首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fine structure of silk fibroin   总被引:1,自引:1,他引:0       下载免费PDF全文
The fine structure of Bombyx mori silk fibroin was investigated by electron microscopy and X-ray diffraction techniques. Examination of silk fibers fragmented with ultrasonic radiation and negatively stained revealed the presence of ribbon-like filaments of well-defined lateral dimensions. Analysis of the breadths of the equatorial reflections in the X-ray diffraction pattern of fibroin yielded similar dimensions for the lateral extent of the crystallites. It is concluded that the crystalline material in B. mori silk fibroin is in the form of ribbon-like filaments of considerable length parallel to the fiber axis and of lateral dimensions approximately 20 x 60 A.  相似文献   

2.
Studies of crystallinity of Scots pine and Norway spruce cellulose   总被引:3,自引:0,他引:3  
The variation in the mass fraction of crystalline cellulose (crystallinity of wood), the intrinsic crystallinity of cellulose, and the thickness of cellulose crystallites in early wood of Norway spruce [Picea abies (L.) Karst.], and Scots pine (Pinus sylvestris L.) grown in Finland were studied using wide angle X-ray scattering and nuclear magnetic resonance spectroscopy. The mass fraction of crystalline cellulose in wood increased slightly with the distance from the pith and was about 30±4% in mature wood of both species. The crystallinity of cellulose and the thickness of cellulose crystallites were almost constant for both species. The crystallinity of cellulose was 52±3% for both species and the average thickness of the cellulose crystallites was 32±1 Å and 31±1 Å for Norway spruce and Scots pine, respectively. The mass fraction of cellulose in wood, calculated from the crystallinity values, increased with the distance from the pith for both species.  相似文献   

3.
Calcified leg flexor tendons in which the inorganic phase content had been lowered by progressive demineralization were studied by small angle X-ray diffraction and thermogravimetry. The X-ray diffraction results agree very well with the data previously obtained on calcified turkey tendon indicating that the method used to decalcify tendons provides good correspondence with the process of calcification. Up to five thermal processes can be detected in the thermogravimetric scans: (1) water release; (2) collagen decomposition; (3 and 4) combustion of the residual organic components; (5) carbonate removal from the apatitic phase. The temperature of collagen decomposition decreases at lower inorganic phase content in agreement with the higher thermal stability of calcified collagen fibrils compared with uncalcified ones. The decrease of collagen thermal stability upon decalification is paralleled by a decrease of the structural order of the collagen fibrils as indicated by small angle X-ray diffraction data. Decalcification down to about 40% wt of inorganic phase does not significantly alter the inorganic blocks that are regularly arranged inside the gap zone of the collagen. Further removal of inorganic phase down to about 15% wt provokes a variation of the intensity distribution of the small angle meridional reflections that can be ascribed to a reduction of the mean height of the inorganic blocks. At inorganic phase contents below 15% wt the gap region is more free to contract upon air drying as a result of the reduction of the mean length of the inorganic blocks.  相似文献   

4.
Summary The cell wall protein fromAcetabularia has a non-random structure in aqueous solution at pH 5.3, as determined on the basis of intrinsic viscosity, sedimentation velocity and small angle X-ray scattering experiments. This non-random structure is stable in a pH range of 4.5–6.8, as observed on the basis of circular dichroism and viscosity measurements, supporting that the cell wall protein has a specific folded structure. All hydrodynamic measurements, including small angle X-ray scattering in solution, in this pH range are consistent with a prolate ellipsoid model for the shape of this protein, with overall dimensions ofc=86.0 Å,b=7.0 Å, anda=7.5 Å, and with a radius of gyration ofR=39.5 Å. The possibility of a coiled shape was investigated using a worm-like chain model, but it was inconsistent with the experimental data. Instead, a filled particle with uniform density which is equivalent in the scattering behavior is proposed. By a comparison of the observed radius of gyration, Rg=39.5 Å, and the radius of gyration of the cross section,R c =7.5 Å, we were able to describe the cell wall protein in terms of a prolate ellipsoid of revolution. Comparisons of the experimental scattering curve, plotted as logl (h) versus logh, with the corresponding plots of normalized intensities, calculated for particles of particular shape and various axial ratios indicate a very asymmetric shape for the cell wall protein fromAcetabularia.This research was supported by a grant of the Deutsche Forschungsgemeinschaft.  相似文献   

5.
The complex formation between iron(III) and bromide has been studied calorimetrically in N,N′-dimethylpropyleneurea (DMPU), and the structure of the DMPU solvated tribromoiron(III) complex has been studied in solution by extended X-ray absorption fine structure (EXAFS) and large angle X-ray scattering (LAXS), and in solid state by EXAFS and single crystal X-ray diffraction. The calorimetric study showed that iron(III) forms three medium strong bromide complexes in DMPU, and the thermodynamic pattern strongly indicates that all complexes are formed in entropy driven substitution reactions. In DMPU solution, the tribromoiron(III) complex has a regular trigonal planar configuration with a mean Fe-Br bond distance of 2.36 Å, and without any solvent molecules strongly bound to iron(III). In the solid state, however, the structure is a slightly distorted trigonal bipyramid, with one short and two slightly longer Fe-Br bonds, 2.37 and 2.44 Å, respectively, in a somewhat distorted trigonal plane, and two DMPU solvent molecules (mean Fe-O bond distance 1.98 Å) in the apical positions. The DMPU solution of iron(III) bromide and the [FeBr3(dmpu)2] crystals are both blackish red.  相似文献   

6.
Structural study of the calcifying collagen in turkey leg tendons   总被引:4,自引:0,他引:4  
The calcified turkey leg tendon represents a simple bone-like tissue that is ideally suited to analysis by diffraction methods. In this paper we report some structural studies of the tendon collagen in the uncalcified, fully calcified and partially calcified states. The low-angle meridional X-ray pattern from the uncalcified tendon is very similar to that of the rat tail tendon, and the resulting one-dimensional structure of the collagen fibril exhibits no feature that could be related to its eventual calcification. The structure of the fully calcified tendon, as determined by a combination of X-ray and neutron diffraction analyses, shows that the mineral is associated with the collagen at the level of the hole or gap region. In the calcifying tendon, increases in the amplitudes of the first and second X-ray meridional reflections are correlated with an increase in the mineral content of the collagen. On the basis of simple models, it is shown that this change in the pattern can be explained by a nucleation mechanism of calcification. It is concluded that when collagen becomes calcified the mineral penetrates throughout the fibril and is crystalline in the hole region but amorphous between the collagen molecules. The mechanism of calcification and the mechanical implications of the fully calcified structure are also discussed.  相似文献   

7.
The low angle X-ray diffraction pattern from corneal stroma can be interpreted as arising from the equivalent of sharp meridional reflections due to the packing of molecules along the collagen fibrils and an equatorial pattern due to the packing of these fibrils within lamellae.Axial electron density profiles for corneal collagen fibrils have been produced by combining intensity data from the meridional pattern with two independent sets of phases. The first set was obtained using an electron microscopical technique, whereas the second set consisted of calculated tendon collagen phases given in the literature. Substantial agreement between the two electron density profiles was found.A quantitative analysis of the difference between the electron density profiles of rat tail tendon and corneal collagen showed that the step between the gap and overlap regions is smaller in cornea than in tendon. This is probably due to the binding of non-collagenous material in the gap region as occurs in bone and other tissue. Two peaks corresponding to regions where electron density is greater in the cornea are situated at the gap/overlap junctions. A third region where the corneal collagen is more electron dense is located near the centre of the gap region. The proximity of these peaks to the positions of hydroxylysine residues along the fibril axis suggests that they may be the major sites at which sugars are bound to corneal collagen.  相似文献   

8.
We report here the existence of a crystalline molecular packing of type II collagen in the fibrils of the lamprey notochord sheath. This is the first finding of a crystalline structure in any collagen other than type I.The lamprey notochord sheath has a composition similar to that of cartilage, with type II collagen, a minor collagen component with 1α, 2α and 3α chains, and cartilage-like proteoglycan. The high degree of orientation of fibrils in the notochord makes it possible to use X-ray diffraction to determine collagen fibril organization in this type II-containing tissue. The low angle equatorial scattering shows the fibrils are all about 17 nm in diameter and have an average center-to-center separation of 31 nm. These results are supported by electron microscope observations. A set of broad equatorial diffraction maxima at higher angles represents the sampling of the collagen molecular transform by a limited crystalline lattice, extending over a lateral dimension close to the diameter of one fibril. This indicates that each 17 nm fibril contains a crystalline array of molecules and, although a unit cell is difficult to determine because of the broad overlapping reflections, it is clear that the quasi-hexagonal triclinic unit cell of type I collagen in rat tail tendon is not consistent with the data. The meridional diffraction pattern showed 26 orders with the characteristic 67 nm periodicity found for tendon. However, the intensities of these reflections differ markedly from those found for tendon and cannot be explained by an unmodified gap/ overlap model within each 67 nm period. Both X-ray diffraction and electron microscope data indicate a low degree of contrast along the fibril axis and are consistent with a periodic binding of a non-collagenous component in such a way as to obscure the gap region.  相似文献   

9.
The present study describes the phenomenon of calciphylaxis, rapid calcification due to treatment with sensitizer dihydrotachysterol (DHT) and challenging agent 5-hydroxytryptamine (5-HT) in the rat submandibular gland (SMG) in terms of light and electron microscopy, and histochemistry. For biophysical analysis of the calcified bodies, X-ray microanalysis (XMA) and X-ray powdered diffraction methods were used. The calcified lesions in the salivary glands were histologically divided into 3 types: type 1, calcification of basal membranes in duct-like structures; type 2, granular calcified materials with remarkable necrotic changes in cell, containing 3 kinds of small vesicular structures observed in electron microscopy; and type 3, von Kossa's positive structures containing needle-like crystalline and electron-dense amorphous materials. Con A and UEA-1 lectin staining reactions were strong in the type 1 and 2 lesions. These findings suggest that the calcification matrix may contain mannose, fucose and glucose. The X-ray microanalysis of calcified materials revealed the magnesium whitelockite pattern, the type 3 displayed high quantities of Ca, P, and Mg ions comparing with the type 1 and 2, and the X-ray diffraction showed the hydroxyapatite pattern. We suggest that the above changes may be categorized as dystrophic calcification due to necrotic alterations brought about by the hypercalcaemic condition.  相似文献   

10.
Summary We have studied the main thermal transition in dipalmitoyl phosphatidylcholine (DPPC) multilayers and a similar transition in small (300 Å diameter), single-walled vesicles by X-ray diffraction. As judged by the large-angle diffraction, the transition in the multilayers is narrow; aside from small tails, the transition occurs over a range of 0.5°C. In contrast, the transition in the vesicles is quite broad; the range is about 7°C. These observations are in agreement with recently published data.Referring to the small vesicles below the thermal transition, a bilayer structure in which the C16 chains are all straight and pointed radially is inconsistent with the large-angle diffraction. Assuming instead that the chains are packed in a regular, planar array, it is clear from their small size that the vesicles can have only limited regions of planar packing. The X-ray data indicate that the planar regions are 75 Å across on the average. In view of the 75-Å size and the average vesicle diameter of about 300 Å, we propose that the small vesicles are faceted below the transition, i.e., that the vesicles are polygonal. The small-angle diffraction pattern from the vesicles below the transition provides support for the faceted structure.  相似文献   

11.
Summary The ultrastructure of Drosophila melanogaster cytoplasmic ribosomal subunits and monomers have been examined by electron microscopy. The Drosophila ribosomal structures are compared to those determined for other eucaryotes and E. coli. Negatively contrasted images of 60S subunits are seen in the most frequent view to be approximately round particles about 280 Å in diameter. About 35% of the particles present a single prominent projection which we call the 60S peak. The peak emanates from a flattened region of the 60S subunit. The maximum observed length of the 60S peak is approximately 90Å. The Drosophila 60S peak is highly reminiscent of the E. coli L7/L12 stalk. The Drosophila 40S subunit is an elongated, slightly bent particle which measures 280×170×160 Å. It bears a strong resemblance to small ribosomal subunits of other eucaryotes and is strikingly similar to the E. coli 30S subunit. Micrographs of 80S monomeric ribosomes show the long axis of the 40S to be parallel and in apparent contact with the flattened region of 60S subunit. The 60S peak appears to bisect the long axis of the 40S subunit. The 40S subunit seems to be oriented in the monomeric ribosome so that the 40S projection is toward the body of the large subunit. Comparison of our data with similar studies in different organisms indicates that the eucaryotic large ribosomal subunits exhibit morphological heterogeneity while the small subunits remain remarkably similar.  相似文献   

12.
The crystal structure as well as the microstructure, i.e., size and strain, of crystallites of cholesteryl oleyl carbonate was determined from X-ray powder diffraction data. The X-ray line broadening was analyzed through the refinement of TCH-pseudo-Voigt function parameters (isotropic effects) and the refinement of multipolar functions, i.e., symmetrized cubic harmonics (anisotropic effects). The crystal structure turns out to be primitive monoclinic, space group Pc, type I monolayer having two molecules per unit cell with parameters: a = 18.921 ± 0.006 Å, b = 12.952 ± 0.003 Å, c = 9.276 ± 0.002 Å and β = 91.32 ± 0.03°. The average size of a well ground specimen of crystallites was 60 nm. The average micro-strain, e.g., 45 × 10−4 has been tentatively attributed to fatty chain conformational disorder. The unit cell parameters, including the lamellar thickness, of COC crystal is very closely similar to those of another, structurally similar cholesterol ester, e.g., cholesteryl oleate (CO) crystal, space group P21, type II monolayer. Type I monolayer structure has been established for COC on the basis of the intensity calculations of the XRD profiles of both CO and COC. The dipolar and structural disorder in a 4:1 molar, binary mixture of CO and COC can be accommodated in an induced smectic phase with a lamellar thickness, which is nearly equal to that of pure CO or pure COC.  相似文献   

13.
Summary Whole-mount preparations of the submucosa were made from the small intestine of rats, guinea-pigs, rabbits and sheep. In the distended intestine the collagen fibres ran straight and approximately parallel to the serosal surface. They formed a characteristic lattice, with two arrays of fibres running diagonally in a clockwise and an anticlockwise direction, and making an angle of 50°–55° with the longitudinal axis of the intestine. This collagenfibre lattice was flexible and changed with the movements of the intestinal wall; when the radial distension predominated, the angle between collagen fibres of the submucosa and longitudinal axis of the intestine increased to 60°–65°, and when the longitudinal distension predominated the angle decreased to about 30°.  相似文献   

14.
The crystallographic microstructure of Meretrix lusoria shells was investigated using scanning electron microscopy (SEM), X-ray diffractometry (XRD), and transmission electron microscopy (TEM). Crystallite sizes were determined by XRD analysis as 72 nm, which was quite similar to the 70 nm as measured by SEM. The shell comprised aggregates of hexagonal plates of aragonite (500 nm wide, 70 nm high) and organic matter. These plates were fourth-order units of an aragonitic crossed order lamellar structure. Subsequent TEM images showed the hexagonal plates’ nanostructure. The electron diffraction pattern of the fourth-order units revealed a consistent orientation of the hexagonal plates. The fourth-order lamellae (hexagonal crystallites) were piled up in the [0 0 1] direction to produce slender prisms (third-order lamellae), arranged mutually parallel, thereby forming a broad tablet (second-order lamellae). The second-order lamellae were piled up in different directions to form the first-order lamellae. The orientation level obtained from XRD and SEM images showed that the crossed lamellar layer was piled up curvilinearly, forming semi-circular growth lines. X-ray diffraction patterns of the cross-sections of the middle layer (vertical and parallel to the growth line) showed that the c axes of aragonite have a disposition of about 20° to the growth direction.  相似文献   

15.
The structure and distribution of collagen fibres in Metridium senile mesoglea has been investigated using high and small angle X-ray diffraction techniques on conventional and synchrotron sources. The mesoglea collagen axial spacing appears very close to that of rat tail tendon, which is at variance with the values previously obtained from electron microscopic observations. The different intensity distribution of the small angle X-ray diffraction maxima recorded for mesoglea and rat tail tendon indicates a different distribution of electron density inside the repeating period. Furthermore the absence of the first order, the weak second order and the strong third and sixth orders in the patterns of wet and dry mesogleal collagen could explain that only a periodicity of 20–22 nm corresponding to one-third of the true axial period observed in the electron micrographs. The analysis of the reflections at 0.29 and 1.1–1.4 nm characteristics of the collagen molecular structure have been used to determine the distribution and orientation of the collagen fibres in unstretched and stretched samples  相似文献   

16.
The structure of thin, vapor-deposited carbon films was characterized by transmission electron microscopy and electron diffraction. Selected area electron diffraction showed very weak and broad peaks, indicating that these carbons contain extremely small crystallites whose dimension in the crystallographic c-direction is about 8 to 10 a. The observed diffraction bands are (h, k, 1 = 0) type reflections, which suggests that individual crystallites consist of graphitic layer planes stacked in parallel groups but with no order between atoms in adjacent planes (turbostratic). The carbon films exhibit no preferred orientation, indicating that the small crystallites are randomly oriented in the film and that the films are therefore isotropic. The measured density (1.8 g/cm3) and the structure of the vapor-deposited carbons are accordingly similar to those of low-temperature isotropic (LTI) pyrolytic carbons.  相似文献   

17.
The wide angle X-ray diffraction pattern of air-dried lens capsule collagen under tension is the same as the tendon collagen diffraction pattern with regard to the main reflections, and indicates that lens capsule collagen has the characteristic three-stranded helical structure with an axial repeat of 0.29 nm as tendon collagen. The low angle X-ray diffraction pattern shows several weak diffraction maxima corresponding to the meridional reflections of capsule collagen which show orders of 63.0 nm periodicity. This is an evidence of quarter staggered molecular assembly typical of tendon collagen even if less ordered. The results are consistent with the existence in lens capsule collagen of clearly defined molecular units, which can be oriented by stress and are packed in a poor-ordered fibrillar assembly.  相似文献   

18.
The structure of the N,N-dimethylthioformamide (DMTF) solvated gallium(III) ion has been determined in solution by means of extended X-ray absorption fine structure (EXAFS) spectroscopy. The gallium(III) ion is four-coordinate in tetrahedral fashion with a mean Ga-S bond distance of 2.233(2) Å in DMTF solution. At the dissolution of indium(III) perchlorate or trifluoromethanesulfonate in DMTF coordinated solvent molecules are partly reduced to sulfide ions, and a tetrameric complex with the composition [In4S4(SHN(CH3)2)12]4+ is formed. The structure of the solid tetrameric complex in the perchlorate salt was solved with single crystal X-ray diffraction. Four indium(III) ions and four sulfide ions form a highly symmetric heterocubane structure where each indium binds three bridging sulfide ions and each sulfide ion binds three indium(III) ions with a mean In-S bond distance of 2.584(1) Å, and S-In-S angles of 90.3(1)°. Each indium(III) additionally binds three DMTF molecules at significantly longer mean In-S bond distance, 2.703(1) Å; the S-In-S angles are in the range 80.3-90.4°. Large angle X-ray scattering data on a DMTF solution of indium(III) trifluoromethanesulfonate show that the same tetrameric species characterized in the solid state is also present in solution, whereas the EXAFS measurements only give information about the In-S bond distances due to the short core hole lifetime.  相似文献   

19.
Low-angle X-ray diffraction shows that, despite the well-defined regular axially projected structure, there is no long-range lateral order in the packing of molecules in native (undried) or dried elastoidin spicules from the fin rays of the spurhound Squalus acanthias. The equatorial intensity distribution of the X-ray diffraction pattern from native elastoidin indicates a molecular diameter of 1.1 nm and a packing fraction for the structure projected on to a plane perpendicular to the spicule (fibril) axis of 0.31 (the value for tendon is much higher at around 0.6). Density measurements support this interpretation. When the spicule dries the packing fraction increases to 0.43 but there is still no long-range order in the structure. The X-ray diffraction patterns provide no convincing evidence for any microfibrils or subfibrils in elastoidin. Gel electrophoresis shows that the three chains in the elastoidin molecule are identical. The low packing fraction for collagen molecules in elastoidin explains the difference in appearance between electron micrographs of negatively stained elastoidin and tendon collagen. In elastoidin, but not in tendon collagen, an appreciable proportion of the stain is able to penetrate between the collagen molecules.  相似文献   

20.
The gas vesicles isolated from Anabaena flos-aquae have been studied by X-ray diffraction. Electron microscopy has previously shown that the gas vesicles are elongated shapes, with a thin wall having regular striations (ribs) at right-angles to the long axis. The X-ray diffraction pattern from a specimen of oriented, intact vesicles includes a number of sharp reflections which are attributed to regular structure in the plane of the wall. After correcting for the imperfect alignment of the long axes of the vesicles, the in-plane reflections are all seen to lie on a few, regularly spaced lines parallel to the long axis. This result shows for the first time that there are subunits regularly spaced along each rib, one subunit every 11 Å. The spacing of the in-plane reflections along each line is consistent with a rib periodicity of 46 Å. The 11 Å repeat, together with the 46 Å repeating distance from rib to rib and the average wall thickness of about 20 Å, define a volume for the subunit. Assuming a reasonable value for the density of the protein making up the wall, the molecular weight of the subunit indicated is about 8000 g/mol.The X-ray data also indicate that a large part of the protein is in the β-sheet conformation. In this structure there are parallel, or anti-parallel, polypeptide chains which are hydrogen-bonded to one another in a regular way to form a thin sheet. Assuming the wall contains β-sheet in two layers, one on top of the other and with the chains in each layer tilted at 35 ° to the long axis of the vesicle, we can explain a number of the X-ray observations: (1) oriented arcs with a Bragg spacing of 4.7 Å, which is the distance between the axes of neighbouring chains in each layer; (2) diffraction oriented in the direction of the chains at a spacing of 6 to 7 Å, which is the repeating distance of the dipeptide unit along the chain; (3) the 11 Å repeat, which is the repeating distance of pairs of chains along each rib; and (4) a broad band of diffraction at right-angles to the plane of the wall and centred at a spacing of 10 Å, which is a reasonable value for the distance between the mid-planes of the two sheets. Moreover, we can also find the remaining lattice parameter, the angle relating the centres of the subunits in neighbouring ribs. Thus the shortest line joining the centres makes an angle of 86 ° with the direction of the ribs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号