首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The lactogenic response of mouse mammary gland explants to human placental lactogen (hPL) and ovine pituitary prolactin (oPRL) was examined on days 10 to 18 of pregnancy by measuring3H-amino acid incorporation into calcium-rennin precipitable casein. To determine the lactogenic response of the explants, the mean slopes of dose-response curves were calculated for each hormone treatment. Slope means of dose-response curves for oPRL and hPL did not differ from each other on any day of pregnancy examined. A triphasic pattern of response was suggested when slope means of dose-response curves for both hormones were plotted as a function of day of gestation. Peak responses were observed on days 10, 13 and 17–18. Combinations of oPRL and hPL, in ratios of oPRL:hPL=2∶1 and oPRL:hPL=1∶2, also produced a triphasic pattern of sensitivity very similar to that produced by either hormone alone. These results suggest that mouse mammary explants may be more sensitive to oPRL and hPL on days 10, 13 and 17–18 of pregnancy. This work was supported by grants from the National Science Foundation (76-01928) and the National Institutes of Health (5 S06RR08132-0251) to F. Talamantes.  相似文献   

2.
Immunofluorescent localization of ovine placental lactogen   总被引:1,自引:0,他引:1  
Summary The localization of ovine placental lactogen (OPL) was studied using the immunofluorescence method. The placentome sections were treated by an indirect technique with anti-OPL antibodies obtained from rabbits injected with purified hormone. OPL was located in large cells of the monostratified epithelium of chorionic villi. These cells are mono- or binucleated and PAS-positive. The immunological reaction was inhibited by the specific antigen (OPL, 400g/ml undiluted anti-OPL antiserum) but not by ovine prolactin, bovine growth hormone, human placental lactogen nor by any other polypeptidic hormone tested. Reciprocally, the localization of OPL-secreting cells was unsuccessful with antibodies raised against these control hormones.  相似文献   

3.
Albumin has been reported to stimulate the release of placental lactogen and chorionic gonadotrophin from human term placental explants within physiological concentrations. This study aimed at characterizing further its effect on the placental hormonal secretion. The placental lactogen and chorionic gonadotrophin secretory response of incubated explants to 5% albumin was reproduced by colloidal agents, i.e., dextran (4.5%) and polygelin (4%), indicating that a rise in colloidal osmotic pressure can elicit hormonal release from the syncytiotrophoblast. Their secretory effects were not modified by the absence of extracellular calcium or the presence of verapamil in the medium. The three agents also provoked a marked increase in (45)calcium outflow from preloaded and perifused explants that persisted in absence of extracellular calcium. These data indicate that the triggering effect of albumin on placental lactogen and chorionic gonadotrophin release can be partly reproduced by colloidal agents and is independent of extracellular calcium.  相似文献   

4.
There are many growth factors secreted by placenta including growth hormone, placenta lactogen (PL), prolactin, follicle stimulating hormone, luteinizing hormone, thyroid stimulating hormone, and chorionic gonadotropin. For a systematic study of how these growth factors work together to result in the various biological functions and future clinical applications, it is needed to produce enough quantities of each protein. In this paper, we report the cloning of human PL (hPL) and expression by Escherichia coli (E. coli). Four kinds of expression vectors containing the hPL gene were transformed into several kinds of suitable host strains and grown at 37 and/or 30 degrees C. Determination of the yield of recombinant hPL by SDS-PAGE reveals that among the various conditions, pQE30-PL in E. coli strain M15[pREP4] expressed the largest amount of recombinant hPL at 37 degrees C. However, the expressed recombinant hPL was accumulated in inclusion body forms. The inclusion bodies were solubilized in 8M urea and purified by a His6 tagged affinity column under denaturing condition and the final yield of hPL was determined to be 48 mg/L. Intra-chain disulfide bonds could be formed either by oxidation in the refolding buffer or by air oxidation in the presence of urea. The biological activity was examined by the fact that hPL could stimulate erythroid maturation by the formation of hemoglobin in K-562 cells in the presence of erythropoietin. Initial optimization studies resulted in the production of 282.4 mg/L of hPL.  相似文献   

5.
Decline in fertility of high-producing dairy cattle has become a global challenge to the dairy industry. Because of low heritability and complexity, it is difficult to find genetic markers for fertility traits in cattle. Here, we report the use of an in vitro fertilization (IVF) system and candidate gene approach to test genetic associations of a single-nucleotide polymorphism (SNP) in bovine placental lactogen (bPL), and its interactions with SNPs in the prolactin receptor (PRLR) and growth hormone receptor genes with fertility traits in an IVF system. The associations suggest a possible involvement of genetic interactions between bPL and PRLR in the fertilization and embryonic development processes, and the potential for application in a marker-assisted selection program.  相似文献   

6.
The crystal structures of Klebsiella pneumoniae pullulanase and its complex with glucose (G1), maltose (G2), isomaltose (isoG2), maltotriose (G3), or maltotetraose (G4), have been refined at around 1.7-1.9A resolution by using a synchrotron radiation source at SPring-8. The refined models contained 920-1052 amino acid residues, 942-1212 water molecules, four or five calcium ions, and the bound sugar moieties. The enzyme is composed of five domains (N1, N2, N3, A, and C). The N1 domain was clearly visible only in the structure of the complex with G3 or G4. The N1 and N2 domains are characteristic of pullulanase, while the N3, A, and C domains have weak similarity with those of Pseudomonas isoamylase. The N1 domain was found to be a new type of carbohydrate-binding domain with one calcium site (CBM41). One G1 bound at subsite -2, while two G2 bound at -1 approximately -2 and +2 approximately +1, two G3, -1 approximately -3 and +2 approximately 0', and two G4, -1 approximately -4 and +2 approximately -1'. The two bound G3 and G4 molecules in the active cleft are almost parallel and interact with each other. The subsites -1 approximately -4 and +1 approximately +2, including catalytic residues Glu706 and Asp677, are conserved between pullulanase and alpha-amylase, indicating that pullulanase strongly recognizes branched point and branched sugar residues, while subsites 0' and -1', which recognize the non-reducing end of main-chain alpha-1,4 glucan, are specific to pullulanase and isoamylase. The comparison suggested that the conformational difference around the active cleft, together with the domain organization, determines the different substrate specificities between pullulanase and isoamylase.  相似文献   

7.
The cellular protein, cyclophilin A (CypA), is incorporated into the virion of the type 1 human immunodeficiency virus (HIV-1) via a direct interaction with the capsid domain of the viral Gag polyprotein. We demonstrate that the capsid sequence 87His-Ala-Gly-Pro-Ile-Ala92 (87HAGPIA92) encompasses the primary cyclophilin A binding site and present an X-ray crystal structure of the CypA/HAGPIA complex. In contrast to the cis prolines observed in all previously reported structures of CypA complexed with model peptides, the proline in this peptide, Pro 90, binds the cyclophilin A active site in a trans conformation. We also report the crystal structure of a complex between CypA and the hexapeptide HVGPIA, which also maintains the trans conformation. Comparison with the recently determined structures of CypA in complexes with larger fragments of the HIV-1 capsid protein demonstrates that CypA recognition of these hexapeptides involves contacts with peptide residues Ala(Val) 88, Gly 89, and Pro 90, and is independent of the context of longer sequences.  相似文献   

8.
The Eph receptors, the largest subfamily of receptor tyrosine kinases, and their ephrin ligands are important mediators of cell-cell communication regulating cell attachment, pathfinding, and mobility in the nervous and cardiovascular systems. Recent structural studies have revealed unique molecular features that explain many of the biochemical and signaling properties of Ephs and ephrins. Nevertheless, open questions remain, including understanding the precise molecular mechanism underlining their binding-partner preferences and subclass specificity. In this study, we have determined and present the crystal structure of the extracellular domain of ephrin-A5-the first structure of an unbound A-class ephrin. The structure, determined at 2.1 A resolution, is a variation of the Greek key beta-barrel folding topology, containing eight beta-strands, and stabilized by two disulphide bonds. Overall, ephrin-A5 is structurally very similar to ephrin-B1 and ephrin-B2 but, unlike ephrin-B2, it does not show dimerization either in solution or in the crystals. Comparing free ephrin-A5 to the previously published structure of EphB2-bound ephrin-A5 reveals that significant conformational changes occur only around the G-H ephrin loop that upon binding bends toward the receptor. Interestingly, the G-H loop undergoes a very similar conformational rearrangement in ephrin-B2 upon receptor binding. The results of this study further emphasize the importance of the G-H loop for receptor recognition and selectivity, and could serve as a starting point for the development of structure-based Eph antagonists.  相似文献   

9.
Recent studies have indicated that maternal skeletal metabolism undergoes significant changes during gestation. The agents that are responsible for eliciting these changes in bone turnover during pregnancy have yet to be defined. We therefore sought to investigate whether chaperonin 10 (Cpn10), a homolog of early-pregnancy factor, or human placental lactogen (PL) were capable of influencing the synthesis of type I collagen by human osteoblasts in vitro. Both Cpn10 and PL are major components of the maternal circulation during pregnancy, but how they might contribute to bone metabolism has not been determined. Type I collagen represents the most abundant component of bone tissue, accounting for approximately 90% of the organic compartment. Both Cpn10 and PL were capable of stimulating the synthesis of type I collagen by human osteoblasts in culture. The inclusion of 17 beta-estradiol or prolactin, however, failed to influence the ability of cells to mobilize type I collagen. These novel findings support a role for PL and Cpn10 in the metabolism of bone tissue during pregnancy. Maternal bone collagen metabolism is clearly an important event during pregnancy, and the identification of the factors responsible will aid our understanding of the regulation of skeletal metabolism during gestation.  相似文献   

10.
HIV integrase (IN) is an essential enzyme in HIV replication and an important target for drug design. IN has been shown to interact with a number of cellular and viral proteins during the integration process. Disruption of these important interactions could provide a mechanism for allosteric inhibition of IN. We present the highest resolution crystal structure of the IN core domain to date. We also present a crystal structure of the IN core domain in complex with sucrose which is bound at the dimer interface in a region that has previously been reported to bind integrase inhibitors.

Structured summary

MINT-7713125: IN (uniprotkb:P04585) and IN (uniprotkb:P04585) bind (MI:0407) by X-ray crystallography (MI:0114)  相似文献   

11.
  1. Download : Download high-res image (131KB)
  2. Download : Download full-size image
  相似文献   

12.
F A Saul  R J Poljak 《Proteins》1992,14(3):363-371
The three-dimensional structure of the human immunoglobulin fragment Fab New (IgG1, lambda) has been refined to a crystallographic R-factor of 16.9% to 2 A resolution. Rms deviations of the final model from ideal geometry are 0.014 A for bond distances and 3.03 degrees for bond angles. Refinement was based on a new X-ray data set including 28,301 reflections with F > 2.5 sigma(F) from 6.0 to 2.0 A resolution. The starting model for the refinement procedure reported here is from the Brookhaven Protein Data Bank entry 3FAB (rev. 1981). Differences between the initial and final models include modified polypeptide-chain folding in the third complementarity-determining region (CDR3) and the third framework region (FR3) of VH and in some exposed loops of CL and CH1. Amino acid sequence changes were determined at a number of positions by inspection of difference electron density maps. The incorporation of amino acid sequence changes results in an improved VH framework model for the "humanization" of monoclonal antibodies.  相似文献   

13.
Human dihydrolipoamide dehydrogenase (hE3) is an enzymatic component common to the mitochondrial alpha-ketoacid dehydrogenase and glycine decarboxylase complexes. Mutations to this homodimeric flavoprotein cause the often-fatal human disease known as E3 deficiency. To catalyze the oxidation of dihydrolipoamide, hE3 uses two molecules: non-covalently bound FAD and a transiently bound substrate, NAD+. To address the catalytic mechanism of hE3 and the structural basis for E3 deficiency, the crystal structures of hE3 in the presence of NAD+ or NADH have been determined at resolutions of 2.5A and 2.1A, respectively. Although the overall fold of the enzyme is similar to that of yeast E3, these two structures differ at two loops that protrude from the proteins and at their FAD-binding sites. The structure of oxidized hE3 with NAD+ bound demonstrates that the nicotinamide moiety is not proximal to the FAD. When NADH is present, however, the nicotinamide base stacks directly on the isoalloxazine ring system of the FAD. This is the first time that this mechanistically requisite conformation of NAD+ or NADH has been observed in E3 from any species. Because E3 structures were previously available only from unicellular organisms, speculations regarding the molecular mechanisms of E3 deficiency were based on homology models. The current hE3 structures show directly that the disease-causing mutations occur at three locations in the human enzyme: the dimer interface, the active site, and the FAD and NAD(+)-binding sites. The mechanisms by which these mutations impede the function of hE3 are discussed.  相似文献   

14.
Creatininase from Pseudomonas putida is a member of the urease-related amidohydrolase superfamily. The crystal structure of the Mn-activated enzyme has been solved by the single isomorphous replacement method at 1.8A resolution. The structures of the native creatininase and the Mn-activated creatininase-creatine complex have been determined by a difference Fourier method at 1.85 A and 1.6 A resolution, respectively. We found the disc-shaped hexamer to be roughly 100 A in diameter and 50 A in thickness and arranged as a trimer of dimers with 32 (D3) point group symmetry. The enzyme is a typical Zn2+ enzyme with a binuclear metal center (metal1 and metal2). Atomic absorption spectrometry and X-ray crystallography revealed that Zn2+ at metal1 (Zn1) was easily replaced with Mn2+ (Mn1). In the case of the Mn-activated enzyme, metal1 (Mn1) has a square-pyramidal geometry bound to three protein ligands of Glu34, Asp45, and His120 and two water molecules. Metal2 (Zn2) has a well-ordered tetrahedral geometry bound to the three protein ligands of His36, Asp45, and Glu183 and a water molecule. The crystal structure of the Mn-activated creatininase-creatine complex, which is the first structure as the enzyme-substrate/inhibitor complex of creatininase, reveals that significant conformation changes occur at the flap (between the alpha5 helix and the alpha6 helix) of the active site and the creatine is accommodated in a hydrophobic pocket consisting of Trp174, Trp154, Tyr121, Phe182, Tyr153, and Gly119. The high-resolution crystal structure of the creatininase-creatine complex enables us to identify two water molecules (Wat1 and Wat2) that are possibly essential for the catalytic mechanism of the enzyme. The structure and proposed catalytic mechanism of the creatininase are different from those of urease-related amidohydrolase superfamily enzymes. We propose a new two-step catalytic mechanism possibly common to creatininases in which the Wat1 acts as the attacking nucleophile in the water-adding step and the Wat2 acts as the catalytic acid in the ring-opening step.  相似文献   

15.
Receptor signaling in the growth hormone (GH)-growth hormone receptor (GHR) system is controlled through a sequential two-step hormone-induced dimerization of two copies of the extracellular domain (ECD) of the receptor. The regulatory step of this process is the binding of the second ECD (ECD2) to the stable preassociated 1 : 1 GH/ECD1 complex on the cell surface. To determine the energetics that governs this step, the binding kinetics of 38 single- and double-alanine mutants in the hGH Site2 contact with ECD2 were measured by using trimolecular surface plasmon resonance (TM-SPR). We find that the Site2 interface of hGH does not have a distinct binding hot-spot region, and the most important residues are not spatially clustered, but rather are distributed over the whole binding surface. In addition, it was determined through analysis of a set of pairwise double alanine mutations that there is a significant degree of negative cooperativity among Site2 residues. Residues that show little effect or even improved binding on substitution with alanine, when paired with D116A-hGH, display significant negative cooperativity. Because most of these pairwise mutated residues are spatially separated by >or=10 A, this indicates that the Site2 binding interface of the hGH-hGHR ternary complex displays both structural and energetic malleability.  相似文献   

16.
Müller S  Kursula I  Zou P  Wilmanns M 《FEBS letters》2006,580(1):341-344
The scaffold protein NBR1 is involved in signal transmission downstream of the serine/protein kinase from the giant muscle protein titin. Its N-terminal Phox and Bem1p (PB1) domain plays a critical role in mediating protein-protein interactions with both titin kinase and with another scaffold protein, p62. We have determined the crystal structure of the PB1 domain of NBR1 at 1.55A resolution. It reveals a type-A PB1 domain with two negatively charged residue clusters. We provide a structural perspective on the involvement of NBR1 in the titin kinase signalling pathway.  相似文献   

17.
18.
The development of blood vessels (angiogenesis) is critical throughout embryogenesis and in some normal postnatal physiological processes. Pathological angiogenesis has a pivotal role in sustaining tumour growth and chronic inflammation. Vascular endothelial growth factor-B (VEGF-B) is a member of the VEGF family of growth factors that regulate blood vessel and lymphatic angiogenesis. VEGF-B is closely related to VEGF-A and placenta growth factor (PlGF), but unlike VEGF-A, which binds to two receptor tyrosine kinases VEGFR-1 (Flt-1) and VEGFR-2 (Flk-1/KDR), VEGF-B and PlGF bind to VEGFR-1 and not VEGFR-2. There is growing evidence of a role for VEGF-B in physiological and pathological blood vessel angiogenesis. VEGF-B may provide novel therapeutic strategies for the treatment of vascular disease and be a potential therapeutic target in aberrant vessel formation. To help understand at the molecular level the differential receptor binding profile of the VEGF family of growth factors we have determined the crystal structure of human VEGF-B(10-108) at 2.48 Angstroms resolution. The overall structure is very similar to that of the previously determined cysteine-knot motif growth factors: VEGF-A, PlGF and platelet-derived growth factor-B (PDGF-B). We also present a predicted model for the association of VEGF-B with the second domain of its receptor, VEGFR-1. Based on this interaction and the present structural data of the native protein, we have identified several putative residues that could play an important role in receptor recognition and specificity.  相似文献   

19.
Summary The sites of intracellular synthesis and storage of human placental lactogen (hPL) and human chorionic gonadotropin (hCG) are controversial. We have used one of the most sensitive methods, cryoultramicrotomy and immunogold labelling, to localise these hormones at the electron-microscopic level. In both 12-week and term placentas hCG and hPL are present throughout the rough endoplasmic reticulum cisternae, in the Golgi bodies, and in the infrequent small dense granules of the syncytiotrophoblast. Previous assays have shown that hCG is at a higher concentration in early pregnancy and hPL peaks in late pregnancy, and our results corroborate these findings. No significant localisation of either hormone was seen in the cytotrophoblast or villous stroma. The results suggest that both hCG and hPL are synthesised and packaged by the classical secretory pathway, although the level of hormone stored in granules at any one time is small.  相似文献   

20.
Cen B  Yu Q  Guo J  Wu Y  Ling K  Cheng Z  Ma L  Pei G 《Journal of neurochemistry》2001,76(6):1887-1894
beta-Arrestins regulate opioid receptor-mediated signal transduction and play an important role in opiate-induced analgesia and tolerance/dependence. This study was carried out to measure the direct interaction between beta-arrestins and opioid receptor. Immunoprecipitation experiments demonstrated that beta-arrestin 1 physically interacts with delta opioid receptor (DOR) co-expressed in human embryonic kidney 293 cells in an agonist-enhanced manner and truncation of the carboxyl terminus of DOR partially impairs the interaction. In vitro data from glutathione-S-transferase pull-down assay showed that the carboxyl terminus (CT) and the third intracellular loop (I3L) of DOR are both capable of and either domain is sufficient for binding to beta-arrestin 1 and 2. Surface plasmon resonance determination further revealed that binding of CT and I3L of DOR to beta-arrestin is additive, suggesting these two domains bind at distinctly different sites on beta-arrestin without considerable spatial hindrance. This study demonstrated for the first time the direct binding of beta-arrestins to the two distinct domains, the carboxyl terminus and the third intracellular loop, of DOR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号