首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A unique transient outward K(+) current (I(to)) has been described to result from the removal of extracellular Ca(2+) from ventricular myocytes of the guinea pig (15). This study addressed the question of whether this current represented K(+)-selective I(to) or the efflux of K(+) via L-type Ca(2+) channels. This outward current was inhibited by Cd(2+), Ni(2+), Co(2+), and La(3+) as well as by nifedipine. All of these compounds were equally effective inhibitors of the L-type Ca(2+) current. The current was not inhibited by 4-aminopyridine. Apparent inhibition of the outward current by extracellular Ca(2+) was shown to result from the displacement of the reversal potential of cation flux through L-type Ca(2+) channels. The current was found not to be K(+) selective but also permeant to Cs(+). The voltage dependence of inactivation of the outward current was identical to that of the L-type Ca(2+) current. It is concluded that extracellular Ca(2+) does not mask an A-type K(+) current in guinea pig ventricular myocytes.  相似文献   

2.
External divalent cations are known to play an important role in the function of voltage-gated ion channels. The purpose of this study was to examine the sensitivity of the voltage-gated K(+) currents of human atrial myocytes to external Ca(2+) ions. Myocytes were isolated by collagenase digestion of atrial appendages taken from patients undergoing coronary artery-bypass surgery. Currents were recorded from single isolated myocytes at 37 degrees C using the whole-cell patch-clamp technique. With 0.5 mM external Ca(2+), voltage pulses positive to -20 mV (holding potential = -60 mV) activated outward currents which very rapidly reached a peak (I(peak)) and subsequently inactivated (tau = 7.5 +/- 0.7 msec at +60 mV) to a sustained level, demonstrating the contribution of both rapidly inactivating transient (I(to1)) and non-inactivating sustained (I(so)) outward currents. The I(to1) component of I(peak), but not I(so), showed voltage-dependent inactivation using 100 msec prepulses (V(1/2) = -35.2 +/- 0.5 mV). The K(+) channel blocker, 4-aminopyridine (4-AP, 2 mM), inhibited I(to1) by approximately 76% and reduced I(so) by approximately 33%. Removal of external Ca(2+) had several effects: (i) I(peak) was reduced in a manner consistent with an approximately 13 mV shift to negative voltages in the voltage-dependent inactivation of I(to1). (ii) I(so) was increased over the entire voltage range and this was associated with an increase in a non-inactivating 4-AP-sensitive current. (iii) In 79% cells (11/14), a slowly inactivating component was revealed such that the time-dependent inactivation was described by a double exponential time course (tau(1) = 7.0 +/- 0.7, tau(2) = 90 +/- 21 msec at +60 mV) with no effect on the fast time constant. Removal of external Ca(2+) was associated with an additional component to the voltage-dependent inactivation of I(peak) and I(so) (V(1/2) = -20.5 +/- 1.5 mV). The slowly inactivating component was seen only in the absence of external Ca(2+) ions and was insensitive to 4-AP (2 mM). Experiments with Cs(+)-rich pipette solutions suggested that the Ca(2+)-sensitive currents were carried predominantly by K(+) ions. External Ca(2+) ions are important to voltage-gated K(+) channel function in human atrial myocytes and removal of external Ca(2+) ions affects I(to1) and 4-AP-sensitive I(so) in distinct ways.  相似文献   

3.
The bronchial vasculature plays an important role in airway physiology and pathophysiology. We investigated the ion currents in canine bronchial smooth muscle cells using patch-clamp techniques. Sustained outward K(+) current evoked by step depolarizations was significantly inhibited by tetraethylamonium (1 and 10 mM) or by charybdotoxin (10(-6) M) but was not significantly affected by 4-aminopyridine (1 or 5 mM), suggesting that it was primarily a Ca(2+)-activated K(+) current. Consistent with this, the K(+) current was markedly increased by raising external Ca(2+) to 4 mM but was decreased by nifedipine (10(-6) M) or by removing external Ca(2+). When K(+) currents were blocked (by Cs(+) in the pipette), step depolarizations evoked transient inward currents with characteristics of L-type Ca(2+) current as follows: 1) activation that was voltage dependent (threshold and maximal at -50 and -10 mV, respectively); 2) inactivation that was time dependent and voltage dependent (voltage causing 50% maximal inactivation of -26 +/- 22 mV); and 3) blockade by nifedipine (10(-6) M). The thromboxane mimetic U-46619 (10(-6) M) caused a marked augmentation of outward K(+) current (as did 10 mM caffeine) lasting only 10-20 s; this was followed by significant suppression of the K(+) current lasting several minutes. Phenylephrine (10(-4) M) also suppressed the K(+) current to a similar degree but did not cause the initial transient augmentation. None of these three agonists elicited inward current of any kind. We conclude that bronchial arterial smooth muscle expresses Ca(2+)-dependent K(+) channels and voltage-dependent Ca(2+) channels and that its excitation does not involve activation of Cl(-) channels.  相似文献   

4.
Capacitative Ca2+ entry has been examined in several tissues and, in some, appears to be mediated by nonselective cation channels collectively referred to as "store-operated" cation channels; however, relatively little is known about the electrophysiological properties of these channels in airway smooth muscle. Consequently we examined the electrophysiological characteristics and changes in intracellular Ca2+ concentration associated with a cyclopiazonic acid (CPA)-evoked current in porcine and bovine airway smooth muscle using patch-clamp and Ca2+-fluorescence techniques. In bovine tracheal myocytes, CPA induced an elevation of intracellular Ca2+ that was dependent on extracellular Ca2+ and was insensitive to nifedipine (an L-type voltage-gated Ca2+ channel inhibitor). Using patch-clamp techniques and conditions that block both K+ and Cl- currents, we found that CPA rapidly activated a membrane conductance (I(CPA)) in porcine and bovine tracheal myocytes that exhibits a linear current-voltage relationship with a reversal potential around 0 mV. Replacement of extracellular Na+ resulted in a marked reduction of I(CPA) at physiological membrane potentials (i.e., -60 mV) that was accompanied by a shift in the reversal potential for I(CPA) toward more negative membrane potentials. In addition, I(CPA) was markedly inhibited by 10 microM Gd3+ and La3+ but was largely insensitive to 1 microM nifedipine. We conclude that CPA induces capacitative Ca2+ entry in porcine and bovine tracheal smooth muscle via a Gd3+- and La3+-sensitive, nonselective cation conductance.  相似文献   

5.
The relative contribution of the sarcoplasmic reticulum (SR), the L-type Ca(2+) channel and the Na(+)/Ca(2+) exchanger (NCX) were assessed in turtle ventricular myocytes using epifluorescent microscopy and electrophysiology. Confocal microscopy images of turtle myocytes revealed spindle-shaped cells, which lacked T-tubules and had a large surface area-to-volume ratio. Myocytes loaded with the fluorescent Ca(2+)-sensitive dye Fura-2 elicited Ca(2+) transients, which were insensitive to ryanodine and thapsigargin, indicating the SR plays a small role in the regulation of contraction and relaxation in the turtle ventricle. Sarcolemmal Ca(2+) currents were measured using the perforated-patch voltage-clamp technique. Depolarizing voltage steps to 0 mV elicited an inward current that could be blocked by nifedipine, indicating the presence of Ca(2+) currents originating from L-type Ca(2+) channels (I(Ca)). The density of I(Ca) was 3.2 +/- 0.5 pA/pF, which led to an overall total Ca(2+) influx of 64.1 +/- 9.3 microM/l. NCX activity was measured as the Ni(+)-sensitive current at two concentrations of intracellular Na(+) (7 and 14 mM). Total Ca(2+) influx through the NCX during depolarizing voltage steps to 0 mV was 58.5 +/- 7.7 micromol/l and 26.7 +/- 3.2 micromol/l at 14 and 7 mM intracellular Na(+), respectively. In the absence of the SR and L-type Ca(2+) channels, the NCX is able to support myocyte contraction independently. Our results indicate turtle ventricular myocytes are primed for sarcolemmal Ca(2+) transport, and most of the Ca(2+) used for contraction originates from the L-type Ca(2+) channel.  相似文献   

6.
Wang W  Hu GY  Wang YP 《Life sciences》2006,78(26):2989-2997
Magnesium lithospermate B (MLB) is the main water-soluble principle of Salviae Miltiorrhizae Radix (also called as 'Danshen' in the traditional Chinese medicine) for the treatment of cardiovascular diseases. MLB was found to possess a variety of pharmacological actions. However, it is unclear whether and how MLB affects the cardiac ion channels. In the present study, the effects of MLB on the voltage-activated ionic currents were investigated in single ventricular myocytes of adult guinea pigs. MLB reversibly inhibited L-type Ca(2+) current (I(Ca,L)). The inhibition was use-dependent and voltage-dependent (the IC(50) value of MLB was 30 microM and 393 microM, respectively, at the holding potential of -50 mV and -100 mV). In the presence of 100 microM MLB, both the activation and steady-state inactivation curves of I(Ca,L) were markedly shifted to hyperpolarizing membrane potentials, whereas the time course of recovery of I(Ca,L) from inactivation was not altered. MLB up to 300 microM had no significant effect on the fast-inactivating Na(+) current (I(Na)), delayed rectifier K(+) current (I(K)) and inward rectifier K(+) current (I(K1)). The results suggest that the voltage-dependent Ca(2+) antagonistic effect of MLB work in concert with its antioxidant action for attenuating heart ischemic injury.  相似文献   

7.
Transient outward currents in rat saphenous arterial myocytes were studied using the perforated configuration of the patch-clamp method. When myocytes were bathed in a Na-gluconate solution containing TEA to block large-conductance Ca2+-activated K+ (BK) currents, depolarizing pulses positive to +20 mV from a holding potential of -100 mV induced fast transient outward currents. The activation and inactivation time constants of the current were voltage dependent, and at +40 mV were 3.6 +/- 0.8 ms and 23.9 +/- 6.4 ms (n = 4), respectively. The steady-state inactivation of the transient outward current was steeply voltage dependent (z = 1.7), with 50% of the current inactivated at -55 mV. The current was insensitive to the A-type K+ channel blocker 4-AP (1-5 mM), and was modulated by external Ca, decreasing to approximately 0.85 of control values upon raising Ca2+ from 1 to 10 mM, and increasing approximately 3-fold upon lowering it to 0.1 mM. Transient outward currents were also recorded following replacement of internal K+ with either Na+ or Cs+, raising the possibility that the current was carried by monovalent ions passing through voltage-gated Ca2+ channels. This hypothesis was supported by the finding that the transient outward current had the same inactivation rate as the inward Ba2+ current, and that both currents were effectively blocked by the L-type Ca2+ channel blocker, nifedipine and enhanced by the agonist BAYK8644.  相似文献   

8.
The electrophysiological and pharmacological properties of Ca(2+) current (I(Ca)) were determined by the whole-cell configuration of the patch-clamp technique in smooth muscle cells from human umbilical artery. Using 5 mM extracellular Ca(2+), depolarizing step pulses from -60 to 50 mV from a holding membrane potential of -80 mV evoked an I(Ca) which activated at membrane potentials more positive than -50 mV and exhibited a maximum current density in a range of 10-20 mV. Steady-state inactivation protocols using a V(test) of 10 mV gave a voltage at one-half inactivation and a slope factor of -35.6 mV and 9.5 mV, respectively. Nifedipine (1 microM), an L-type Ca(2+) channels antagonist, completely inhibited I(Ca), while the L-type Ca(2+) channels agonist Bay-K 8644 (1 microM) significantly increased I(Ca) amplitude. Moreover, the selective blocker of P-/Q-type Ca(2+) channels omega-agatoxin IVA partially blocked I(Ca) (about 40 % inhibition at +20 mV by 20 nM). These pharmacological results suggest that L- and P-/Q-type Ca(2+) channels, both nifedipine-sensitive, underlie the I(Ca) registered using low extracellular Ca(2+). The presence of the P-/Q-type Ca(2+) channels was confirmed by immunoblot analysis. When I(Ca) was recorded in a high concentration (30 mM) of extracellular Ca(2+) or Ba(2+) as current carrier, it was evident the presence of a nifedipine-insensitive component which completely inactivated during the course of the voltage-step (75 ms) at all potentials tested, and was blocked by the T-type Ca(2+) channels blocker mibefradil (10 microM). Summarizing, this work shows for the first time the electrophysiological and pharmacological properties of voltage-activated Ca(2+) currents in human umbilical artery smooth muscle cells.  相似文献   

9.
Patch-clamp studies were carried out in villus enterocytes isolated from the guinea pig proximal small intestine. In the whole-cell mode, outward K+ currents were found to be activated by depolarizing command pulses to -45 mV. The activation followed fourth order kinetics. The time constant of K+ current activation was voltage-dependent, decreasing from approximately 3 ms at -10 mV to 1 ms at +50 mV. The K+ current inactivated during maintained depolarizations by a voltage- independent, monoexponential process with a time constant of approximately 470 ms. If the interpulse interval was shorter than 30 s, cumulative inactivation was observed upon repeated stimulations. The steady state inactivation was voltage-dependent over the voltage range from -70 to -30 mV with a half inactivation voltage of -46 mV. The steady state activation was also voltage-dependent with a half- activation voltage of -22 mV. The K+ current profiles were not affected by chelation of cytosolic Ca2+. The K+ current induced by a depolarizing pulse was suppressed by extracellular application of TEA+, Ba2+, 4-aminopyridine or quinine with half-maximal inhibitory concentrations of 8.9 mM, 4.6 mM, 86 microM and 26 microM, respectively. The inactivation time course was accelerated by quinine but decelerated by TEA+, when applied to the extracellular (but not the intracellular) solution. Extracellular (but not intracellular) applications of verapamil and nifedipine also quickened the inactivation time course with 50% effective concentrations of 3 and 17 microM, respectively. Quinine, verapamil and nifedipine shifted the steady state inactivation curve towards more negative potentials. Outward single K+ channel events with a unitary conductance of approximately 8.4 pS were observed in excised inside-out patches of the basolateral membrane, when the patch was depolarized to -40 mV. The ensemble current rapidly activated and thereafter slowly inactivated with similar time constants to those of whole-cell K+ currents. It is concluded that the basolateral membrane of guinea pig villus enterocytes has a voltage-gated, time-dependent, Ca(2+)-insensitive, small-conductance K+ channel. Quinine, verapamil, and nifedipine accelerate the inactivation time course by affecting the inactivation gate from the external side of the cell membrane.  相似文献   

10.
L-type and T-type Ca2+ current in cultured ventricular guinea pig myocytes   总被引:1,自引:0,他引:1  
The aim of this investigation was to study L-type and T-type Ca(2+) current (I(CaL) and I(CaT)) in short-term cultured adult guinea pig ventricular myocytes. The isolated myocytes were suspended in serum-supplemented medium up to 5 days. Using whole-cell patch clamp techniques ICaL and ICaT were studied by applying voltage protocols from different holding potentials (-40 and -90 mV). After 5 days in culture the myocytes still showed their typical rod shaped morphology but a decline in cell membrane capacitance (26 %). The peak density of ICaT was reduced significantly between day 0 (-1.6+/-0.37 pA/pF, n=9) and day 5 (-0.4+/-0.13 pA/pF, n=11), whereas peak ICaL density revealed no significant differences during culturing. The I(CaT)/I(CaL) ratio dropped from 0.13 at day 0 to 0.05 at day 5. Compared with day 0 I(CaL) the steady state inactivation curve of day 1, day 3 and day 5 myocytes was slightly shifted to more negative potentials. Our data indicate that guinea pig ventricular L-type and T-type Ca(2+) channels are differently regulated in culture.  相似文献   

11.
12.
The Na(+) current component I(Ca(TTX)) is functionally distinct from the main body of Na(+) current, I(Na). It was proposed that I(Ca(TTX)) channels are I(Na) channels that were altered by bathing media containing Ca(2+), but no, or very little, Na(+). It is known that Na(+)-free conditions are not required to demonstrate I(Ca(TTX).) We show here that Ca(2+) is also not required. Whole-cell, tetrodotoxin-blockable currents from fresh adult rat ventricular cells in 65 mm Cs(+) and no Ca(2+) were compared to those in 3 mM Ca(2+) and no Cs(+) (i.e., I(Ca(TTX))). I(Ca(TTX)) parameters were shifted to more positive voltages than those for Cs(+). The Cs(+) conductance-voltage curve slope factor (mean, -4.68 mV; range, -3.63 to -5.72 mV, eight cells) is indistinguishable from that reported for I(Ca(TTX)) (mean, -4.49 mV; range, -3.95 to -5.49 mV). Cs(+) current and I(Ca(TTX)) time courses were superimposable after accounting for the voltage shift. Inactivation time constants as functions of potential for the Cs(+) current and I(Ca(TTX)) also superimposed after voltage shifting, as did the inactivation curves. Neither of the proposed conditions for conversion of I(Na) into I(Ca(TTX)) channels is required to demonstrate I(Ca(TTX)). Moreover, we find that cardiac Na(+) (H1) channels expressed heterologously in HEK 293 cells are not converted to I(Ca(TTX)) channels by Na(+)-free, Ca(2+)-containing bathing media. The gating properties of the Na(+) current through H1 and those of Ca(2+) current through H1 are identical. All observations are consistent with two non-interconvertable Na(+) channel populations: a larger that expresses little Ca(2+) permeability and a smaller that is appreciably Ca(2+)-permeable.  相似文献   

13.
The effect of aging on cardiac membrane currents remains unclear. This study examined the inward rectifier K(+) current (I(K1)), the transient outward K(+) current (I(to)), and the L-type Ca(2+) channel current (I(Ca,L)) in ventricular myocytes isolated from young adult (6 mo) and aged (>27 mo) Fischer 344 rats using whole cell patch-clamp techniques. Along with an increase in the cell size and membrane capacitance, aged myocytes had the same magnitude of peak I(K1) with a greater slope conductance but displayed smaller steady-state I(K1). Aged myocytes also had a greater I(to) with an increased rate of activation, but the I(to) inactivation kinetics, steady-state inactivation, and responsiveness to L-phenylephrine, an alpha(1)-adrenergic agonist, were unaltered. The magnitude of peak I(Ca,L) in aged myocytes was decreased and accompanied by a slower inactivation, but the I(Ca,L) steady-state inactivation was unaltered. Action potential duration in aged myocytes was prolonged only at 90% of full repolarization (APD(90)) when compared with the action potential duration of young adult myocytes. Aged myocytes from Long-Evans rats showed similar changes in I(to) and I(Ca,L) but an increased I(K1). These results demonstrate aging-associated changes in action potential, in morphology, and in I(K1), I(to), and I(Ca,L) of rat ventricular myocytes that possibly contribute to the decreased cardiac function of aged hearts.  相似文献   

14.
The pacemaker current in cardiac Purkinje myocytes   总被引:3,自引:0,他引:3       下载免费PDF全文
It is generally assumed that in cardiac Purkinje fibers the hyperpolarization activated inward current i(f) underlies the pacemaker potential. Because some findings are at odds with this interpretation, we used the whole cell patch clamp method to study the currents in the voltage range of diastolic depolarization in single canine Purkinje myocytes, a preparation where many confounding limitations can be avoided. In Tyrode solution ([K+]o = 5.4 mM), hyperpolarizing steps from Vh = -50 mV resulted in a time-dependent inwardly increasing current in the voltage range of diastolic depolarization. This time- dependent current (iKdd) appeared around -60 mV and reversed near EK. Small superimposed hyperpolarizing steps (5 mV) applied during the voltage clamp step showed that the slope conductance decreases during the development of this time-dependent current. Decreasing [K+]o from 5.4 to 2.7 mM shifted the reversal potential to a more negative value, near the corresponding EK. Increasing [K+]o to 10.8 mM almost abolished iKdd. Cs+ (2 mM) markedly reduced or blocked the time-dependent current at potentials positive and negative to EK. Ba2+ (4 mM) abolished the time-dependent current in its usual range of potentials and unmasked another time-dependent current (presumably i(f)) with a threshold of approximately -90 mV (> 20 mV negative to that of the time-dependent current in Tyrode solution). During more negative steps, i(f) increased in size and did not reverse. During i(f) the slope conductance measured with small (8-10 mV) superimposed clamp steps increased. High [K+]o (10.8 mM) markedly increased and Cs+ (2 mM) blocked i(f). We conclude that: (a) in the absence of Ba2+, a time-dependent current does reverse near EK and its reversal is unrelated to K+ depletion; (b) the slope conductance of that time-dependent current decreases in the absence of K+ depletion at potentials positive to EK where inactivation of iK1 is unlikely to occur. (c) Ba2+ blocks this time-dependent current and unmasks another time-dependent current (i(f)) with a more negative (> 20 mV) threshold and no reversal at more negative values; (d) Cs+ blocks both time-dependent currents recorded in the absence and presence of Ba2+. The data suggest that in the diastolic range of potentials in Purkinje myocytes there is a voltage- and time-dependent K+ current (iKdd) that can be separated from the hyperpolarization- activated inward current i(f).  相似文献   

15.
Rabbit urethral smooth muscle cells were studied at 37 degrees C by using the amphotericin B perforated-patch configuration of the patch-clamp technique, using Cs(+)-rich pipette solutions. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca(2+) currents, were recorded. Fitting steady-state inactivation curves for the L current with a Boltzmann equation yielded a V(1/2) of -41 +/- 3 mV. In contrast, the T current inactivated with a V(1/2) of -76 +/- 2 mV. The L currents were reduced by nifedipine (IC(50) = 225 +/- 84 nM), Ni(2+) (IC(50) = 324 +/- 74 microM), and mibefradil (IC(50) = 2.6 +/- 1.1 microM) but were enhanced when external Ca(2+) was substituted with Ba(2+). The T current was little affected by nifedipine at concentrations <300 nM but was increased in amplitude when external Ca(2+) was substituted with Ba(2+). Both Ni(2+) and mibefradil reduced the T current with an IC(50) = 7 +/- 1 microM and approximately 40 nM, respectively. Spontaneous electrical activity recorded with intracellular electrodes from strips of rabbit urethra consisted of complexes comprising a series of spikes superimposed on a slow spontaneous depolarization (SD). Inhibition of T current reduced the frequency of these SDs but had no effect on either the number of spikes per complex or the amplitude of the spikes. In contrast, application of nifedipine failed to significantly alter the frequency of the SD but reduced the number and amplitude of the spikes in each complex.  相似文献   

16.
L-type and R-type Ca(2+) currents were detected in frog semicircular canal hair cells. The former was noninactivating and nifedipine-sensitive (5 microM); the latter, partially inactivated, was resistant to omega-conotoxin GVIA (5 microM), omega-conotoxin MVIIC (5 microM), and omega-agatoxin IVA (0.4 microM), but was sensitive to mibefradil (10 microM). Both currents were sensitive to Ni(2+) and Cd(2+) (>10 microM). In some cells the L-type current amplitude increased almost twofold upon repetitive stimulation, whereas the R-type current remained unaffected. Eventually, run-down occurred for both currents, but was prevented by the protease inhibitor calpastatin. The R-type current peak component ran down first, without changing its plateau, suggesting that two channel types generate the R-type current. This peak component appeared at -40 mV, reached a maximal value at -30 mV, and became undetectable for voltages > or =0 mV, suggestive of a novel transient current: its inactivation was indeed reversibly removed when Ba(2+) was the charge carrier. The L-type current and the R-type current plateau were appreciable at -60 mV and peaked at -20 mV: the former current did not reverse for voltages up to +60 mV, the latter reversed between +30 and +60 mV due to an outward Cs(+) current flowing through the same Ca(2+) channel. The physiological role of these currents on hair cell function is discussed.  相似文献   

17.
A novel transient outward K(+) current that exhibits inward-going rectification (I(to.ir)) was identified in guinea pig atrial and ventricular myocytes. I(to.ir) was insensitive to 4-aminopyridine (4-AP) but was blocked by 200 micromol/l Ba(2+) or removal of external K(+). The zero current potential shifted 51-53 mV/decade change in external K(+). I(to.ir) density was twofold greater in ventricular than in atrial myocytes, and biexponential inactivation occurs in both types of myocytes. At -20 mV, the fast inactivation time constants were 7.7 +/- 1.8 and 6.1 +/- 1.2 ms and the slow inactivation time constants were 85.1 +/- 14.8 and 77.3 +/- 10.4 ms in ventricular and atrial cells, respectively. The midpoints for steady-state inactivation were -36.4 +/- 0.3 and -51.6 +/- 0.4 mV, and recovery from inactivation was rapid near the resting potential (time constants = 7.9 +/- 1.9 and 8.8 +/- 2.1 ms, respectively). I(to.ir) was detected in Na(+)-containing and Na(+)-free solutions and was not blocked by 20 nmol/l saxitoxin. Action potential clamp revealed that I(to.ir) contributed an outward current that activated rapidly on depolarization and inactivated by early phase 2 in both tissues. Although it is well known that 4-AP-sensitive transient outward current is absent in guinea pig, this Ba(2+)-sensitive and 4-AP-insensitive K(+) current has been overlooked.  相似文献   

18.
We have used the whole cell configuration of the patch-clamp technique to measure sarcolemmal Ca(2+) transport by the Na(+)/Ca(2+) exchanger (NCX) and its contribution to the activation and relaxation of contraction in trout atrial myocytes. In contrast to mammals, cell shortening continued, increasing at membrane potentials above 0 mV in trout atrial myocytes. Furthermore, 5 microM nifedipine abolished L-type Ca(2+) current (I(Ca)) but only reduced cell shortening and the Ca(2+) carried by the tail current to 66 +/- 5 and 67 +/- 6% of the control value. Lowering of the pipette Na(+) concentration from 16 to 10 or 0 mM reduced Ca(2+) extrusion from the cell from 2.5 +/- 0.2 to 1.0 +/- 0.2 and 0.5 +/- 0.06 amol/pF. With 20 microM exchanger inhibitory peptide (XIP) in the patch pipette Ca(2+) extrusion 20 min after patch break was 39 +/- 8% of its initial value. With 16, 10, and 0 mM Na(+) in the pipette, the sarcoplasmic reticulum (SR) Ca(2+) content was 47 +/- 4, 29 +/- 6, and 10 +/- 3 amol/pF, respectively. Removal of Na(+) from or inclusion of 20 microM XIP in the pipette gradually eliminated the SR Ca(2+) content. Whereas I(Ca) was the same at -10 or +10 mV, Ca(2+) extrusion from the cell and the SR Ca(2+) content at -10 mV were 65 +/- 7 and 80 +/- 4% of that at +10 mV. The relative amount of Ca(2+) extruded by the NCX (about 55%) and taken up by the SR (about 45%) was, however, similar with depolarizations to -10 and +10 mV. We conclude that modulation of the NCX activity critically determines Ca(2+) entry and cell shortening in trout atrial myocytes. This is due to both an alteration of the transsarcolemmal Ca(2+) transport and a modulation of the SR Ca(2+) content.  相似文献   

19.
Modulation of L-type Ca(2+) current (I(Ca,L)) by H(+) ions in cardiac myocytes is controversial, with widely discrepant responses reported. The pH sensitivity of I(Ca,L) was investigated (whole cell voltage clamp) while measuring intracellular Ca(2+) (Ca(2+)(i)) or pH(i) (epifluorescence microscopy) in rabbit and guinea pig ventricular myocytes. Selectively reducing extracellular or intracellular pH (pH(o) 6.5 and pH(i) 6.7) had opposite effects on I(Ca,L) gating, shifting the steady-state activation and inactivation curves to the right and left, respectively, along the voltage axis. At low pH(o), this decreased I(Ca,L), whereas at low pH(i), it increased I(Ca,L) at clamp potentials negative to 0 mV, although the current decreased at more positive potentials. When Ca(2+)(i) was buffered with BAPTA, the stimulatory effect of low pH(i) was even more marked, with essentially no inhibition. We conclude that extracellular H(+) ions inhibit whereas intracellular H(+) ions can stimulate I(Ca,L). Low pH(i) and pH(o) effects on I(Ca,L) were additive, tending to cancel when appropriately combined. They persisted after inhibition of calmodulin kinase II (with KN-93). Effects are consistent with H(+) ion screening of fixed negative charge at the sarcolemma, with additional channel block by H(+)(o) and Ca(2+)(i). Action potential duration (APD) was also strongly H(+) sensitive, being shortened by low pH(o), but lengthened by low pH(i), caused mainly by H(+)-induced changes in late Ca(2+) entry through the L-type Ca(2+) channel. Kinetic analyses of pH-sensitive channel gating, when combined with whole cell modeling, successfully predicted the APD changes, plus many of the accompanying changes in Ca(2+) signaling. We conclude that the pH(i)-versus-pH(o) control of I(Ca,L) will exert a major influence on electrical and Ca(2+)-dependent signaling during acid-base disturbances in the heart.  相似文献   

20.
Whole cell patch-clamp experiments were undertaken to define the basal K(+) conductance(s) in human erythroleukemia cells and its contribution to the setting of resting membrane potential. Experiments revealed a non-voltage-activated, noninactivating K(+) current. The magnitude of the current recorded under whole cell conditions was inhibited by an increase in free intracellular Mg(2+) concentration. Activation or inactivation of the Mg(2+)-inhibited K(+) current (MIP) was paralleled by activation or inactivation of a Mg(2+)-inhibited TRPM7-like current displaying characteristics indistinguishable from those reported for molecularly identified TRPM7 current. The MIP and TRPM7 currents were inhibited by 5-lipoxygenase inhibitors. However, inhibition of the MIP current was temporally distinct from inhibition of TRPM7 current, allowing for isolation of the MIP current. Isolation of the MIP conductance revealed a current reversing near the K(+) equilibrium potential, indicative of a highly K(+)-selective conductance. Consistent with this finding, coactivation of the nonselective cation current TRPM7 and the MIP current following dialysis with nominally Mg(2+)-free pipette solution resulted in hyperpolarized whole cell reversal potentials, consistent with an important role for the MIP current in the setting of a negative resting membrane potential. The MIP and TRPM7-like conductances were constitutively expressed under in vivo conditions of intracellular Mg(2+), as judged by their initial detection and subsequent inactivation following dialysis with a pipette solution containing 5 mM free Mg(2+). The MIP current was blocked in a voltage-dependent fashion by extracellular Cs(+) and, to a lesser degree, by Ba(2+) and was blocked by extracellular La(3+) and 2-aminoethoxydiphenyl borate. MIP currents were unaffected by blockers of ATP-sensitive K(+) channels, human ether-à-go-go-related gene current, and intermediate-conductance Ca(2+)-activated K(+) channels. In addition, the MIP current displayed characteristics distinct from conventional inwardly rectifying K(+) channels. A similar current was detected in the leukemic cell line CHRF-288-11, consistent with this current being more generally expressed in cells of leukemic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号