首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to investigate the effects of centrally applied somatostatin-28 on morphometric characteristics of the thymus, the thymocyte subpopulations, as well as, on apoptosis and phases of cell cycle in thymocytes. For this purpose, peripubertal male rats were cannulated intracerebroventriculary and treated with repeated, nanomolar concentrations of somatostatin-28 (experimental group) or saline (control group). Animals were sacrificed and their thymuses were used for the analysis of thymocyte subpopulations, cell cycle and apoptosis by flow cytometry and for the evaluation of morphometric parameters by stereological analysis. Our results showed that somatostatin-28 caused decrease of the thymic mass and volume, as well as total thymocytes number. Stereological analysis revealed volume decrease of thymic cortex and medulla accompanied with cellularity decrease. Somatostatin in the deeper cortex decreased the number of thymocytes, per volume unit, while in outer cortex raised their number. A significant increase in the percentage of double-negative and both single-positive thymocyte subpopulations, in parallel with a diminished percentage of double-positive cells was found. The cellularity of double-positive and single-positive thymocyte subpopulations was decreased. Somatostatin-28 treatment augmented the percentage of apoptotic cells, while the percentage of the cells represented in phases of cell cycle was reduced. These results suggest that somatostatin-28 induce thymus hypotrophy as result of decreasing cortex and medulla volume and cellularity. Changes in the percentage and cellularity of thymocyte subpopulations and numerical density of thymocytes in outer and deeper cortex, indicate that somatostatin-28 evoked disturbance in transition of double-negative to double-positive thymocytes.  相似文献   

2.
The golli products of the myelin basic protein gene have been shown to be expressed in mouse thymus and brain. The full repertoire of thymic cell types expressing golli products has not yet been determined, although immunoreactivity has been found in some macrophages. We have analyzed the cellular expression of golli mRNAs and proteins in the thymus. The results showed that MTS5(+) cortical/MTS10(+) medullary epithelial cells and NLDC145(+) dendritic cells did not express golli, while some macrophages did exhibit strong immunoreactivity. GOLLI: mRNAs were not detected in macrophages by in situ hybridization. Thymocytes expressed significant levels of golli mRNAs and proteins by in situ hybridization and immunohistochemistry. Interestingly, golli immunoreactivity varied with thymocyte stage of differentiation. For example, CD4(-)CD8(-) (double-negative) thymocytes expressed relatively high levels of golli. Upon further differentiation into CD4(-)CD8(-) (double-positive) thymocytes, golli protein expression declined dramatically. When thymocytes developed into CD8(-) or CD4(+) (single-positive) thymocytes, golli protein expression increased again, but it never achieved the levels found in double-negative thymocytes. Thus, the altered levels of expression of golli proteins in developing thymocytes correlated with the transitions from double-negative to double-positive and double-positive to single-positive stages. The lack of significant golli expression in thymic stromal cells may offer an alternative explanation for the mechanism of inefficient negative selection of those autoreactive thymocytes with specificity for myelin basic proteins.  相似文献   

3.
RasGRP1 is a guanine nucleotide exchange factor for Ras that is required for the efficient production of both CD4 and CD8 single-positive thymocytes. We found that RasGRP1 expression is rapidly up-regulated in double-negative thymocytes following pre-TCR ligation. Transgenic overexpression of RasGRP1 compensated for deficient pre-TCR signaling in vivo, enabling recombinase-activating gene 2(-/-) double-negative thymocytes to mature to the double-positive stage. RasGRP1 transgenic mice had a 4-fold increase in CD8 single-positive thymocytes, most of which had atypically low levels of CD3. The RasGRP1 transgene lowered the threshold of TCR signaling needed to initiate proliferation of single-positive thymocytes, with this effect being particularly evident among CD8 single-positive cells. In 3-day cultures, TCR stimulation via anti-CD3 caused a 10-fold increase in the ratio of CD8 to CD4 thymocytes among RasGRP1 transgenic vs nontransgenic thymocytes. These results demonstrate that in addition to driving the double-negative to double-positive transition, increased expression of RasGRP1 selectively increases CD8 single-positive thymocyte numbers and enhances their responsiveness to TCR signaling.  相似文献   

4.
The PP2C phosphatase Wip1 dephosphorylates p38 and blocks UV-induced p53 activation in cultured human cells. Although the level of TCR-induced p38 MAPK activity is initially comparable between Wip1-/- and wild-type thymocytes, phosphatase-deficient cells failed to down-regulate p38 MAPK activity after 6 h. Analysis of young Wip1-deficient mice showed that they had fewer splenic T cells. Their thymi were smaller, contained significantly fewer cells, and failed to undergo age-dependent involution compared with wild-type animals. Analysis of thymocyte subset numbers by flow cytometry suggested that cell numbers starting at the double-negative (DN)4 stage are significantly reduced in Wip1-deficient mice, and p53 activity is elevated in cell-sorted DN4 and double-positive subpopulations. Although apoptosis and proliferation was normal in Wip1-/- DN4 cells, they appeared to be in cell cycle arrest. In contrast, a significantly higher percentage of apoptotic cells were found in the double-positive population, and down-regulation of thymocyte p38 MAPK activation by anti-CD3 was delayed. To examine the role of p38 MAPK in early thymic subpopulations, fetal thymic organ cultures cultured in the presence/absence of a p38 MAPK inhibitor did not correct the thymic phenotype. In contrast, the abnormal thymic phenotype of Wip1-deficient mice was reversed in the absence of p53. These data suggest that Wip1 down-regulates p53 activation in the thymus and is required for normal alphabeta T cell development.  相似文献   

5.
During thymocyte development, CCR9 is expressed on late CD4-CD8- (double-negative (DN)) and CD4+CD8+ (double-positive) cells, but is subsequently down-regulated as cells transition to the mature CD4+ or CD8+ (single-positive (SP)) stage. This pattern of expression has led to speculation that CCR9 may regulate thymocyte trafficking and/or export. In this study, we generated transgenic mice in which CCR9 surface expression was maintained throughout T cell development. Significantly, forced expression of CCR9 on mature SP thymocytes did not inhibit their export from the thymus, indicating that CCR9 down-regulation is not essential for thymocyte emigration. CCR9 was also expressed prematurely on immature DN thymocytes in CCR9 transgenic mice. Early expression of CCR9 resulted in a partial block of development at the DN stage and a marked reduction in the numbers of double-positive and SP thymocytes. Moreover, in CCR9-transgenic mice, CD25high DN cells were scattered throughout the cortex rather than confined to the subcapsular region of the thymus. Together, these results suggest that regulated expression of CCR9 is critical for normal development of immature thymocytes, but that down-regulation of CCR9 is not a prerequisite for thymocyte emigration.  相似文献   

6.
The 10D1 Ag is a 90-kDa homodimeric molecule specifically expressed on a subpopulation of human T cells, and is involved in an alternative pathway of T cell activation. In the present study, we have examined the expression and function of the 10D1 Ag on human thymocytes. Three-color FMF analysis showed that the 10D1 Ag was highly expressed on minor but distinct subpopulations of double-negative and CD4 single-positive thymocytes, and weakly on a part of double-positive thymocytes, but not on CD8 single-positive thymocytes. In double-negative thymocytes, the vast majority of 10D1+ cells were immature thymocytes of CD7+2+3- phenotype. Interestingly, 10D1 mAb could induce the proliferation of CD4 single-positive thymocytes in the presence of goat anti-mouse Ig to cross-link the 10D1 Ag. The treatment of thymocytes with OKT4 mAb plus C but not with OKT8 mAb plus C totally abrogated the proliferative response induced by 10D1 mAb, indicating that the 10D1-responsible thymocytes were of CD4+8- phenotype. This 10D1 mAb-induced thymocyte proliferation was perfectly dependent on the endogenous IL-2/IL-2R system since a complete inhibition was observed with anti-IL-2 and anti-IL-2R mAb. The proliferating CD4 single positive thymocytes predominantly expressed the IL-2R alpha (p55) but not a detectable level of the IL-2R beta (p75). These results indicate that, although the 10D1 Ag can be detected on the CD7+2+3-4-8- thymocytes, its functional expression is restricted to a minor more mature CD4+ thymocyte population as well as in peripheral blood T cells, and the implications of these findings are discussed.  相似文献   

7.
Tid1, a DnaJ cochaperone protein, is the mammalian homologue of the Drosophila tumor suppressor Tid56 whose antitumor function is most likely mediated through its capacity to regulate cell differentiation in imaginal discs. We suspected that the mammalian counterpart, tid1, may also be involved in regulating cell differentiation. To investigate this, we exploited the system of T cell development to examine whether tid1 plays a role in this well-defined process. Mice with tid1 specifically deleted in T cells developed thymic atrophy, with dramatic reduction of double-positive and single-positive thymocytes in the tid1(-/-) thymus. Although the subpopulations of tid1(-/-) double-negative (DN) 1-3 thymocytes were normal, the subpopulation of DN4 thymocytes was measurably smaller because of reduced proliferation and significant cell death. Immature tid1(-/-) thymocytes show normal VDJ beta-chain rearrangement and pre-TCR and CD3 expression in both DN3 and DN4 thymocytes, but in DN4 thymocytes, there was significantly reduced expression of the antiapoptotic bcl-2 gene. Restoring the expression level of Bcl-2 protein in tid1(-/-) thymus by introduction of a transgenic human bcl-2 gene resulted in reversal of the developmental defects in tid1(-/-) thymus. Together, these results demonstrate that tid1 is critical in early thymocyte development, especially during transition from the DN3 to double-positive stages, possibly through its regulation of bcl-2 expression, which provides survival signals.  相似文献   

8.
Foxn1Delta/Delta mutants have a block in thymic epithelial cell differentiation at an intermediate progenitor stage, resulting in reduced thymocyte cellularity and blocks at the double-negative and double-positive stages. Whereas naive single-positive thymocytes were reduced >500-fold in the adult Foxn1Delta/Delta thymus, peripheral T cell numbers were reduced only 10-fold. The current data shows that Foxn1Delta/Delta peripheral T cells had increased expression of activation markers and the ability to produce IL-2 and IFN-gamma. These cells acquired this profile immediately after leaving the thymus as early as the newborn stage and maintained high steady-state proliferation in vivo but decreased proliferation in response to TCR stimulation in vitro. Single-positive thymocytes and naive T cells also had constitutively low alphabetaTCR and IL7R expression. These cells also displayed reduced ability to undergo homeostatic proliferation and increased rates of apoptosis. Although the frequency of Foxp3+CD4+CD25+ T cells was normal in Foxn1Delta/Delta mutant mice, these cells failed to have suppressor function, resulting in reduced regulatory T cell activity. Recent data from our laboratory suggest that T cells in the Foxn1Delta/Delta thymus develop from atypical progenitor cells via a noncanonical pathway. Our results suggest that the phenotype of peripheral T cells in Foxn1Delta/Delta mutant mice is the result of atypical progenitor cells developing in an abnormal thymic microenvironment with a deficient TCR and IL7 signaling system.  相似文献   

9.
Development of many vertebrate tissues involves long-range cell migrations. In most cases, these migrations have been inferred from analysis of single time points and the migration process has not been directly observed and quantitated in real time. In the mammalian adult thymus, immature CD4+CD8+ double-positive (DP) thymocytes are found in the outer cortex, whereas after T cell antigen receptor (TCR) repertoire selection, CD4+CD8 and CD4CD8+ single-positive (SP) thymocytes are found in the central medulla. Here we have used two-photon laser-scanning microscopy and quantitative analysis of four-dimensional cell migration data to investigate the movement of thymocytes through the cortex in real time within intact thymic lobes. We show that prior to positive selection, cortical thymocytes exhibit random walk migration. In contrast, positive selection is correlated with the appearance of a thymocyte population displaying rapid, directed migration toward the medulla. These studies provide our first glimpse into the dynamics of developmentally programmed, long-range cell migration in the mammalian thymus.  相似文献   

10.
GPR30 contributes to estrogen-induced thymic atrophy   总被引:1,自引:0,他引:1  
The mechanisms by which prolonged estrogen exposures, such as estrogen therapy and pregnancy, reduce thymus weight, cellularity, and CD4 and CD8 phenotype expression, have not been well defined. In this study, the roles played by the membrane estrogen receptor, G protein-coupled receptor 30 (GPR30), and the intracellular estrogen receptors, estrogen receptor alpha (ERalpha) and beta (ERbeta), in 17beta-estradiol (E2)-induced thymic atrophy were distinguished by construction and the side-by-side comparison of GPR30-deficient mice with ERalpha and ERbeta gene-deficient mice. Our study shows that whereas ERalpha mediated exclusively the early developmental blockage of thymocytes, GPR30 was indispensable for thymocyte apoptosis that preferentially occurs in T cell receptor beta chain(-/low) double-positive thymocytes. Additionally, G1, a specific GPR30 agonist, induces thymic atrophy and thymocyte apoptosis, but not developmental blockage. Finally, E2 treatment attenuates the activation of nuclear factor-kappa B in CD25(-)CD4(-)CD8(-) double-negative thymocytes through an ERalpha-dependent yet ERbeta- and GPR30-independent pathway. Differential inhibition of nuclear factor-kappaB by ERalpha and GPR30 might underlie their disparate physiological effects on thymocytes. Our study distinguishes, for the first time, the respective contributions of nuclear and membrane E2 receptors in negative regulation of thymic development.  相似文献   

11.
Spontaneously cycling thymocytes have been labeled in vitro and in vivo by bromodeoxyuridine (BUdR), a non-reutilized precursor of DNA that is detectable by a monoclonal antibody. Studies of BUdR-labeled cells have included the determination of their anatomical location, size, and nuclear aspects and of their cell surface phenotype. Dividing blasts were initially located in the cortex (mainly but not exclusively in the subcapsular region) and expressed the double-negative (Lyt-2- L3T4-) and double-positive (Lyt-2+ L3T4+) phenotypes. The fate of these cells have been determined in days after BUdR administration, and we observed an initial double-negative to double-positive transition that was followed by the death of the majority of labeled cells in the cortex. As of day 3, the few surviving cells acquired a mature helper phenotype (Lyt-2- L3T4+) and began migrating into the thymic medulla. The exclusive medullary location of blast cell progeny was observed between days 5 and 10 post-BUdR administration. These results suggest a direct precursor-product relationship between dividing cortical cells and mature medullary thymocytes, and therefore support the single lineage model of intrathymic differentiation.  相似文献   

12.
Deficient thymopoiesis is a pivotal determinant of impaired immune competence following hematopoietic stem cell transplantation (HSCT). Stem cell factor (SCF) is essentially involved in early thymopoiesis. We evaluated whether SCF administration would improve recovery of thymopoiesis following HSCT in immunodeficient mice receiving: 1) bone marrow (BM) transplantation of congenic mice; or 2) human fetal liver HSCT in the human immune system mouse model. Following murine BM transplantation, SCF significantly enhanced thymopoiesis and peripheral T cell recovery in lymph nodes and spleen. SCF did not affect BM lymphoid progenitor recovery and/or expansion. Median thymic cellularity increased from 0.9 in PBS- to 266 × 10(4)/thymus in SCF-treated mice (p = 0.05). Following human HSCT in human immune system mice, higher thymic cellularity was observed in SCF-treated mice. Double-negative and early double-positive thymocyte subsets increased, but especially late double-positive, CD4 single-positive, and CD8 single-positive thymocyte subsets were significantly enhanced (p < 0.05). These results show that exogenous supply of SCF may significantly improve murine and human posttransplant thymopoiesis, for which the effect is probably exerted by directly promoting T cell development intrathymically rather than by enhanced entry of prethymically expanded lymphoid progenitors.  相似文献   

13.
It is well known that somatostatin modulates thymic functions, such as binding to receptors. In order to elucidate the influence of somatostatin on the thymus architecture and the T cells maturation, young adult male rats were treated with somatostatin-28. The results showed that somatostatin-28 decreased thymus weight and cellularity, probably due to alterations in the thymic morphometric parameters. Our results also demonstrated that SRIH treatment reduces number of cells with undetectable alphabetaTCR and cells with low expression of alphabetaTCR, while the number of TCRalphabeta(hi) cells remains approximately the same as the values obtained from the control rats. Besides, in the least mature thymocytes (DNTCR TCRalphabeta(-)) and among the most mature the SPCD4 TCRalphabeta(hi) subset remained unaltered, while SPCD8 TCRalphabeta(hi) decreased. At last, it should be noted that SRIH treatment increases DN thymocytes subsets expressing TCRalphabeta(low/hi) (TCRalphabeta(+)). These results suggest that somatostatin-28 induces reshaping of T cells maturation and, at least partly, contributes to thymic weight loss, through the modulation of the complex neuroendocrine-immune network.  相似文献   

14.
15.
Arachidonic acid metabolites play an important role in the development of T cells in the thymus. In the normal animal, prostaglandin levels in the thymus are significantly higher than in plasma. Herein, we have studied the regulation of arachidonic acid metabolism using the thymic endocrine epithelial cell line, TEA3A1, and thymocytes. We have found that TEA3A1 cells, but not thymocytes, produced prostaglandins and thromboxanes. We have also found that thymocytes could stimulate the production of arachidonic acid metabolites in TEA3A1 cells when both cells were cocultured. The strongest stimulation was observed when TEA3A1 cells were cocultured with thymocyte subpopulations either negative for OX8 or W3/25 functional surface markers (either double-negative or single-positive thymocytes). Furthermore, cell-cell contact seems to be absolutely required for the activation of arachidonic acid metabolism in TEA3A1 cells. The study presented here describes the existence of a novel regulatory mechanism of arachidonic acid metabolism which may play an important role in the development of T cells in the thymus.  相似文献   

16.
17.
BMI-1 and EZH2 Polycomb-group (PcG) proteins belong to two distinct protein complexes involved in the regulation of hematopoiesis. Using unique PcG-specific antisera and triple immunofluorescence, we found that mature resting peripheral T cells expressed BMI-1, whereas dividing blasts were EZH2(+). By contrast, subcapsular immature double-negative (DN) (CD4(-)/CD8(-)) T cells in the thymus coexpressed BMI-1 and EZH2 or were BMI-1 single positive. Their descendants, double-positive (DP; CD4(+)/CD8(+)) cortical thymocytes, expressed EZH2 without BMI-1. Most EZH2(+) DN and DP thymocytes were dividing, while DN BMI-1(+)/EZH2(-) thymocytes were resting and proliferation was occasionally noted in DN BMI-1(+)/EZH2(+) cells. Maturation of DP cortical thymocytes to single-positive (CD4(+)/CD8(-) or CD8(+)/CD4(-)) medullar thymocytes correlated with decreased detectability of EZH2 and continued relative absence of BMI-1. Our data show that BMI-1 and EZH2 expression in mature peripheral T cells is mutually exclusive and linked to proliferation status, and that this pattern is not yet established in thymocytes of the cortex and medulla. T cell stage-specific PcG expression profiles suggest that PcG genes contribute to regulation of T cell differentiation. They probably reflect stabilization of cell type-specific gene expression and irreversibility of lineage choice. The difference in PcG expression between medullar thymocytes and mature interfollicular T cells indicates that additional maturation processes occur after thymocyte transportation from the thymus.  相似文献   

18.
Obesity is associated with an increased risk of infectious diseases. It has been shown to have deleterious effects on cell-mediated immunity, including reducing thymocyte numbers and altering responses of thymocytes to pathogens. In the current study, we examined the efficacy of the antiobesity phytochemical resveratrol in preventing the deleterious effects of a high-fat diet on thymic anatomy and function. Compared to C57Bl/6 male mice fed a low-fat diet, mice on a high-fat diet had a significant increase in thymic weight and lipid content, and a disrupted anatomy, including a reduction of the medullary compartment and absence of a corticomedullary junction. There were a decrease in thymic cellularity and mature T-cell output, and a disrupted T-cell maturation, as evidenced by increased double-negative and decreased single- and double-positive thymocytes. Mice that had been fed resveratrol along with a high-fat diet had a dose-dependent reversal in all these parameters. Western blots from thymi showed that obese mice had lower levels of the key stimulators of lipid metabolism, phospho-5′ adenosine monophosphate-activated protein kinase and its downstream target, carnitine palmitoyl transferase-1; this was restored to normal levels in resveratrol-fed mice. Resveratrol also reversed an increase in glycerol-3-phosphate acyltransferase-1, the enzyme that catalyzes the first step in triglycerol synthesis. Taken together, these results indicate that resveratrol is a potent inhibitor of the deleterious effects of diet-induced obesity on thymic anatomy and function, and this may hold promise in preventing obesity-related deficits in cell-mediated immunity.  相似文献   

19.
T Hirano  H Horigome  H Ishishita  S Uda  K Oka 《Life sciences》2001,68(26):2905-2916
11Beta-hydroxyglucocorticoids (HGCs) are known to induce apoptosis in immature T cells. Here we show that 11-oxoglucocorticoids (OGCs), which are oxidized metabolites of HGCs, counteract the apoptosis-inducing effects of HGC in murine thymocytes in vitro. Corticosterone at concentrations ranging from 0.1-100 microM induced apoptosis in thymocytes obtained from C57BL/6J mice aged 4 weeks, as demonstrated by cell staining with anti-phosphatidylserine antibody, a decrease in mitochondrial membrane potential, and DNA fragmentation. Co-culture of the cells with 10-100 microM of OGCs, dehydrocorticosterone, cortisone, and prednisone significantly inhibited thymocyte apoptosis induced by 1 microM corticosterone, (p<0.006). Among the other 6 physiological metabolites of the HGCs we tested, 20alpha-dehydrocortisol also showed considerable inhibitory effect on corticosterone-induced thymocyte apoptosis. Corticosterone-treatment of thymocytes in vitro decreased the number of CD4 and CD8 double positive cells, while co-culturing the cells with dehydrocorticosterone significantly attenuated this corticosterone effect (p<0.0001). Numbers of double-negative cells and single-positive cells were not significantly affected by corticosterone, dehydrocorticosterone, or both together. These results raised the possibility that OGCs and probably other HGC metabolites can regulate apoptotic cell death of immature double-positive thymocytes induced by HGC.  相似文献   

20.
Administration of IL-1 alpha or IL-1 beta to normal mice induces a decrease in thymic cellularity, the magnitude of which depends on the number of injections and dose of IL-1. Twice daily injections of 200 ng of IL-1 alpha or -beta for 4 days results in a 90% decrease in thymic cellularity, which regenerated after cessation of treatment. Study of thymocyte subpopulations revealed that the number of CD4+/CD8+ thymocytes was dramatically decreased in IL-1-treated mice. Functional assessment of the CD4-/CD8- population from treated animals showed that these cells had adequate mitogenic responses in vitro and that the proportion of these cells in cycle was not different from control CD4-/CD8- cells. IL-1 treatment also prevented the regeneration of thymic cellularity after irradiation. The use of strains of mice differing genetically at the Ly 1 locus to construct radiation bone marrow chimeras demonstrated that bone marrow-derived thymocyte precursors were able to seed the thymus in the IL-1-treated animals. Again, however, the CD4+/CD8+ thymocyte population was significantly decreased. Thymic repopulation occurred upon cessation of IL-1 therapy. Finally, we determined that a single i.p. injection of IL-1 caused a three-fold increase in serum corticosterone levels, which peaked approximately 3 h after IL-1 administration. Thus, an IL-1-dependent increase in serum corticosterone levels may be responsible for the observed thymic hypoplasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号