首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we explored a novel function of polymorphonuclear neutrophils (PMN) NAD(P)H oxidase in the mechanism of tumor necrosis factor-alpha (TNFalpha)-induced NF-kappaB activation and intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells. Studies were made in mice lacking the p47(phox) subunit of NAD(P)H oxidase as well as in cultured mouse lung vascular endothelial cells (MLVEC) from these mice. In response to TNFalpha challenge, NF-kappaB activation and ICAM-1 expression were significantly attenuated in lungs of p47(phox)(-/-) mice as compared with wild-type (WT) mice. The attenuated NF-kappaB activation in p47(phox)(-/-) mice was secondary to inhibition of NIK activity and subsequent IkappaBalpha degradation. Induction of neutropenia using anti-PMN serum prevented the initial TNFalpha-induced NF-kappaB activation and ICAM-1 expression in WT mice, indicating the involvement of PMN NAD(P)H oxidase in signaling these responses. Moreover, the responses were restored upon repletion with PMN obtained from WT mice but not with PMN from p47(phox)(-/-) mice. These findings were recapitulated in MLVEC co-cultured with PMN, suggesting that NF-kappaB activation and resultant ICAM-1 expression in endothelial cells occurred secondary to oxidants generated by the PMN NAD(P)H oxidase complex. The functional relevance of the PMN NAD(P)H oxidase in mediating TNFalpha-induced ICAM-1-dependent endothelial adhesivity was evident by markedly reduced adhesion of p47(phox)(-/-) PMN in co-culture experiments. Thus, oxidant signaling by the PMN NAD(P)H oxidase complex is an important determinant of TNFalpha-induced NF-kappaB activation and ICAM-1 expression in endothelial cells.  相似文献   

2.
3.
4.
Expression of endothelial and leukocyte cell adhesion molecules is a principal determinant of polymorphonuclear neutrophil (PMN) recruitment during inflammation. It has been demonstrated that pharmacological inhibition of these molecules can attenuate PMN influx and subsequent tissue injury. We determined the temporal expression of alpha-granule membrane protein-40 (P-selectin), endothelial leukocyte adhesion molecule 1 (E-selectin), and intercellular cell adhesion molecule 1 (ICAM-1) after coronary artery occlusion and up to 3 days of reperfusion. The expression of all of these cell adhesion molecules peaked around 24 h of reperfusion. We determined the extent to which these molecules contribute to PMN infiltration by utilizing mice deficient (-/-) in P-selectin, E-selectin, ICAM-1, and CD18. Each group underwent 30 min of in vivo, regional, left anterior descending (LAD) coronary artery ischemia and 24 h of reperfusion. PMN accumulation in the ischemic-reperfused (I/R) zone was assessed using histological techniques. Deficiencies of P-selectin, E-selectin, ICAM-1, or CD18 resulted in significant (P < 0.05) attenuation of PMN infiltration into the I/R myocardium (MI/R). In addition, P-selectin, E-selectin, ICAM-1, and CD18 -/- mice exhibited significantly (P < 0.05) smaller areas of necrosis after MI/R compared with wild-type mice. These data demonstrate that MI/R induces coronary vascular expression of P-selectin, E-selectin, and ICAM-1 in mice. Furthermore, genetic deficiency of P-selectin, E-selectin, ICAM-1, or CD18 attenuates PMN sequestration and myocardial injury after in vivo MI/R. We conclude that P-selectin, E-selectin, ICAM-1, and CD18 are involved in the pathogenesis of MI/R injury in mice.  相似文献   

5.
6.
Intercellular adhesion molecule-1 (ICAM-1) of the vascular endothelium plays a key role in the development of pulmonary oxygen toxicity. We studied the effect of steroid on hyperoxia-induced ICAM-1 expression using cultured endothelial cells in vitro. Human pulmonary artery endothelial cells (HPAECs) were cultured to confluence, and then the monolayers were exposed to either control (21% O(2)-5% CO(2)) or hyperoxic (90% O(2)-5% CO(2)) conditions with and without a synthetic glucocorticoid, methylprednisolone (MP). MP reduced hyperoxia-induced ICAM-1 and ICAM-1 mRNA expression in a dose-dependent manner. Neutrophil adhesion to hyperoxia-exposed endothelial cells was also inhibited by MP treatment. In addition, MP attenuated hyperoxia-induced H(2)O(2) production in HPAECs as assessed by flow cytometry. An electrophoretic mobility shift assay demonstrated that hyperoxia activated nuclear factor-kappaB (NF-kappaB) but not activator protein-1 (AP-1) and that MP attenuated hyperoxia-induced NF-kappaB activation dose dependently. With Western immunoblot analysis, IkappaB-alpha expression was decreased by hyperoxia and increased by MP treatment. These results suggest that MP downregulates hyperoxia-induced ICAM-1 expression by inhibiting NF-kappaB activation via increased IkappaB-alpha expression.  相似文献   

7.
The CXC chemokine IL-8, which promotes adhesion, activation, and transmigration of polymorphonuclear neutrophils (PMN), has been associated with production of tissue injury in reperfused myocardium. Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric peptide that is a key regulator of genes such as heme oxygenase (HO)-1 expressed under hypoxic conditions. We hypothesized that HO-1 plays an important role in regulating proinflammatory mediator production under conditions of ischemia-reperfusion. HIF-1 was activated in the human microvascular endothelial cell line (HMEC-1) with the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG). DMOG significantly attenuated cytokine-induced IL-8 promoter activity and protein secretion and cytokine-induced PMN migration across human microvascular endothelial cell line HMEC-1 monolayers. In vivo studies in a rabbit model of myocardial ischemia-reperfusion showed that rabbits pretreated with a 20 mg/kg DMOG infusion (n = 6) 24 h before study exhibited a 21.58 +/- 1.76% infarct size compared with 35.25 +/- 2.06% in saline-treated ischemia-reperfusion animals (n = 6, change in reduction = 39%; P < 0.001). In DMOG-pretreated (20 mg/kg) animals, plasma IL-8 levels at 3 h after onset of reperfusion were 405 +/- 40 pg/ml vs. 790 +/- 40 pg/ml in saline-treated ischemia-reperfusion animals (P < 0.001). DMOG pretreatment reduced myocardial myeloperoxidase activity, expressed as number of PMN per gram of myocardium, to 1.43 +/- 0.59 vs. 4.86 +/- 1.1 (P = 0.012) in saline-treated ischemia-reperfused hearts. Both in vitro and in vivo DMOG-attenuated IL-8 production was associated with robust HO-1 expression. Thus our data show that HIF-1 activation induces substantial HO-1 expression that is associated with attenuated proinflammatory chemokine production by microvascular endothelium in vitro and in vivo.  相似文献   

8.
Chronic inflammation exacerbates the cardiovascular complications of diabetes. Complement activation plays an important role in the inflammatory response and is known to be involved in ischemia-reperfusion (I/R) injury in the nondiabetic heart. The purpose of this study was to determine if increased complement deposition explains, in part, the increased severity of neutrophil-mediated I/R injury in the type 2 diabetic heart. Nondiabetic Zucker lean control (ZLC) and Zucker diabetic fatty (ZDF) rats underwent 30 min of coronary artery occlusion followed by 120 min of reperfusion. Another group of ZDF rats was treated with the complement inhibitor FUT-175 before reperfusion. Left ventricular (LV) tissue samples were stained for complement deposition and neutrophil accumulation following reperfusion. We found significantly more complement deposition in the ZDF LV compared with the ZLC (P < 0.05), and complement deposition was associated with significantly greater neutrophil accumulation. In whole blood samples taken preischemia and at 120 min reperfusion, neutrophils exhibited significantly more CD11b expression in the ZDF group compared with the ZLC group (P < 0.05). Furthermore, intracellular adhesion molecule (ICAM)-1 expression following I/R was increased significantly in ZDF hearts compared with ZLC hearts (P < 0.001). These results indicate that, in the ZDF heart, increased ICAM-1 and polymorphonuclear neutrophil (PMN) CD11b expression play a role in increasing PMN accumulation following I/R. The infarct size of the ZDF was significantly greater than ZLC (P < 0.05), and treatment with FUT-175 significantly decreased infarct size, complement deposition, and PMN accumulation in the diabetic heart. These findings indicate an exacerbated inflammatory response in the type 2 diabetic heart that contributes to the increased tissue injury observed following ischemia and reperfusion.  相似文献   

9.
10.
Lung inflammatory disease is characterized by increased polymorphonuclear leukocyte (PMN) infiltration and vascular permeability. PMN infiltration into tissue involves signaling between endothelial cells and migrating PMNs, which leads to alterations in the organization of adherens junctions (AJs). We addressed the possible role of the protein constituents of AJs, endothelium-specific vascular-endothelial (VE)-cadherin, in the migration of PMNs. Studies were made using VE-cadherin mutant constructs lacking the extracellular domain (DeltaEXD) or, additionally, lacking the COOH-terminus beta-catenin-binding domain (DeltaEXDDeltabeta). Either construct was transduced in pulmonary microvessel endothelia of mice using cationic liposome-encapuslated cDNA constructs injected intravenously. Optimal expression of constructs was seen by Western blot analysis within 24 h. Vessel wall liquid permeability measured as the lung microvessel capillary filtration coefficient increased threefold in DeltaEXD-transduced lungs, indicating patency of interendothelial junctions, whereas the control DeltaEXDDeltabeta construct was ineffective. To study lung tissue PMN recruitment, we challenged mice intraperitoneally with LPS (3 mg/kg) for 6 h and measured PMN numbers by bronchoalveolar lavage and their accumulation morphometrically in lung tissue. DeltaEXD expression markedly reduced the PMN sequestration and migration seen in nontransfected (control wild type) or DeltaEXDDeltabeta-transfected (negative control) mice challenged with LPS. In addition, DeltaEXD transfection suppressed LPS-induced activation of NF-kappaB and consequent ICAM-1 expression. These results suggest that disassembly of VE-cadherin junctions serves as a negative signal for limiting transendothelial PMN migration secondary to decreased ICAM-1 expression in the mouse model of LPS-induced sepsis.  相似文献   

11.
Mesenteric ischemia-reperfusion injury is a serious complication of shock. Because activation of nuclear factor-kappaB (NF-kappaB) has been implicated in this process, we treated rats with vehicle or the IkappaB-alpha inhibitor BAY 11-7085 (25 mg/kg ip) 1 h before mesenteric ischemia-reperfusion (45 min of ischemia followed by reperfusion at 30 min or 6 h) and examined the ileal injury response. Vehicle-treated rats subjected to ischemia-reperfusion exhibited severe mucosal injury, increased myeloperoxidase (MPO) activity, increased expression of interleukin-6 and intercellular adhesion molecule 1 protein, and a biphasic peak of NF-kappaB DNA-binding activity during the 30-min and 6-h reperfusion courses. In contrast, BAY 11-7085-pretreated rats subjected to ischemia-reperfusion exhibited less histological injury and less interleukin-6 and intercellular adhesion molecule 1 protein expression at 30 min of reperfusion but more histological injury at 6 h of reperfusion than vehicle-treated rats subjected to ischemia-reperfusion. Studies with phosphorylation site-specific antibodies demonstrated that IkappaB-alpha phosphorylation at Ser(32),Ser(36) was induced at 30 min of reperfusion, whereas tyrosine phosphorylation of IkappaB-alpha was induced at 6 h of reperfusion. BAY 11-7085 inhibited the former, but not the latter, phosphorylation pathway, whereas alpha-melanocyte-stimulating hormone, which is effective in limiting late ischemia-reperfusion injury to the intestine, inhibited tyrosine phosphorylation of IkappaB-alpha. Thus NF-kappaB appears to play an important role in the generation and resolution of intestinal ischemia-reperfusion injury through different activation pathways.  相似文献   

12.
13.
Neutrophils are pivotal in the pathogenesis of ischemia-reperfusion (I/R) injury leading to muscle damage. Firm adhesion of neutrophils to the endothelium is initiated by an interaction between intercellular adhesion molecular-1 (ICAM-1) on the endothelium and beta(2)-integrins on neutrophils. Inhibition of ICAM-1-dependent binding using monoclonal antibodies has been shown to be efficacious in ameliorating I/R injury by preventing the influx of neutrophils into the ischemic tissue. We recently described a cyclic peptide that is a potent and selective inhibitor of ICAM-1 (IP25) in vitro. In this study, we tested the hypothesis that IP25-mediated blockade of ICAM-1 would inhibit neutrophil influx during reperfusion of ischemic tissue and consequently attenuate muscle injury in a tourniquet hindlimb murine model of I/R injury. Varying amounts of peptide drug were injected at the beginning of the reperfusion period. The neutrophil influx and size of infarction at the end of 2 h of reperfusion were compared with those in untreated control mice and contralateral nonischemic limbs. Mice receiving IP25 immediately before reperfusion showed a 56% reduction in neutrophil infiltration in the ischemic muscle, accompanied by a 40% reduction in the infarct size. No effect on I/R injury was seen if IP25 administration was delayed for 60 min after reperfusion. We conclude that IP25 effectively inhibits ICAM-1-mediated adhesion of neutrophils to the endothelium in mice leading to a protective effect and suggests that synthetic peptide antagonists have a potential role as therapeutic tools.  相似文献   

14.
rIL-1 beta treatment of cultured human endothelial cells (HEC) promotes polymorphonuclear leukocyte (PMN) adhesion and transmigration. Using in vitro quantitative monolayer adhesion and videomicroscopic transmigration assays, we have examined the contributions of endothelial-leukocyte adhesion molecule-1 (ELAM-1), intercellular adhesion molecule-1 (ICAM-1), and the leukocyte adhesion complex, CD11/CD18, to these processes. Maximal enhancement of PMN adhesion and transmigration were observed after 4 h of rIL-1 beta treatment, when surface expression of ELAM-1 had peaked and ICAM-1 was modestly increased. Blocking mAb directed to either ELAM-1 or ICAM-1 inhibited greater than 90% of the up-regulated PMN transmigration. Blocking mAb directed to either CD11a/CD18 (LFA-1, a ICAM-1 counter-receptor), CD11b/CD18 (Mo-1), or CD18 (common beta 2-integrin) also blocked greater than 90% of PMN transmigration. At later time points (24 or 48 h), ELAM-1 surface expression was markedly decreased, whereas ICAM-1 expression was increased over the 4-h level; PMN adhesion remained elevated (approximately 50 to 60% of 4 h level), but transmigration returned to levels seen with unactivated HEC. These data indicate that PMN interaction with at least two distinct HEC adhesion molecules is necessary for transendothelial migration and suggests that PMN adhesion and transmigration, although interrelated, are mechanistically distinct processes.  相似文献   

15.
16.
We investigated the effects of tyrophostin AG 556, a tyrosine kinase inhibitor, on the phenomenon of leukocyte accumulation during ischaemia and reperfusion of the myocardium. Male anaesthetized rats were subjected to total occlusion (45 min) of the left main coronary artery followed by 5 h reperfusion (MI/R). Sham myocardial ischaemia-reperfusion rats (Sham MI/R) were used as controls. Myocardial necrosis, myocardial myeloperoxidase activity (MPO), serum creatinine phosphokinase activity (CPK) serum Tumor Necrosis Factor (TNF-alpha) and Interleukin 6 (IL-6), cardiac intercellular adhesion molecule-1 (ICAM-1) and TNF-alpha expression and myocardial contractility (left ventricle dP/dt(max)) were evaluated. Myocardial ischaemia plus reperfusion in untreated rats produced marked myocardial necrosis, increased serum CPK activity (196.5 +/- 19 U/100 ml, at the end of reperfusion) and myeloperoxidase activity (MPO, a marker of leukocyte accumulation) both in the area-at-risk (4.5 +/- 0.5 U/g/tissue) and in necrotic area (8.2 +/- 1.2 U/g/tissue), reduced myocardial contractility (1,706 +/- 52 mmHg/s, at the end of reperfusion) and induced a marked increase in the serum levels of TNF-alpha (1,950 +/- 97 pg/ml, at 1 h of reperfusion) and IL-6 (998 +/- 16 U/ml, at the end of reperfusion). Finally, myocardial ischaemia-reperfusion injury also increased cardiac mRNA for TNF-alpha and ICAM-1 in the myocardium-at risk. Tyrphostin AG 556 (0.5, 1 and 2 mg/kg subcutaneously 5 min after the onset of reperfusion) lowered myocardial necrosis and myeloperoxidase activity in the area-at-risk (1.5 +/- 0.2 U/g/tissue, following the highest dose) and in necrotic area (2.9 +/- 0.3 U/g/tissue following the highest dose), decreased serum CPK activity (96 +/- 9 U/100 ml, at the end of reperfusion), lowered serum TNF-alpha and IL-6, increased myocardial contractility (2,096 +/- 88 mmHg s, at the end of reperfusion) and reduced cardiac mRNA levels for TNF-alpha and ICAM-1. The present data suggest that tyrosine kinase inhibitors protect against myocardial ischaemia-reperfusion injury by reducing leukocyte accumulation to the ischaemic myocardium.  相似文献   

17.
Li X  Meng Y  Wu P  Zhang Z  Yang X 《Regulatory peptides》2007,138(1):15-25
BACKGROUND/AIMS: Intrahepatic renin-angiotensin-aldosterone system (RAAS) plays a key role in the fibrogenesis of liver. However, the signal transduction mechanism underlying effects of Angiotensin II (Ang II) and Aldosterone (Aldo) on Nuclear Factor-kappaB (NF-kappaB) and active protein-1 (AP-1) pathway in hepatic fibrogenesis remains to be fully elucidated. The present study aims to investigate the signal transduction mechanism underlying effects of Ang II and Aldo on NF-kappaB and AP-1 pathway during hepatic fibrogenesis. METHODS: To assess the effect of AECI and Angiotensin II type 1 receptor (AT-1 receptor) blocker on NF-kappaB activity in liver, a model of fibrosis was performed in rat. In vitro, hepatic stellate cells (HSCs)-T6 cells were preincubated for 1 h or not with U0126, a specific inhibitor of extracellular signal regulated kinase (ERK), irbesartan, and N-acetylcysteine prior to exposure to Ang II or Aldo for the indicated times. DNA binding activity of NF-kappaB and AP-1 were analyzed by Electrophoretic mobility shift assay (EMSA). Western blot was used to detect expression of IkappaBalpha and Phospho-P42/44. RT-PCR was used to detect the expressions of tumor necrosis factor alpha (TNFalpha) mRNA and alpha1 (I) procollagen mRNA. RESULTS: AECI and AT-1 receptor blocker exert anti-fibrosis effect through inhibiting NF-kappaB activation in liver. Ang II and Aldo increase HSCs NF-kappaB activity and NF-kappaB target gene-TNFalpha expression by inhibiting IkappaBalpha expression in a redox-sensitive manner. Ang II and Aldo also markedly increase HSCs AP-1 activity and AP-1 target gene-alpha1 (I) procollagen mRNA expression via ERK1/2 pathway in a redox-sensitive manner. CONCLUSIONS: These results show that stimulation of NF-kappaB and AP-1 pathway mediate hepatic fibrogenesis induced by intrahepatic RAAS.  相似文献   

18.
19.
In hemorrhagic shock (HS), increased cytokine production contributes to tissue inflammation and injury through the recruitment of neutrophils [polymorphonuclear cells (PMN)]. HS stimulates the early expression of inducible nitric oxide synthase (iNOS) that modulates proinflammatory activation after hemorrhage. Experiments were performed to determine the contribution of iNOS to gut inflammation and dysmotility after HS. Rats subjected to HS (mean arterial pressure 40 mmHg for 2.5 h followed by resuscitation and death at 4 h) demonstrated histological signs of mucosal injury, impairment of intestinal smooth muscle contractility, extravasation of PMN, and increased gut mRNA levels of ICAM-1, IL-6, and granulocyte colony-stimulating factor (G-CSF). In addition, DNA binding activity of NF-kappaB and Stat3, an IL-6 signaling intermediate, was significantly increased. In shocked rats treated with the selective iNOS inhibitor l-N(6)-(1-iminoethyl)lysine at the time of resuscitation, histological signs of intestinal injury and PMN infiltration were reduced and muscle contractility was almost completely restored. Selective iNOS inhibition in shocked animals reduced the binding activity of NF-kappaB and Stat3 and reduced mRNA levels of ICAM-1, IL-6, and G-CSF. The results of studies using iNOS knockout mice subjected to HS were similar. We propose that early upregulation of iNOS contributes to the inflammatory response in the gut wall and participates in the activation of signaling cascades and cytokine expression that regulate intestinal injury, PMN recruitment, and impaired gut motility.  相似文献   

20.
Induction of tissue factor expression in endothelial cells via ligation of CD40 probably figures prominently in the pathogenesis of prevalent inflammatory diseases, including atherosclerosis. However, the molecular mechanisms of tissue factor gene expression triggered by CD40 ligand (CD40L) in this cell type remain unknown. We demonstrate here that the tissue factor promoter region -278 bp to +121 bp contains the CD40L-responsive elements, consisting of activator protein 1 (AP-1)+/-, nuclear factor (NF) kappaB-, and Egr-1-binding sites. Mutations of either the AP-1- or NF-kappaB-binding sites markedly reduced the CD40L-dependent promoter activation. The AP-1 and NF-kappaB sites displayed constitutive and CD40L-enhanceable DNA binding activity, respectively. Of note, mutation of the Egr-1-binding sites, previously not associated with CD40 signaling, impaired activation of the tissue factor promoter. Accordingly, CD40L strongly induced Egr-1 protein expression and DNA binding activity to all three bindings sites. In contrast to CD40L, other established inducers of tissue factor in endothelial cells, interleukin-1beta or tumor necrosis factor alpha, did not increase the expression of Egr-1. In conclusion, induction of tissue factor gene expression in human endothelial cells by CD40L involves AP-1 and NF-kappaB as well as Egr-1, a pathway previously not implicated in CD40 signaling and distinct from that employed by certain other proinflammatory cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号