synthesis in peripheral blood mononuclear cells occurred between 4 to 6 days. B cells were responsible for incorporation of [3H]thymidine. However, T cells were required for activation of peripheral blood mononuclear cells by OKB7. OKB7, as well as the other mitogenic monoclonal anti-EBV/CR2 receptor antibody, also induced B cells to differentiate after 6 to 10 days of culture as indicated by polyclonal Ig secretion. IgM was the predominate immunoglobulin secreted. These studies thus indicate that certain epitopes on the EBV/CR2 receptor trigger B cells to divide and differentiate. This pathway of B cell activation, in contrast to that produced by EBV, is T cell dependent.  相似文献   

3.
In pursuing studies on the early events in the infection of human B cells by Epstein-Barr virus (EBV), we examined the host cell attachment phase with a panel of B-cell-specific monoclonal antibodies. One of the monoclonal antibodies, OKB7, directly blocked the attachment of purified EBV to B lymphocytes in the absence of a second anti-immunoglobulin antibody and thereby prevented EBV infection of tonsil and peripheral blood B cells. Although earlier studies have shown a close association of the EBV and complement receptor (CR2), an anti-CR2 monoclonal antibody, anti-B2, did not directly block the binding of EBV to B cells. A comparison of the structures recognized by these monoclonal antibodies on various cell types and their functional and physiochemical properties was undertaken. Flow cytometric analysis revealed that the molecules detected by OKB7 and anti-B2 were coexpressed to the same extent on B cells but were not expressed on T-cell lines. OKB7 and anti-B2 both immunoprecipitated a 145,000-molecular-weight membrane protein with an isoelectric point of 8.2 from membrane extracts of Raji lymphoblastoid cells. OKB7 and, to a lesser extent, anti-B2 directly blocked the attachment of C3d,g-coated fluorescent microspheres and sheep erythrocytes bearing C3d to B cells, indicating that these antibodies also react with CR2. These studies indicate that the EBV-CR2 receptor is a single membrane glycoprotein which possesses multiple antigenic and functional epitopes.  相似文献   

4.
The 145-kDa molecule that has been identified as the C3d receptor CR2 was isolated from lysates of Raji cells by affinity chromatography by using the monoclonal antibody (MoAb)HB-5. The purified protein was incorporated into 14C-phosphatidylcholine liposomes by deoxycholate dialysis followed by flotation on discontinuous sucrose gradients. Incorporation of the receptor was verified by testing the gradient fractions for CR2 by an enzyme-linked immunosorbent assay. Liposomes were shown to be unilamellar vesicles ranging in diameter from 25 to 100 nm by electron microscopy. The external orientation of CR2 in the membranes was demonstrated by immunoelectron microscopy. The functional activities of liposomes containing CR2 and liposomes without protein were compared. CR2 liposomes bound to EC3d, but not to E, and this binding was inhibited by the anti-CR2 MoAb OKB7 and by a MoAb specific for C3d. Control liposomes failed to bind to either E or EC3d. The ability of CR2 to function as a receptor for Epstein Barr virus (EBV) was tested in two ways. First, CR2 liposomes bound to B95-8, a cell line expressing EBV membrane antigens, but not to B95-8 cells treated with the viral DNA polymerase inhibitor phosphonoformic acid. Second, liposomes containing CR2 were shown by ultracentrifugal analyses to bind directly to purified EBV, and this binding was also inhibited by OKB7. Control liposomes did not bind to B95-8 cells or to EBV. These findings show that CR2 purified from detergent extracts of Raji cells can be reconstituted into lipid membranes with maintenance of its dual functions as a receptor for C3d and EBV.  相似文献   

5.
The major Epstein-Barr virus (EBV) envelope glycoprotein, gp350, was purified from the B95-8 cell line and analyzed for its ability to mediate virus attachment to the isolated EBV/C3d receptor (CR2) of human B lymphocytes. Purified gp350 and EBV, but not cytomegalovirus, exhibited dose-dependent binding to purified CR2 in dot blot immunoassays. Binding was inhibited by certain monoclonal antibodies to CR2 and to gp350. Liposomes bearing incorporated gp350 bound to CR2-positive B-cell lines but not to CR2-negative lines. Liposome binding was also inhibited by the OKB7 anti-CR2 monoclonal antibody. A computer-generated comparison of the deduced gp350 amino acid sequence with that of the human C3d complement fragment revealed two regions of significant primary sequence homology, a finding which suggests that a common region on these two unrelated proteins may be involved in CR2 binding.  相似文献   

6.
A number of studies have indicated that the complement receptor type 2 (CR2), which is the receptor for C3d, a degradation fragment of the complement component C3, regulates B lymphocyte activation and growth. Early reports have described that C3 regulates T cell-dependent (TD) antibody responses. The involvement of CR2 in the antibody response to T cell-independent type 2(TI-2) antigens was investigated because neonatal B cells, which are unresponsive to TI-2 antigens both in vivo and in vitro, express a significantly decreased level of CR2 as compared to B cells of adult donors. We utilized type 4 pneumococcal polysaccharide (PS4) as a model TI-2 antigen. In order to study the relationship between CR2 and the response to PS4, B cells were costimulated with PS4 and monoclonal antibodies (MAb) to CR2. HB5 and OKB7 anti-CR2 monoclonal antibodies enhanced the in vitro response of adult B cells to PS4, as measured in a PS4-specific spot-forming cell assay. Neonatal B cells could only be induced to respond to PS4 using high concentrations of OKB7 anti-CR2 MAb. The 8-mercaptoguanosine (8MGuo), an agent that can overcome the in vitro unresponsiveness to PS4 of neonatal B cells, increased CR2 expression on adult and neonatal B cells. Furthermore, 8MGuo synergizes strongly with anti-CR2 antibodies in augmenting the anti-PS4 antibody response. Data presented in this report provide evidence of CR2 involvement in the antibody response to PS4 and that the neonatal B cell unresponsiveness to TI-2 antigens may be due to the decreased expression of CR2.  相似文献   

7.
The predicted amino acid sequence of human complement receptor 2 (CR2, CD21, C3d,g/Epstein-Barr virus receptor) and its genetic murine homologue are approximately 70% identical. The sequence of each consists of a linear array of 60-70 amino acid repeats designated short consensus repeats (SCRs). Although they share significant sequence identity, a major difference in the activities of these two proteins has been believed to be the ability of human, but not mouse, CR2 to mediate Epstein-Barr virus (EBV) infection of B lymphocytes. In order to formally address this question and to directly compare the activities of the CR2 protein of each species, we have expressed recombinant mouse CR2 (rMCR2) in a human K562 erythroleukemia cell line background. We have found that rMCR2 reacts with two previously described rat anti-MCR2 monoclonal antibodies (mAbs), 7G6 and 7E9, but not mAb 8C12, which recognizes only mouse complement receptor 1. rMCR2 rosettes with erythrocytes bearing mouse and human C3d,g and binds glutaraldehyde cross-linked human C3d,g with a similar Kd as human CR2 (HCR2). rMCR2 does not bind EBV. By using this observation and constructing chimeras bearing portions of MCR2 on a HCR2 background, we have been able to define unique sequences in HCR2 SCRs 1 and 2 important in the interaction with both mAb OKB7, which blocks EBV binding and infection, and with EBV. In addition, by using blocking peptides derived from HCR2 sequence, we have identified a second distinct region in SCR2 important in EBV binding. Therefore, within the first two SCRs of HCR2 are multiple distinct sites of interaction with EBV and with mAb OKB7.  相似文献   

8.
CR2 ligands modulate human B cell activation   总被引:12,自引:0,他引:12  
A considerable body of evidence from this and other laboratories indicates that complement receptor type 2 (CR2) modulates B cell activation and growth. In the present studies we have examined the effects of three different types of CR2 ligands, i.e., monomeric, aggregated, and latex-bound C3dg; mAb to different CR2 epitopes; and UV-inactivated, non-transforming EBV (EBVUV) for their actions on highly purified, high density resting tonsil B cells. Although none of these ligands induced B cells to enter the cell cycle or synergized with either anti-mu or low m.w. B cell growth factor in triggering B cell mitogenesis, aggregated C3dg, latex-bound C3dg, the OKB7 anti-CR2 mAb, and EBVUV-enhanced thymidine incorporation by phorbol ester-activated tonsil B cells. Such enhancement was not T cell or monocyte dependent. The major action of the CR2 ligands thus seems to be to enhance the transition of B cells activated by certain stimuli from the G1 to the S phase of the cell cycle. In contrast to the action of aggregated and latex-bound C3dg, monomeric C3dg was inhibitory for phorbol ester and aggregated C3dg-induced B cell activation. The HB-5 anti-CR2 mAb, which reacts with a different epitope on CR2 from that of OKB7, did not synergize with PMA in B cell activation. These data provide additional evidence for a role for the CR2 in the control of B cell growth and provide a useful model for studying the CR2-mediated signals that affect the growth of B cells.  相似文献   

9.
The effect of ligand interactions with the C3d/C3dg complement receptor (CR2) on proliferation of human B lymphoblastoid cells was investigated by using cell cultures performed at low density (1 to 1.5 x 10(3) cells/ml) in a serum-free defined medium to which only transferrin had been added. This medium does not allow proliferation of Raji cells which die within 48 hr with formation of polykaryons. Addition of purified human C3 to the cultures resulted in a dose-dependent proliferation of the cells. A steady growth of Raji cells with a doubling time of 36 hr was observed in cultures containing 10 micrograms/ml of C3. A growth rate similar to that observed in the presence of native C3 was found in the presence of equimolar concentrations of purified C3dg but not of C3c. F(ab')2 anti-C3d but not F(ab')2 anti-C3c antibodies inhibited the mitogenic effect of C3. Preincubation of Raji cells with monoclonal antibody OKB7 which directly inhibits the binding of C3dg to CR2, totally suppressed C3-induced growth of the cells. C3 did not enhance growth of the T lymphoma-derived cell line JM and monocytic cell line U937 which do not express CR2. These results provide direct evidence that the interaction between CR2 and C3 fragments stimulates proliferation of human cells of the B lineage. Because CR2 also acts as a receptor for Epstein-Barr virus on B cells, our results may pertain to the B cell mitogenic properties of the virus.  相似文献   

10.
We transfected human complement receptor 2 (CR2/CD21) cDNA containing eukaryotic expression constructs into CR2-negative mouse L cells and human K562 erythroleukemia cells. We subsequently selected stably transformed cells that expressed human CR2, as assessed by flow microfluorimetry analysis and immunoprecipitation of 125I-labeled surface membranes using the monoclonal anti-CR2 antibody, HB5. Utilizing flow microfluorimetry analysis, epitopes recognized by anti-CR2 mAb HB5, OKB7, B2, and four other anti-CR2 antibodies were detected on CR2 expressing transfectants but not parental cells. In addition, CR2 expressing transfected cells efficiently formed rosettes with sheep erythrocyte intermediates bearing human C3bi and C3d, but not C4b or C3b, consistent with the known ligand specificity of CR2. CR2 containing transfectants were also demonstrated to specifically bind EBV. Infection with EBV of CR2 expressing L cells and K562 cells resulted in mean expression of Epstein-Barr nuclear Ag (EBNA) at 48 h in 0.35% of CR2 expressing L cells and 3.7% of CR2 expressing K562 cells. Parental L cells and K562 cells did not express EBNA after EBV infection. These results indicate that CR2 alone is sufficient to transfer both C and EBV receptor functions to heterologous cells. In addition, expression of EBNA was found to be significantly higher in human K562 than mouse L cells, both expressing the same recombinant receptor. These results suggest that mechanisms other than CR2 binding lead to inefficient EBV infection and/or EBNA synthesis in mouse fibroblasts.  相似文献   

11.
Epstein-Barr virus (EBV) was purified and biotinylated without significant loss of its cell-transforming activity. The use of biotinylated virus in conjunction with antibodies specific for selected cell surface molecules and flow cytometric analysis allowed for the positive identification of the virus-binding lymphocytes among a heterogeneous mononuclear cell population. Biotinylated EBV efficiently bound to all B lymphocytes, including those bearing surface mu, delta, gamma, and alpha immunoglobulin heavy chains or the surface CD5 (Leu-1) marker, but not to T lymphocytes, natural killer cells, or monocytes. By using biotinylated EBV and specific monoclonal antibodies in competitive inhibition experiments, it was also found that the virus attaches to an epitope on the CR2 molecule (the receptor for C3d and EBV), which is close to or identical with the one recognized by OKB7 monoclonal antibody, and that cell surface structures other than CR2 cannot mediate attachment of EBV. Moreover, studies on the binding of the virus to induced B lymphocytes (cells in S through G2 phase), and this was associated with the disappearance of the surface CR2 molecule and the inability of the virus to attach to these cells. The approach described here should be useful in studying the attachment of other viruses, identifying the specific cell types involved, and analyzing the effect of the cell cycle on virus binding.  相似文献   

12.
The properties of three distinct rat monoclonal antibodies, designated 3C7, 7D4, and 2E4, to the murine IL 2 receptor have been compared in binding, biochemical, and functional assays. 3C7 appears to define an epitope near or identical to the IL 2-binding site of the receptor, because 3C7 inhibited the binding of radiolabeled IL 2 to CTL-L cells and because unlabeled IL 2 inhibited the binding of FITC-3C7 to CTL-L cells. 7D4 and 2E4 had no effect on IL 2 binding. Competitive antibody-binding studies confirmed that the epitope seen by 3C7 was distinct from the epitope(s) seen by 7D4 and 2E4. Sequential immunoprecipitation studies demonstrated that all three antibodies were reactive with the same molecular species, and that each precipitated identical components of 20,000 to 25,000 daltons, 50,000 to 60,000 daltons, and 100,000 to 120,000 daltons from the surface of CTL-L. FACS studies demonstrated a quantitatively and qualitatively identical cell distribution for the antigen defined by each antibody. They failed to stain more than 95% of resting lymphocytes, but were strongly reactive with Con A T blasts and substantially less reactive with LPS B blasts. Unlabeled IL 2 was also able to inhibit the binding of FITC-3C7 to LPS B cell blasts, suggesting the presence of IL 2-binding sites on activated B cells. Each antibody inhibited IL 2-driven proliferation of HT2 or CTL-L cells. 3C7 and 7D4 were more potent inhibitors of proliferation than was 2E4, and the combined use of 3C7 and 7D4 resulted in greater levels of inhibition of proliferation than that shown from the use of either antibody alone. Collectively, the results support the hypothesis that these antibodies detect two distinct functional regions of the IL 2 receptor.  相似文献   

13.
Antibodies to receptor ligands have been valuable in understanding the nature of receptor-ligand interactions. We have developed four monoclonal antibodies to the beta-adrenergic receptor antagonist alprenolol by immunizing A/J mice with (-)-alprenolol coupled to keyhole limpet hemocyanin. The antisera from these mice displayed specific [3H]dihydroalprenolol ([3H]DHA) binding that was inhibited by alprenolol, propranolol, and isoproterenol. Somatic cell fusion of spleen cells from the immunized mice to SP2/0 myeloma cells, followed by limited dilution subcloning, resulted in the isolation of four hybridomas (1B7, 5B7, 5D9, and 2G9) demonstrating three different classes of ligand binding characteristics. 1B7 had the highest binding affinity for antagonists based on Scatchard analysis (Kd [125I]- CYP = 1.4 X 10(-10) M; Kd [3H]DHA = 6.5 X 10(-9) M), and was the only antibody to demonstrate agonist-inhibition of [3H]DHA binding. Ki values computed from competitive inhibition curves of [3H]DHA binding to 1B7 resulted in a rank order of potency similar to that of beta-2-adrenergic receptors: (-)-propranolol greater than acebutolol amine greater than isoproterenol greater than (+)-propranolol greater than epinephrine greater than norepinephrine. 5B7 and 5D9 exemplified a second class of antibody. This pair had lower antagonist binding affinities (Kd [3H]DHA = 2 X 10(-8) M and 2.5 X 10(-7) M, respectively) and was stereoselective in binding receptor antagonists: (-)-propranolol greater than (+)-propranolol greater than acebutolol amine. Agonist inhibition of [3H]DHA binding to these antibodies could only be observed at very high concentrations (greater than 10(-4) M agonist), and was not dose-dependent. Finally, the class of anti-alprenolol monoclonal antibodies represented by 2G9 had the lowest antagonist binding affinity of all (IC50 alprenolol = 1 X 10(-5) M), did not demonstrate ligand stereoselectivity, and did not recognize agonists. We propose that antibodies raised against beta-adrenergic receptor ligands demonstrating stereoselective agonist binding will also demonstrate high affinity antagonist binding, and that they will closely parallel the binding characteristics of the receptor. According to this "agonist best-fit hypothesis," anti-idiotypic antibodies raised against the binding site of these idiotypes might contain true mirror images of the beta-adrenergic receptor binding site.  相似文献   

14.
Four monoclonal antibodies, designated 4H11, 6E10, 2C5, and 3E9 were prepared against partially purified rat hepatic glucagon receptor. These antibodies were characterized by their ability to recognize the glucagon receptor in target tissues using immunoblot and immunoprecipitation procedures. The antibodies recognized a 62-kDa receptor band in rat liver, kidney, and adipose tissue but not in lung, adrenals, and erythrocytes, indicating a high degree of specificity. These antibodies recognize different antigenic determinants; the 6E10 and 2C5 bind protein epitopes, while 4H11 and 3E9 bind carbohydrate epitopes. Furthermore, proteolytic mapping of the glucagon receptor established that monoclonal antibodies 6E10 and 2C5 recognize different domains of the receptor molecule. These antibodies were used to study the immunochemical similarities among the receptors from different species and to assess the topological location of the ligand-binding site. By combining the techniques of affinity cross-linking, proteolytic mapping, and antibody binding, we have identified the location of the glucagon-binding site near to the COOH-terminal domain of the receptor.  相似文献   

15.
D G Sawutz  R Koury  C J Homcy 《Biochemistry》1987,26(17):5275-5282
We previously described the production of four monoclonal antibodies to the beta-adrenergic receptor antagonist alprenolol. One of these antibodies, 5B7 (IgG2a, kappa), was used to raise anti-idiotypic antisera in rabbits. In contrast to the expected results, one of the anti-idiotypic antisera (R9) promotes [125I]iodocyanopindolol (ICYP) binding to antibody 5B7. In the presence of R9, the dissociation constant decreases 100-fold from 20 to 0.3 nM. This increase in binding affinity of antibody 5B7 for ICYP is not observed in the presence of preimmune, rabbit anti-mouse or anti-idiotypic antisera generated to a monoclonal antibody of a different specificity. Furthermore, R9 in the absence of 5B7 does not bind ICYP. The F(ab) fragments of 5B7 and R9 behaved in a similar manner, and the soluble complex responsible for the high-affinity interaction with ICYP can be identified by gel filtration chromatography. The elution position of the complex is consistent with a 5B7 F(ab)-R9 F(ab) dimer, indicating that polyvalency is not responsible for the enhanced ligand binding. Kinetic analysis of ICYP-5B7 binding revealed that the rate of ICYP dissociation from 5B7 in the presence of R9 is approximately 100 times slower than in the absence of R9 [k-1(+R9) = 0.025 min-1 vs. k-1(-R9) = 2.04 min-1], consistent with the 100-fold change in binding affinity of 5B7 for ICYP. The available data best fit a model in which an anti-idiotypic antibody binds at or near the binding site of the idiotype participating in the formation of a hybrid ligand binding site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Human T and B lymphocyte subsets were characterized for ecto-5'-nucleotidase (ecto-5'-NT) expression by two-color immunofluorescence by using polyclonal goat antibodies to 5'-NT and murine monoclonal antibodies to T and B cell subsets. Anti-5'-NT antibodies were prepared by immunizing a goat with purified human placental 5'-NT. Lymphocyte surface 5'-NT was detected with F(ab')2 fragments of immune goat IgG followed by biotinylated F(ab')2 rabbit anti-goat IgG and fluorescein isothiocyanate-avidin. Lymphocyte cell surface antigens were detected with phycoerythrin (PE)-conjugated anti-CD3, anti-CD4, anti-CD8, anti-CD16, and anti-CD19. HB-4, an antigen present on a major subset of human peripheral blood B cells, was detected with murine monoclonal anti-HB-4 and PE-anti-mouse-kappa. Analysis showed that ecto-5'-NT was expressed on 32 +/- 7% of CD3+, 19 +/- 6% of CD4+, and 50 +/- 21% of CD8+ T cells, but not on CD16+ lymphocytes. Ecto-5'-NT was also expressed on 81 +/- 8% of adult peripheral blood B cells as defined by PE-anti-CD19; HB-4 was expressed on 84 +/- 7% of CD19+ cells. The two populations of B cells were not identical, however, because HB-4 was co-expressed on only 79 +/- 18% of ecto-5'-NT+ B cells. Two-color immunofluorescent staining of T cells from a patient with congenital agammaglobulinemia and low T cell ecto-5'-NT activity revealed reduced percentages of ecto-5'-NT+ cells in his CD3+, CD4+, and CD8+ populations. Thus, reduced ecto-5'-NT activity by enzyme assay was paralleled by reduced numbers of 5'-NT molecules on the cell surface. Two-color immunofluorescent staining of B cells from a patient with hypogammaglobulinemia and low B cell ecto-5'-NT activity also revealed markedly reduced expression of 5'-NT. HB-4 expression was normal, however, suggesting that the patient's B cells were blocked in maturation subsequent to the acquisition of HB-4 but prior to that of ecto-5'-NT. These results demonstrate that anti-5'-NT antibodies will be valuable tools for analyzing ecto-5'-NT expression and lymphocyte maturation in patients with immuno-deficiency diseases.  相似文献   

17.
Hepatitis A virus is an hepatotrophic human picornavirus which demonstrates little antigenic variability. To topologically map immunogenic sites on hepatitis A virus which elicit neutralizing antibodies, eight neutralizing monoclonal antibodies were evaluated in competition immunoassays employing radiolabeled monoclonal antibodies and HM-175 virus. Whereas two antibodies (K3-4C8 and K3-2F2) bound to intimately overlapping epitopes, the epitope bound by a third antibody (B5-B3) was distinctly different as evidenced by a lack of competition between antibodies for binding to the virus. The other five antibodies variably blocked the binding of both K3-4C8-K3-2F2 and B5-B3, suggesting that these epitopes are closely spaced and perhaps part of a single neutralization immunogenic site. Several combinations of monoclonal antibodies blocked the binding of polyclonal human convalescent antibody by greater than 96%, indicating that the neutralization epitopes bound by these antibodies are immunodominant in humans. Spontaneously arising HM-175 mutants were selected for resistance to monoclonal antibody-mediated neutralization. Fourteen clonally isolated mutants demonstrated substantial resistance to multiple monoclonal antibodies, including K3-4C8-K3-2F2 and B5-B3. In addition, 13 mutants demonstrated a 10-fold or greater reduction in neutraliztion mediated by polyclonal human antibody. Neutralization resistance was associated with reduced antibody binding. These results suggest that hepatitis A virus may differ from poliovirus in possessing a single, dominant neutralization immunogenic site and therefore may be a better candidate for synthetic peptide or antiidiotype vaccine development.  相似文献   

18.
Interferon alpha contains a sequence motif similar to the complement receptor type two (CR2/CD21) binding site on complement fragment C3d. Antibodies against a peptide with the CR2 binding sequence on C3d react with a peptide carrying the IFN alpha CR2 binding motif (residues 92-99) and with recombinant IFN alpha. The IFN alpha-derived peptide, as well as recombinant IFN alpha, inhibits C3bi/C3d interaction with CR2 on the Burkitt lymphoma Raji. The direct interaction of IFN alpha and CR2 is inhibited by polyclonal anti-IFN alpha, anti-CR2 and anti-C3d peptide antibodies as well as by C3bi/C3d, EBV coat protein gp350/220 and IFN but not by IFN gamma. [125I]IFN alpha binding to Raji cells is inhibited by polyclonal anti-IFN alpha and anti-CR2 antibodies, by peptides with the CR2 binding motif and partially by C3bi/C3d. Monoclonal anti-CR2 antibody HB5, but not OKB-7, blocks IFN alpha binding to Raji cells. CR2 or CR2-like molecules may therefore be the major IFN alpha receptors on B lymphocytes.  相似文献   

19.
We have investigated the expression, molecular association, ligand binding properties, and ability to transduce intracellular signals of CR1 and CR2 C3 receptors on cells of the human HPB-ALL T cell line. CR1 and CR2 on HPB-ALL cells bound polymeric C3b and C3dg and several anti-CR1 and anti-CR2 mAb recognizing different epitopes of the receptors on normal peripheral blood cells. Immunoprecipitated CR1 and CR2 exhibited similar m.w. to those of the receptors on normal peripheral blood T and B lymphocytes. CR1 and CR2 were partially associated in the form of CR1/CR2 complexes in the cell membrane as assessed by the ability of the receptors to cocap and cointernalize and to form a detergent-sensitive complex upon immunoprecipitation analysis. Triggering of CR2 with mAb OKB7 that recognizes an epitope associated with the ligand binding site of the receptor induced an increase in intracellular free calcium concentration in HPB-ALL cells. The signal provided by mAb OKB7 did not synergize with that triggered by anti-CD3 mAb UCHT1. Triggering of CR1 did not result in changes in intracellular free calcium concentration. Our observations have significance for the biology of normal human T cells because the majority of peripheral blood T cells that express CR1 also expressed CR2 and because a change in (Ca2+)i was induced by mAb OKB7 in purified normal T cells. These functions may be relevant for the regulatory role of C3 fragments on the immune response to T-dependent Ag and for the penetration into T cells of lymphocytotropic viruses.  相似文献   

20.
Receptors for C3 degradation fragments (CR1, CR2, and CR3) are present on many human cells including phagocytes and lymphoid cells and may be critical in the attachment of invading microorganisms. In these studies Candida were found to mimic the human CR by binding erythrocytes coated with specific human C3 fragments. Yeast forms of Candida species were adhered to glass slides and were allowed to germinate. Sheep erythrocytes (E) were coated with IgM (EA) and human complement components to prepare EA, EAC14, EAC3b, EAC3bi, and EAC3d. These test cells were then examined for adherence to the organism. Antibodies to human CR1, CR2, and CR3 were used to evaluate their potential for blocking adherence of the test erythrocytes to Candida. Fluorescein-labeled antibodies to human complement receptors were also used to characterize the binding sites. EAC3bi and EAC3d, but not E, EA, or EAC14, bound extensively to the germ tubes and pseudohyphae of Candida albicans and C. stellatoidea. EAC3b bound infrequently. Other Candida species, generally considered less pathogenic, bound significantly fewer specific test erythrocytes than C. albicans. Monoclonal antibodies to human CR1 and CR3 (3D9, 1B4, C511, 2B6, anti-B2, Mo1, and anti-Mac-1), in general, did not block adherence of test erythrocytes. Blocking of adherence of EAC3bi and EAC3d test erythrocytes coated with small quantities of C3 fragments occurred with high concentrations of monoclonal (anti-CR2) HB-5 and polyclonal (anti-CR2) anti-GP 140. Immunofluorescence studies demonstrated binding of Mo-1 to the germinated forms of the organism, whereas binding of the other antibodies was not seen. These studies suggest a surface constituent on the organism similar to CR on human cells. Additional studies are necessary to further define the molecular nature of the binding site. The ability of organisms to mimic human CR may be more generalized than previously known and may serve as a mechanism for modification of the inflammatory and immune response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号