首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aldegunde M  Mancebo M 《Peptides》2006,27(4):719-727
Neuropeptide Y (NPY) is one of the most potent stimulants of food intake in mammals, but very little is known about NPY actions in fish. The present study investigated the role of NPY in food intake in the rainbow trout (Oncorhynchus mykiss). Food intake was monitored at different times after intracerebroventricular administration of porcine NPY (4 or 8 microg). Both doses significantly increased food intake at 2 and 3 h, and this effect was dose-dependent. However, 50 h after administration of NPY, food intake was significantly lower than in control fish, and cumulative food intake had returned to levels similar to those seen in the control group. The NPY antagonist (D-Tyr27,36, D-Thr32)-NPY (10 microg) inhibited food intake 2 h after icv administration, but did not block the orexigenic effect of NPY when administered jointly with 4 microg NPY. To identify the NPY receptor subtypes involved in the effects of NPY on food intake, we studied the effects of the Y1 receptor agonist (Leu31, Pro34)-NPY (4 microg), the Y2 receptor agonist NPY(3-36) (4 microg), and the highly specific Y5 receptor agonist (cPP(1-7), NPY19-23, Ala31, Aib32, Gln34)-hPP (4 microg). Short-term (2 h) food intake was moderately stimulated by the Y1 agonist, more strongly stimulated by the Y2 agonist, and unaffected by the Y5 agonist. We found that administration of NPY (8 microg icv) had no effect on aminergic systems in several brain regions 2 and 50 h after NPY administration. These results indicate that NPY stimulates feeding in the rainbow trout, and suggest that this effect is cooperatively mediated by Y2- and Y1-like NPY receptors, not by Y5-like receptors.  相似文献   

2.
Human omental arteries and veins are supplied with nerve fibers containing noradrenaline (NA) and neuropeptide Y (NPY); these two agents probably co-exist in perivascular sympathetic nerve fibers. Substance P (SP)- or vasoactive intestinal peptide (VIP)-containing fibers could not be detected. In studies on isolated omental vessels NA produced constriction. The results of blockade experiments suggest that human omental arteries are equipped predominantly with alpha 1-adrenoceptors and omental veins with a mixture of alpha 1- and alpha 2-adrenoceptors. NPY at a concentration of 10(-7) M or higher had a weak contractile effect on veins and virtually no effect on arteries. NPY at a concentration of 3 X 10(-8) M shifted the NA concentration response curve to the left in arteries (pD2 = 5.8 for NA versus 6.6. for NA in the presence of NPY; P less than 0.001) but not in veins. Both SP and VIP relaxed arteries precontracted with NA or prostaglandin F2 alpha (PGF2 alpha). The potency of SP as a relaxant agent was similar in arteries and veins; the effect of VIP was elicited at lower concentrations in veins than in arteries.  相似文献   

3.
4.
Interaction between norepinephrine, NPY and VIP in the ovarian artery.   总被引:2,自引:0,他引:2  
J C J?rgensen 《Peptides》1991,12(4):831-837
The in vitro effect and the interaction between norepinephrine (NE), neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) were studied in dissected segments of the rabbit ovarian artery. In addition, the structural requirement of the NPY receptor was investigated using NPY peptide analogs. NE induced a dose-dependent vasoconstriction with an Emax of 131.4 +/- 2.9% of K(+)-induced constriction. The vasoconstrictor effect of NPY was less than 5% of K(+)-induced vasoconstriction. Incubation of the artery with 10(-7) M NPY for 4 min induced a significant potentiation of NE-induced contractions. The selective NPY Y1 receptor agonist [Leu31, Pro34]NPY was also able to potentiate the NE response at the half-maximum contraction level, but not NPY(11-36), an NPY peptide fragment predominantly stimulating the NPY Y2 receptor. NPY exerted a dose-dependent vasoconstrictor effect on vessels contracted for 20 min with 10(-6) M NE. VIP induced a dose-dependent relaxation of vessels contracted with 10(-6) M NE. The VIP-induced relaxation could be reversed by NPY. In conclusion, receptors capable of interacting with NPY, presumably of the Y1 type, and VIP are present in the rabbit ovarian artery, and activation of these receptors may profoundly influence the response of the artery to norepinephrine.  相似文献   

5.
Previously, in vivo studies showed that neuropeptide Y (NPY) elevates vascular permeability in isolated lung perfusion preparations, possibly through binding to the NPY Y(3) receptor. The present study used monolayers in a double-chamber culture method under conditions of normoxia (5% CO(2)-20% O(2)-75% N(2)) or hypoxia (5% CO(2)-5% O(2)-90% N(2)) to test the hypothesis that NPY directly affects rat aortic endothelial cells (RAECs). RAECs were cultured on the base of the upper chamber, into which FITC-labeled albumin was introduced, and permeation into the lower chamber was measured. The RAEC monolayer was treated with 10(-8)-3 x 10(-7) M NPY for 2 h in normoxia or hypoxia. In hypoxia, NPY concentration dependently increased the permeability of the RAEC monolayer, whereas in normoxia no significant change was observed. Peptide YY, NPY Y(1), and NPY Y(2) receptor agonists and NPY Y(1) receptor antagonist exerted no significant effects under hypoxic conditions. NPY-(18-36), an NPY Y(3) receptor antagonist, elicited an inhibitory action on the NPY-induced increase in monolayer permeability. Furthermore, neither N-monomethyl-l-arginine, a nitric oxide synthase inhibitor, the bradykinin B(2) receptor antagonist FK-3657, nor the vascular endothelial growth factor receptor-coupled tyrosine kinase inhibitor tyrphostin SU-1498, injected into the medium of the upper chamber, affected the NPY-induced permeability changes under hypoxic conditions. The results suggest that the NPY-induced increase in permeability across the RAEC monolayer is closely related to low O(2) tension, possibly mediated by direct action on the NPY Y(3) receptor expressed on the endothelial cell membrane. Furthermore, this NPY-induced increase is not likely due to nitric oxide, bradykinin, or vascular endothelial growth factor.  相似文献   

6.
The presence of neuropeptide Y (NPY)-like immunoreactivity (-LI) in sympathetic perivascular nerves and the functional effects of NPY and noradrenaline (NA) on vascular tone were studied in skeletal muscle of various species. A dense network of NPY-LI was found around arteries and arterioles but not venules in the gluteus maximus muscle of man, gracilis muscle of dog, tenuissimus muscle of rabbit and quadriceps muscle of cat, rat, guinea pig and pig. The distribution of NPY-immunoreactive (-IR) nerves was closely correlated to the presence of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH)-positive fibers, two markers for noradrenergic neurons. Double-staining experiments revealed that NPY- and TH-IR as well as NPY- and DBH-IR nerve fibers around arteries and arterioles were identical. The veins and venules, however, lacked or had a very sparse innervation of NPY-, TH- and DBH-positive fibers. The NPY- and TH-IR nerves in quadriceps muscle of the guinea pig were absent after treatment with 6-hydroxydopamine. Lumbosacral sympathetic ganglia from the same species contained many NPY-positive cells which were also TH- and DBH-IR. NPY-LI was also detected by radioimmunoassay in extracts of skeletal muscle from guinea pig, rabbit, dog, pig and man as well as of lumbosacral sympathetic ganglia. The content of NPY-LI in skeletal muscle was relatively low (0.1-0.4 pmol/g), whereas lumbosacral sympathetic ganglia had a much higher content (48-88 pmol/g). NPY (10(-7) M) contracted arterioles in the tenuissimus muscle of the rabbit to a similar extent (by 65%) as NA (10(-6) M), as studied by intravital microscopy in vivo. NPY had no effect on the corresponding venules while NA caused a slight contraction of these vessels. In vitro studies of small human skeletal muscle arteries and veins revealed that NPY was more potent than NA in contracting the arteries, and the highest concentration of NPY (5 x 10(-7) M) caused a contraction of a similar magnitude as NA 10(-5) M. NA contracted veins from human skeletal muscle, while NPY had only small effects. It is suggested that NPY, together with NA, could be of importance for sympathetic control of skeletal muscle blood flow.  相似文献   

7.
8.
目的:研究神经肽Y对炎症反应及其对在低氧培养条件下的不同癌细胞活力的影响,探讨应激影响癌症发展的机制.方法:不同浓度神经肽Y(0,10-12M,10-10M,10-8M)与100 ng/ml LPS共孵育巨噬细胞24h后检测NO的浓度及iNOS表达的变化;不同浓度神经肽Y(0,10-9M,10-8M)刺激低氧培养条件下的肝癌细胞株HepG2与乳腺癌细胞株MCF-7 36h,采用cck-8检测细胞活力变化;不同浓度神经肽Y(0,10-9M,10-8)与LPS共孵育巨噬细胞24 h后取上清液离心,采用上清液培养两种癌细胞,并置于低氧条件下36h,cck-8检测细胞活力.结果:实验结果显示,神经肽Y可以抑制巨噬细胞NO的释放(P<0.05),并降低iNOS的表达(P<0.05);单独的神经肽Y对低氧培养条件下两种癌细胞的活力没有明显影响(P>0.05);但在低氧培养条件中,相比于LPS组的条件培养基,LPS加神经肽Y组的条件培养基可明显增强MCF-7的活力(P<0.05,P<0.01),而HepG 2的活力则没有统计学差异.结论:神经肽Y可能通过抑制炎症反应,从而增强乳腺癌细胞MCF-7在低氧环境下的活力.  相似文献   

9.
Neuropeptide Y (NPY) (1 microM) significantly reduced the basal cAMP concentration in slices of rat frontal cortex. However, NPY (10(-9)-10(-6)M) did not alter the isoproterenol-stimulated (10(-9)-10(-5) M) accumulation of cAMP in the frontal cortical slices, showing that Y2 NPY receptors do not modulate the beta-adrenoceptor-stimulated adenylase cyclase activity. NPY (10(-8)-2.5 x 10(-5) M) was also demonstrated to stimulate inositol phosphate accumulation in rat frontal cortex slices in a dose-dependent manner. However, NPY (1 microM) did not potentiate the ability of phenylephrine (5 X 10(-8)-10(-4) M), an alpha 1-adrenoceptor agonist, to stimulate inositol phosphate hydrolysis. The combined effects of phenylephrine and NPY (1 microM) on inositol phosphate hydrolysis were additive, suggesting that the alpha 1-adrenoceptor and NPY Y1 receptor sites are located on different postsynaptic sites in rat frontal cortex. This study demonstrates the existence of both Y2 and Y1 NPY receptors in the rat frontal cortex based on second messenger systems, but there does not appear to be an interaction of NPY with either alpha 1- or beta-adrenoceptors.  相似文献   

10.
The CNS modulates immune cells by direct synaptic-like contacts in the brain and at peripheral sites, such as lymphoid organs. To study the nerve-macrophage communication, a superfusion method was used to investigate cotransmission of neuropeptide Y (NPY) with norepinephrine (NE), with interleukin (IL)-6 secretion used as the macrophage read-out parameter. Spleen tissue slices spontaneously released NE, NPY, and IL-6 leading to a superfusate concentration at 3-4 h of 1 nM:, 10 pM:, and 120 pg/ml, respectively. Under these conditions, NPY dose-dependently inhibited IL-6 secretion with a maximum effect at 10(-10) M: (p = 0.012) and 10(-9) M: (p < 0.001). Simultaneous addition of NPY at 10(-9) M: and the alpha-2-adrenergic agonist p-aminoclonidine further inhibited IL-6 secretion (p < 0.05). However, simultaneous administration of NPY at 10(-9) M: and the beta-adrenergic agonist isoproterenol at 10(-6) M: or NE at 10(-6) M: significantly increased IL-6 secretion (p < 0.005). To objectify these differential effects of NPY, electrical field stimulation of spleen slices was applied to release endogenous NPY and NE. Electrical field stimulation markedly reduced IL-6 secretion, which was attenuated by the NPY Y1 receptor antagonist BIBP 3226 (10(-7) M, p = 0.039; 10(-8) M, p = 0.035). This indicates that NPY increases the inhibitory effect of endogenous NE, which is mediated at low NE concentrations via alpha-adrenoceptors. Blockade of alpha-adrenoceptors attenuated electrically induced inhibition of IL-6 secretion (p < 0.001), which was dose-dependently abrogated by BIBP 3226. This indicates that under blockade of alpha-adrenoceptors endogenous NPY supports the stimulating effect of endogenous NE via beta-adrenoceptors. These experiments demonstrate the ambiguity of NPY, which functions as a cotransmitter of NE in the nerve-macrophage interplay.  相似文献   

11.
12.
The neuropeptide Y (NPY) receptor subtypes Y1 and Y5 are involved in the regulation of feeding and several other physiological functions in mammals. To increase our understanding of the origin and mechanisms of the complex NPY system, we report here the cloning and pharmacological characterization of receptors Y1 and Y5 in the first non-mammal, chicken (Gallus gallus). The receptors display 80-83% and 64-72% amino acid sequence identity, respectively, with their mammalian orthologues. The three endogenous ligands NPY, peptide YY (PYY) and pancreatic polypeptide (PP) have similar affinities as in mammals, i.e. NPY and PYY have subnanomolar affinity for both receptors whereas chicken PP bound with nanomolar affinity to Y5 but not to Y1. A notable difference to mammalian receptor subtypes is that the Y1 antagonist SR120819A does not bind chicken Y1, whereas BIBP3226 does. The Y5 antagonist CGP71863A binds to the chicken Y5 receptor. Anatomically, both Y1 and Y5 have high mRNA expression levels in the infundibular nucleus which is the homologous structure of the hypothalamic arcuate nucleus in mammals. These results suggest that some of the selective Y1 and Y5 antagonists developed in mammals can be used to study appetite regulation in chicken.  相似文献   

13.
Neuropeptide Y (NPY) and melanocortin (MC) peptides have opposite effects on food intake: NPY-like peptides and MC receptor antagonists stimulate feeding and increase body weight, whereas melanocortins and NPY antagonists inhibit food intake. In this study we tested whether the orexigenic effect of the selective MC4 receptor antagonist HS014 (1 nmol) could be inhibited by three different NPY antagonists, (R)-N2-(diphenylacetyl)-N-[(4-hydroxy-phenyl)methyl]D-argininam ide (BIBP3226), (R)-N-[[4-(aminocarbonylaminomethyl)-phenyl]methyl]-N2(diphenyl acetyl)-argininamidetrifluoroacetate (BIBO3304), and decapeptide [D-Tyr(27,36)D-Thr32]NPY(27-36), after icv administration in freely feeding male rats. All three NPY receptor antagonists inhibited the orexigenic effects of HS014 partially and with markedly different potency. [D-Tyr(27,36)D-Thr32]NPY(27-36) was active only in subconvulsive dose. The NPY Y1 selective antagonist BIBP3226 was more effective in inhibiting the effect of HS014 than BIBO3304 despite in vitro data indicating that BIBP3226 is about 10 times less potent than BIBO3304 at NPY Y1 receptor. An enantiomer of BIBO3304, BIBO3457, failed to inhibit HS014-induced feeding, indicating that the effects of BIBO3304 were stereoselective. These results suggest that stimulation of food intake caused by weakening of melanocortinergic tone at the MC4 receptor is partially but not exclusively related to NPY Y1 receptor activation.  相似文献   

14.
Zhang P  Zheng J  Bradley ME  Hexum TD 《Peptides》2001,22(3):439-444
ATP increases cAMP formation in bovine chromaffin cells, EC(50) = 7.1 x 10(-6) M. NPY, EC(50) = 4.1 x 10(-8) M, increases the efficacy of ATP (1.5-2 fold). Inclusion of the selective Y1 receptor antagonist 1229U91 produced a decrease in NPY potency (EC(50) = 2.7 x 10(-7) M). PTX pretreatment did not abolish either the effect of ATP nor the enhancement by NPY. NPY could also enhance the ability of angiotensin and bradykinin to increase cAMP formation. The selective phospholipase C inhibitor, U73122, and the selective protein kinase C inhibitors, bisindolylmaleimide I and RO-31-8425, were effective inhibitors of the enhancing effect of NPY.  相似文献   

15.
We investigated the mitogenic effect, measured as [3H]thymidine incorporation, of neuropeptide Y (NPY) on smooth muscle cells (SMCs) from human subcutaneous arteries (diameter: 0.4 mm). NPY stimulated DNA synthesis in a concentration-dependent manner, Emax 32 +/- 5% relative to control. The effect was potently antagonised by the NPY Y1 receptor antagonist BIBP3226 ((R)-N2-(diphenylacetyl)-N-[(4-hydroxy-phenyl)methyl]-D-arginine-a mide), indicating the effect to be mediated via the NPY Y1 receptor. Noradrenaline (NA) also induced mitogenesis, Emax 35 +/- 10% relative to control. When added together, NPY and NA potentiated the [3H]thymidine incorporation, Emax 109 +/- 38% relative to control. Also, this effect seems to be mediated by the NPY Y1 receptor, since BIBP3226 blocked the effect (44 +/- 9% relative to control). The mitogenic effect of NPY and NA, two important transmitters of the sympathetic nervous system, might have clinical consequences on conditions with elevated sympathetic nerve activity.  相似文献   

16.
The effects of neuropeptide Y (NPY) on pineal gland cyclic AMP (cAMP) accumulation were investigated using dispersed pinealocytes from rats. NPY inhibited the intracellular cAMP accumulation stimulated by isoproterenol and norepinephrine in a dose-dependent manner during a 10-min incubation of pinealocytes. NPY (1 x 10(-7) M) also inhibited vasoactive intestinal peptide (VIP)- and cholera toxin-induced cAMP accumulation. The inhibitory effect of NPY on isoproterenol-induced cAMP accumulation was completely abolished by a 5-h pretreatment of pinealocytes with 1 microgram/ml of pertussis toxin (PT). These results suggest that NPY participates in modulation of cAMP production in the rat pineal gland through PT-sensitive G protein. Yohimbine, an alpha 2-adrenergic antagonist, blocked NPY inhibition of isoproterenol-stimulated cAMP accumulation. On the other hand, the alpha 2-adrenergic agonist clonidine by itself did not affect cAMP accumulation stimulated by isoproterenol but significantly potentiated NPY action. The present study demonstrates that NPY inhibits beta-adrenergic or VIPergic stimulation of the pineal gland cAMP accumulation. The inhibitory effect of NPY is mediated through PT-sensitive G protein. Our results also suggest that NPY exerts its action to affect alpha 2-adrenoceptor function.  相似文献   

17.
F Shahbazi  J M Conlon  S Holmgren  J Jensen 《Peptides》2001,22(7):1023-1029
The effects of [Arg(0),Trp(5),Leu(8)]-BK (cod [Arg(0)]BK) on vascular preparations from branches of the cod celiac artery and on longitudinal smooth muscle preparations from the cod intestine were investigated. Cod [Arg(0)]BK (3 x 10(-8) M) caused a relaxation of the celiac artery precontracted with adrenaline. The relaxation was abolished by the cyclooxygenase inhibitor indomethacin, suggesting that the effect is mediated through the release of prostaglandins, but there was no evidence for the involvement of leukotrienes or nitric oxide in the response. In the intestinal preparations, cod [Arg(0)]BK produced concentration-dependent contractions (pD(2) = 8.28 +/- 0.16). Experiments with N-terminally and C-terminally truncated analogs and with alanine-substituted analogs of cod [Arg(0)]BK demonstrate that the central amino acid Gly(4) and the C-terminal amino acids Leu(8) and Arg(9) are the most important in determining the conformation of the peptide that interacts with the receptor. The results indicate that the ligand binding properties of the cod BK receptor are considerably different from the receptor present in trout tissues and may resemble those of the mammalian B(2) receptor more closely.  相似文献   

18.
Neuropeptide Y (NPY) is an important regulator of energy balance in mammals through its orexigenic, antithermogenic, and insulin secretagogue actions. We investigated the regulation of endogenous NPY release from rat hypothalamic slices by NPY receptor ligands and calcium channel antagonists. High-potassium stimulation (60 mM) of the slices produced a calcium-dependent threefold increase in NPY release above basal release. The Y2 receptor agonists NPY(13-36) and N-acetyl[Leu28,Leu31]NPY(24-36), the Y4 agonist rat pancreatic polypeptide (rPP), and the Y4/Y5 agonist human pancreatic polypeptide (hPP) significantly reduced both basal and stimulated NPY release. NPY(13-36)-induced reduction of NPY release could be partially prevented in the presence of the weak Y2 antagonist T4-[NPY(33-36)]4, whereas the hPP- and rPP-induced inhibition of release was not affected by the Y5 antagonist CGP71683A or the Y1 antagonist BIBP3226. The selective Y1, Y2, and Y5 antagonists had no effect on either basal or potassium-stimulated release when administered alone. The calcium channel inhibitors omega-conotoxin GVIA (N-type), omega-agatoxin TK (P/Q-type), and omega-conotoxin MVIIC (Q-type) all significantly inhibited potassium-stimulated NPY release, without any effect on basal release, whereas nifedipine had no effect on either basal or stimulated release. Addition of both omega-conotoxin GVIA and omega-agatoxin TK together completely inhibited the potassium-stimulated release. In conclusion, we have demonstrated that NPY release from hypothalamic slices is calcium-dependent, involving N-, P-, and Q-type calcium channels. NPY release is also inhibited by Y2 agonists and rPP/hPP, suggesting that Y2 and Y4 receptors may act as autoreceptors on NPY-containing nerve terminals.  相似文献   

19.
Neuropeptide Y (NPY) modulates several aspects of the immune response but it is not known whether NPY responsiveness is altered with aging. In this work, the in vitro effect of NPY at concentrations ranging from 10(-)(14) M to 10(-)(7) M on lymphoproliferation has been studied in spleen, axillary node and thymus leukocytes from young, adult, mature and old BALB/c mice. The spontaneous proliferation of spleen lymphocytes from young mice was significantly stimulated by NPY. In response to the mitogen Con A, lymphoproliferation and IL-2 release by lymphocytes were inhibited significantly by NPY, these effects disappearing with aging. The results show that NPY is a modulator of lymphoproliferation and that this effect disappears progressively with age. Moreover, this regulatory role of NPY may be carried out through a decrease in IL-2 production.  相似文献   

20.
Neuropeptide Y (NPY) has several receptors; one of them, the neuropeptide Y5 receptor (NPY5) seems involved in feeding behavior in mammals. Although this particular receptor has been extensively studied in the literature, the difficulties encountered to obtain a stable cell line expressing this recombinant receptor have impaired the development of tools necessary to establish its molecular pharmacology. We thus established a method for the functional study of new ligands. It is based upon the cotransfection in human melatonin receptor 1 (MT1)-overexpressing HEK293 cells of three plasmids encoding melanocortin receptor (MC5), neuropeptide Y5 receptor (NPY5) and a cyclic AMP response element-controlled luciferase. Once challenged with alphaMSH, the MC5 receptor activates the cyclic AMP response, through the coupling protein subunit G(s). In contrast, NPY5 agonists, through the NPY5 receptor which is negatively coupled to the same pathway, counteract the alphaMSH-mediated effect on cyclic AMP level. Using appropriate controls, this method can pinpoint compounds with antagonistic activity. Simple and straightforward, this system permits reproducible measurements of agonist or antagonist effects in the presence of neuropeptide Y, the natural agonist. This method has the advantage over already existing methods and beyond its apparent complexity, to enhance the cyclic AMP concentration at a 'physiological' level, by opposition to a forskolin-induced adenylate cyclase activation. Finally, to further validate this assay, we showed results from (1) a series of natural peptidic agonists that permitted the standardization and (2) a series of potent nonpeptidic antagonists (affinity >10(-9) M) that form a new class of active NPY5 receptor antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号