首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the X-linked methyl-CpG-binding protein 2 (MECP2) gene have been found to be a cause of Rett syndrome (RTT). Mutation screening was based on various techniques including denaturing gradient gel electrophoresis, single-strand conformation polymorphism analysis, heteroduplex analysis, DNA sequencing and recently Southern Blot analysis. Mutation detection was achieved in 80% of typical RTT with a high prevalence of recurrent mutations. In order to provide further insights into the spectrum of MECP2 rearrangements in patients without any point mutation or small deletion/insertion in the coding region MECP2 gene, we screened 25 classical RTT females using fluorescence in situ hybridization analysis. No deletion were found in our group, suggesting that MECP2 gross rearrangements are a rare cause of Rett syndrome.  相似文献   

2.
Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome.  相似文献   

3.
Mutations in the methyl-CpG-binding protein-2 (MECP2) gene on Xq28 have been found to be a cause of Rett syndrome (RS). In a previous mutation screening, we found MECP2 mutations in 81% of Swedish classical Rett women. In this study, we have analyzed 22 patients for MECP2 deletions using multiplex-ligation-dependent probe amplification (MLPA). Clinically, 11 of the patients who were classical Rett women, 3 were forme fruste, 1 was congenital RS, and 7 were Rett variants. As inclusion criteria, we used DNA from patients in whom previous sequencing results showed no mutations in coding portions of the MECP2 gene. MLPA is a method based on multiplex PCR. In one PCR, as many as 40 probes are amplified with the same primers. The specificity of the amplification products is determined by the site-specific hybridization of each probe construct, prior to amplification. Each PCR product has a unique length, which makes it possible to identify it by size separation. In 3 of 11 (27%) classical Rett women, we detected large deletions in MECP2 using MLPA. All these patients had deletions covering two exons; in 2 cases the deletion involved exons 3 and 4 and, in one case, exons 1 and 2 were missing. In the forme fruste, congenital and Rett-variant patients, we found no large deletions. We have found that MLPA is useful when it comes to finding large deletions compromising whole exons in MECP2. Used as a complementary method to DNA sequencing, it revealed new MECP2 mutations in classical RS patients.  相似文献   

4.
5.
Mutations in the coding region of the methyl-CpG-binding protein 2 ( MECP2) gene cause Rett syndrome and have also been reported in a number of X-linked mental retardation syndromes. Furthermore, such mutations have recently been described in a few autistic patients. In this study, a large sample of individuals with autism was screened in order to elucidate systematically whether specific mutations in MECP2 play a role in autism. The mutation analysis of the coding sequence of the gene was performed by denaturing high-pressure liquid chromatography and direct sequencing. Taken together, 14 sequence variants were identified in 152 autistic patients from 134 German families and 50 unrelated patients from the International Molecular Genetic Study of Autism Consortium affected relative-pair sample. Eleven of these variants were excluded for having an aetiological role as they were either silent mutations, did not cosegregate with autism in the pedigrees of the patients or represented known polymorphisms. The relevance of the three remaining mutations towards the aetiology of autism could not be ruled out, although they were not localised within functional domains of MeCP2 and may be rare polymorphisms. Taking into account the large size of our sample, we conclude that mutations in the coding region of MECP2 do not play a major role in autism susceptibility. Therefore, infantile autism and Rett syndrome probably represent two distinct entities at the molecular genetic level.  相似文献   

6.
Rett syndrome (OMIM#312750) is a monogenic disorder that may manifest as a large variety of phenotypes ranging from very severe to mild disease. Since there is a weak correlation between the mutation type in the Xq28 disease-gene MECP2/X-inactivation status and phenotypic variability, we used this disease as a model to unveil the complex nature of a monogenic disorder. Whole exome sequencing was used to analyze the functional portion of the genome of two pairs of sisters with Rett syndrome. Although each pair of sisters had the same MECP2 (OMIM*300005) mutation and balanced X-inactivation, one individual from each pair could not speak or walk, and had a profound intellectual deficit (classical Rett syndrome), while the other individual could speak and walk, and had a moderate intellectual disability (Zappella variant). In addition to the MECP2 mutation, each patient has a group of variants predicted to impair protein function. The classical Rett girls, but not their milder affected sisters, have an enrichment of variants in genes related to oxidative stress, muscle impairment and intellectual disability and/or autism. On the other hand, a subgroup of variants related to modulation of immune system, exclusive to the Zappella Rett patients are driving toward a milder phenotype. We demonstrate that genome analysis has the potential to identify genetic modifiers of Rett syndrome, providing insight into disease pathophysiology. Combinations of mutations that affect speaking, walking and intellectual capabilities may represent targets for new therapeutic approaches. Most importantly, we demonstrated that monogenic diseases may be more complex than previously thought.  相似文献   

7.
Loss-of-function mutations of the MECP2 gene are the cause of most cases of Rett syndrome in females, a progressive neurodevelopmental disorder characterized by severe mental retardation, global regression, hand stereotypies, and microcephaly. On the other hand, gain of dosage of this gene causes the MECP2 duplication syndrome in males characterized by severe mental retardation, absence of speech development, infantile hypotonia, progressive spasticity, recurrent infections, and facial dysmorphism. Female carriers of a heterozygous duplication show a skewed X-inactivation pattern which is the most probable cause of the lack of clinical symptoms. In this paper, we describe a girl with a complex de novo copy number gain at Xq28 and non-skewed X-inactivation pattern that causes mental retardation and motor and language delay. This rearrangement implies triplication of the MECP2 and IRAK1 genes, but it does not span other proximal genes located in the common minimal region of patients affected by the MECP2 duplication syndrome. We conclude that the triplication leads to a severe phenotype due to random X-inactivation, while the preferential X chromosome inactivation in healthy carriers may be caused by a negative selection effect of the duplication on some proximal genes like ARD1A or HCFC1.  相似文献   

8.
Mutations in the X-linked methyl-CpG-binding protein 2 gene (MECP2) have been found to be a cause of Rett syndrome (RTT). In order to provide further insights into the distribution and the spectrum of mutations, we investigated, in addition to the whole coding sequence, a phylogenetically conserved sequence within the 3' untranslated region (3' UTR) of the MECP2 gene for 55 sporadic RTT, including 47 typical and 8 nonclassical cases. We have developed an approach based on conformation-sensitive gel electrophoresis, sequence analysis and, for the first time, Southern blot analysis. Mutation detection, including unreported gross DNA rearrangements, was achieved in 79% of classical RTT and 25% of nonclassical RTT patients. The high prevalence of recurrent mutations allows us to propose a molecular diagnosis strategy for RTT.  相似文献   

9.
10.
Mutations in the MECP2 (Methyl-CpG-binding protein) gene recently have been reported to cause Rett syndrome (RTT), an X-linked progressive encephalopathy. We have collected the results of MECP2 analysis conducted in four laboratories in France. A total of 301 RTT alleles have been analyzed, demonstrating a total of 69 different mutations so far observed and accounting for 64% of MECP2 genes in RTT patients living in France. R168X (11.5%) is the most common of MECP2 mutations, followed by R255X (10.9%), R270X (10.5%), T158M (7.8%), and R306C (6.8%). Only 10 mutations had a relative frequency > 2%. A total of 59 mutations were found in a small number of RTT alleles (from 1 to 2). These data demonstrate the high allelic heterogeneity of RTT in France and provide information relevant to the development of strategies for molecular diagnosis and genetic counseling in RTT families.  相似文献   

11.
12.
13.
Mutations in the MECP2 gene are known to cause Rett syndrome (RTT)—a neurodevelopmental disorder, one of the most common causes of intellectual disability in females, with an incidence of 1 in 10000–15000. We have investigated exons 3 and 4 of the MECP2 gene, that coding MBD and TRD domains of the MeCP2 protein, in 21 RTT patients from Ukraine by PCR-DGGE analysis followed by Sanger sequencing of PCR fragments with abnormal migration profiles. In 13 of 21 (61.9%) patients 7 different mutations were identified one nonsense mutation—c. NC_000023.11:g.154031326G>A (MECP2:c.502C>T) and 4 missense mutation NC_000023.11:g.154031409G>T (MECP2:c.419C>T), NC_000023.11:g.154031355G>A (MECP2:c.473C>T), NC_000023.11:g.154031354A>C (MECP2:c.472A>C), NC_000023.11:g.154031431G>A (MECP2:c.397C>T) located in exon 4, a rare RTT-causing splice site mutation NC_000023.10:g.153296903T>G (MECP2:c.378-2A>C) in intron 3 and deletion NC_000023.10:g.1532 96079_153296122del44 in exon 4. The novel mutation MECP2:c.472A>C identified in our study in patients withclassic RTT phenotype leds to T158P substitution. It is one more confirmation of crucial role that 158 codon in MECP2 protein function.  相似文献   

14.
Rett syndrome is an X-linked dominant disorder that usually arises following a single de novo mutation in the MECP2 gene. Point mutation testing and gene dosage analysis of a cohort of British Rett syndrome patients in our laboratory revealed four females who each had two different de novo causative mutations, presumed to be in cis because the patients showed no deviation from the classical Rett syndrome phenotype. Two of these cases had a point mutation and a small intraexonic deletion, a third had a whole exon deletion and a separate small intraexonic deletion, and a fourth case had a small intraexonic deletion and a large duplication. These findings highlight the necessity to perform both point mutation analysis and exon dosage analysis in such cases, particularly because of the possibility of undetected parental mosaicism and the implications for prenatal diagnosis in future pregnancies. These cases also suggest that the MECP2 gene may be particularly prone to multiple mutation events.  相似文献   

15.
16.
Fetal alcohol syndrome in association with RETT syndrome: We report on a girl with neonatal dystrophy, microcephaly, heart defect, and the characteristic features of alcohol embryopathy. Later, she developed distinctive features of RETT syndrome including loss of early acquired developmental skills and presented typical symptoms of RETT syndrome as reduction of communication skills, reduction of hand function, hyperventilation, and grinding of teeth. Molecular analysis of the MECP2 gene revealed the c.808T>C (R270X) mutation located in the nuclear localisation signal sequence of the gene. Our report highlights the importance of considering the diagnosis of RETT syndrome even in patients who are already suffering from a defined disease.  相似文献   

17.
18.
19.
Loss-of-function mutations of the MECP2 gene at Xq28 are associated with Rett syndrome in females and with syndromic and nonsyndromic forms of mental retardation (MR) in males. By array comparative genomic hybridization (array-CGH), we identified a small duplication at Xq28 in a large family with a severe form of MR associated with progressive spasticity. Screening by real-time quantitation of 17 additional patients with MR who have similar phenotypes revealed three more duplications. The duplications in the four patients vary in size from 0.4 to 0.8 Mb and harbor several genes, which, for each duplication, include the MR-related L1CAM and MECP2 genes. The proximal breakpoints are located within a 250-kb region centromeric of L1CAM, whereas the distal breakpoints are located in a 300-kb interval telomeric of MECP2. The precise size and location of each duplication is different in the four patients. The duplications segregate with the disease in the families, and asymptomatic carrier females show complete skewing of X inactivation. Comparison of the clinical features in these patients and in a previously reported patient enables refinement of the genotype-phenotype correlation and strongly suggests that increased dosage of MECP2 results in the MR phenotype. Our findings demonstrate that, in humans, not only impaired or abolished gene function but also increased MeCP2 dosage causes a distinct phenotype. Moreover, duplication of the MECP2 region occurs frequently in male patients with a severe form of MR, which justifies quantitative screening of MECP2 in this group of patients.  相似文献   

20.
The story of Rett syndrome: from clinic to neurobiology   总被引:9,自引:0,他引:9  
Chahrour M  Zoghbi HY 《Neuron》2007,56(3):422-437
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号