首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both dorsal and ventral cortical visual streams contain neurons sensitive to binocular disparities, but the two streams may underlie different aspects of stereoscopic vision. Here we investigate stereopsis in the neurological patient D.F., whose ventral stream, specifically lateral occipital cortex, has been damaged bilaterally, causing profound visual form agnosia. Despite her severe damage to cortical visual areas, we report that DF''s stereo vision is strikingly unimpaired. She is better than many control observers at using binocular disparity to judge whether an isolated object appears near or far, and to resolve ambiguous structure-from-motion. DF is, however, poor at using relative disparity between features at different locations across the visual field. This may stem from a difficulty in identifying the surface boundaries where relative disparity is available. We suggest that the ventral processing stream may play a critical role in enabling healthy observers to extract fine depth information from relative disparities within one surface or between surfaces located in different parts of the visual field.  相似文献   

2.
Deng Y  Guo R  Ding G  Peng D 《PloS one》2012,7(3):e33337
Both the ventral and dorsal visual streams in the human brain are known to be involved in reading. However, the interaction of these two pathways and their responses to different cognitive demands remains unclear. In this study, activation of neural pathways during Chinese character reading was acquired by using a functional magnetic resonance imaging (fMRI) technique. Visual-spatial analysis (mediated by the dorsal pathway) was disassociated from lexical recognition (mediated by the ventral pathway) via a spatial-based lexical decision task and effective connectivity analysis. Connectivity results revealed that, during spatial processing, the left superior parietal lobule (SPL) positively modulated the left fusiform gyrus (FG), while during lexical processing, the left SPL received positive modulatory input from the left inferior frontal gyrus (IFG) and sent negative modulatory output to the left FG. These findings suggest that the dorsal stream is highly involved in lexical recognition and acts as a top-down modulator for lexical processing.  相似文献   

3.
The primate visual system consists of a ventral stream, specialized for object recognition, and a dorsal visual stream, which is crucial for spatial vision and actions. However, little is known about the interactions and information flow between these two streams. We investigated these interactions within the network processing three-dimensional (3D) object information, comprising both the dorsal and ventral stream. Reversible inactivation of the macaque caudal intraparietal area (CIP) during functional magnetic resonance imaging (fMRI) reduced fMRI activations in posterior parietal cortex in the dorsal stream and, surprisingly, also in the inferotemporal cortex (ITC) in the ventral visual stream. Moreover, CIP inactivation caused a perceptual deficit in a depth-structure categorization task. CIP-microstimulation during fMRI further suggests that CIP projects via posterior parietal areas to the ITC in the ventral stream. To our knowledge, these results provide the first causal evidence for the flow of visual 3D information from the dorsal stream to the ventral stream, and identify CIP as a key area for depth-structure processing. Thus, combining reversible inactivation and electrical microstimulation during fMRI provides a detailed view of the functional interactions between the two visual processing streams.  相似文献   

4.
There is much evidence in primates' visual processing for distinct mechanisms involved in object recognition and encoding object position and motion, which have been identified with 'ventral' and 'dorsal' streams, respectively, of the extra-striate visual areas [1] [2] [3]. This distinction may yield insights into normal human perception, its development and pathology. Motion coherence sensitivity has been taken as a test of global processing in the dorsal stream [4] [5]. We have proposed an analogous 'form coherence' measure of global processing in the ventral stream [6]. In a functional magnetic resonance imaging (fMRI) experiment, we found that the cortical regions activated by form coherence did not overlap with those activated by motion coherence in the same individuals. Areas differentially activated by form coherence included regions in the middle occipital gyrus, the ventral occipital surface, the intraparietal sulcus, and the temporal lobe. Motion coherence activated areas consistent with those previously identified as V5 and V3a, the ventral occipital surface, the intraparietal sulcus, and temporal structures. Neither form nor motion coherence activated area V1 differentially. Form and motion foci in occipital, parietal, and temporal areas were nearby but showed almost no overlap. These results support the idea that form and motion coherence test distinct functional brain systems, but that these do not necessarily correspond to a gross anatomical separation of dorsal and ventral processing streams.  相似文献   

5.
The human visual cortex enables visual perception through a cascade of hierarchical computations in cortical regions with distinct functionalities. Here, we introduce an AI-driven approach to discover the functional mapping of the visual cortex. We related human brain responses to scene images measured with functional MRI (fMRI) systematically to a diverse set of deep neural networks (DNNs) optimized to perform different scene perception tasks. We found a structured mapping between DNN tasks and brain regions along the ventral and dorsal visual streams. Low-level visual tasks mapped onto early brain regions, 3-dimensional scene perception tasks mapped onto the dorsal stream, and semantic tasks mapped onto the ventral stream. This mapping was of high fidelity, with more than 60% of the explainable variance in nine key regions being explained. Together, our results provide a novel functional mapping of the human visual cortex and demonstrate the power of the computational approach.  相似文献   

6.
Functional compensation demonstrated as mechanism to offset neuronal loss in early Alzheimer disease may also occur in other adult-onset neurodegenerative diseases, particularly Huntington disease (HD) with its genetic determination and gradual changes in structural integrity. In HD, neurodegeneration typically initiates in the dorsal striatum, successively affecting ventral striatal areas. Investigating carriers of the HD mutation with evident dorsal, but only minimal or no ventral striatal atrophy, we expected to find evidence for compensation of ventral striatal functioning. We investigated 14 pre- or early symptomatic carriers of the mutation leading to HD and 18 matched healthy controls. Participants underwent structural T1 magnetic resonance imaging (MRI) and functional MRI during a reward task that probes ventral striatal functioning. Motor functioning and attention were assessed with reaction time (RT) tasks. Structural images confirmed a specific decrease of dorsal striatal but only marginal ventral striatal volume in HD relative to control subjects, paralleling prolonged RT in the motor response tasks. While behavioral performance in the reward task during fMRI scanning was unimpaired, reward-related fMRI signaling in the HD group was differentially enhanced in the bilateral ventral striatum and in bilateral orbitofrontal cortex/anterior insula, as another region sensitive to reward processing. We provide evidence for the concept of functional compensation in premanifest HD which may suggest a defense mechanism in neurodegeneration. Given the so far inevitable course of HD with its genetically determined endpoint, this disease may provide another model to study the different aspects of the concept of functional compensation.  相似文献   

7.
Extrastriate cortical areas are frequently composed of subpopulations of neurons encoding specific features or stimuli, such as color, disparity, or faces, and patches of neurons encoding similar stimulus properties are typically embedded in interconnected networks, such as the attention or face-processing network. The goal of the current study was to examine the effective connectivity of subsectors of neurons in the same cortical area with highly similar neuronal response properties. We first recorded single- and multi-unit activity to identify two neuronal patches in the anterior part of the macaque intraparietal sulcus (IPS) showing the same depth structure selectivity and then employed electrical microstimulation during functional magnetic resonance imaging in these patches to determine the effective connectivity of these patches. The two IPS subsectors we identified—with the same neuronal response properties and in some cases separated by only 3 mm—were effectively connected to remarkably distinct cortical networks in both dorsal and ventral stream in three macaques. Conversely, the differences in effective connectivity could account for the known visual-to-motor gradient within the anterior IPS. These results clarify the role of the anterior IPS as a pivotal brain region where dorsal and ventral visual stream interact during object analysis. Thus, in addition to the anatomical connectivity of cortical areas and the properties of individual neurons in these areas, the effective connectivity provides novel key insights into the widespread functional networks that support behavior.  相似文献   

8.
Summary Serotonin-immunoreactivity is mapped in wholemounts and slices of the suboesophageal ganglion (SOG) of larval Manduca sexta by means of immunocytochemistry. An extensive meshwork of serotonin-immunoreactive nerve fibres on some peripheral nerves of the SOG has been demonstrated. This meshwork appears to belong to a serotonergic neurohemal system, probably supplied by two pairs of bilateral serotonin-immunoreactive neurons with big cell bodies on the dorsal side near the midline in the mandibular neuromere. Intracellular recording and staining revealed their physiology and morphology. These neurons produce long lasting (50 msec) action potentials, which suggest that they are neurosecretory cells. Two pairs of bilateral serotonin-immunoreactive interneurons similar to those of other insects are stained in the labial and maxillar neuromeres, but not in the mandibular neuromere. Their ventrolaterally located cell bodies project through a ventral commissure into the contralateral hemiganglion and then cross back again through a dorsal commissure. The axons project into the contralateral circumoesophageal connective.  相似文献   

9.
The hypothesis that ventral/anterior left inferior frontal gyrus (LIFG) subserves semantic processing and dorsal/posterior LIFG subserves phonological processing was tested by determining the pattern of functional connectivity of these regions with regions in left occipital and temporal cortex during the processing of words and word-like stimuli. In accordance with the hypothesis, we found strong functional connectivity between activity in ventral LIFG and activity in occipital and temporal cortex only for words, and strong functional connectivity between activity in dorsal LIFG and activity in occipital and temporal cortex for words, pseudowords, and letter strings, but not for false font strings. These results demonstrate a task-dependent functional fractionation of the LIFG in terms of its functional links with posterior brain areas.  相似文献   

10.
Spatial neglect is a syndrome following stroke manifesting attentional deficits in perceiving and responding to stimuli in the contralesional field. We examined brain network integrity in patients with neglect by measuring coherent fluctuations of fMRI signals (functional connectivity). Connectivity in two largely separate attention networks located in dorsal and ventral frontoparietal areas was assessed at both acute and chronic stages of recovery. Connectivity in the ventral network, part of which directly lesioned, was diffusely disrupted and showed no recovery. In the structurally intact dorsal network, interhemispheric connectivity in posterior parietal cortex was acutely disrupted but fully recovered. This acute disruption, and disrupted connectivity in specific pathways in the ventral network, strongly correlated with impaired attentional processing across subjects. Lastly, disconnection of the white matter tracts connecting frontal and parietal cortices was associated with more severe neglect and more disrupted functional connectivity. These findings support a network view in understanding neglect.  相似文献   

11.
Using fMRI, we showed that an area in the ventral temporo-occipital cortex (area vTO), which is part of the human homolog of the ventral stream of visual processing, exhibited priming for both identical and depth-rotated images of objects. This pattern of activation in area vTO corresponded to performance in a behavioral matching task. An area in the caudal part of the intraparietal sulcus (area cIPS) also showed priming, but only with identical images of objects. This dorsal-stream area treated rotated images as new objects. The difference in the pattern of priming-related activation in the two areas may reflect the respective roles of the ventral and dorsal streams in object recognition and object-directed action.  相似文献   

12.
The principles driving the organization of the ventral object-processing stream remain unknown. Here, we show that stimulus-specific repetition suppression (RS) in one region of the ventral stream is biased according to motor-relevant properties of objects. Quantitative analysis confirmed that this result was not confounded with similarity in visual shape. A similar pattern of biases in RS according to motor-relevant properties of objects was observed in dorsal stream regions in the left hemisphere. These findings suggest that neural specificity for "tools" in the ventral stream is driven by similarity metrics computed over motor-relevant information represented in dorsal structures. Support for this view is provided by converging results from functional connectivity analyses of the fMRI data and a separate neuropsychological study. More generally, these data suggest that a basic organizing principle giving rise to "category specificity" in the ventral stream may involve similarity metrics computed over information represented elsewhere in the brain.  相似文献   

13.
The division of cortical visual processing into distinct dorsal and ventral streams is a key framework that has guided visual neuroscience. The characterization of the ventral stream as a 'What' pathway is relatively uncontroversial, but the nature of dorsal stream processing is less clear. Originally proposed as mediating spatial perception ('Where'), more recent accounts suggest it primarily serves non-conscious visually guided action ('How'). Here, we identify three pathways emerging from the dorsal stream that consist of projections to the prefrontal and premotor cortices, and a major projection to the medial temporal lobe that courses both directly and indirectly through the posterior cingulate and retrosplenial cortices. These three pathways support both conscious and non-conscious visuospatial processing, including spatial working memory, visually guided action and navigation, respectively.  相似文献   

14.
Marois R  Leung HC  Gore JC 《Neuron》2000,25(3):717-728
The primate visual system is considered to be segregated into ventral and dorsal streams specialized for processing object identity and location, respectively. We reexamined the dorsal/ventral model using a stimulus-driven approach to object identity and location processing. While looking at repeated presentations of a standard object at a standard location, subjects monitored for any infrequent "oddball" changes in object identity, location, or identity and location (conjunction). While the identity and location oddballs preferentially activated ventral and dorsal brain regions respectively, each oddball type activated both pathways. Furthermore, all oddball types recruited the lateral temporal cortex and the temporo-parietal junction. These findings suggest that a strict dorsal/ventral dual-stream model does not fully account for the perception of novel objects in space.  相似文献   

15.
Numerical cognition is a case of multi-modular and distributed cerebral processing. So far neither the anatomo-functional connections between the cortex areas involved nor their integration into established frameworks such as the differentiation between dorsal and ventral processing streams have been specified. The current study addressed this issue combining a re-analysis of previously published fMRI data with probabilistic fiber tracking data from an independent sample. We aimed at differentiating neural correlates and connectivity for relatively easy and more difficult addition problems in healthy adults and their association with either rather verbally mediated fact retrieval or magnitude manipulations, respectively. The present data suggest that magnitude- and fact retrieval-related processing seem to be subserved by two largely separate networks, both of them comprising dorsal and ventral connections. Importantly, these networks not only differ in localization of activation but also in the connections between the cortical areas involved. However, it has to be noted that even though seemingly distinct anatomically, these networks operate as a functionally integrated circuit for mental calculation as revealed by a parametric analysis of brain activation.  相似文献   

16.
The cortical organization of speech processing   总被引:5,自引:0,他引:5  
Despite decades of research, the functional neuroanatomy of speech processing has been difficult to characterize. A major impediment to progress may have been the failure to consider task effects when mapping speech-related processing systems. We outline a dual-stream model of speech processing that remedies this situation. In this model, a ventral stream processes speech signals for comprehension, and a dorsal stream maps acoustic speech signals to frontal lobe articulatory networks. The model assumes that the ventral stream is largely bilaterally organized--although there are important computational differences between the left- and right-hemisphere systems--and that the dorsal stream is strongly left-hemisphere dominant.  相似文献   

17.

Background

Motivational and cognitive abnormalities are frequently reported in pathological gambling. However, studies simultaneously investigating motivational and cognitive processing in problematic gamblers are lacking, limiting our understanding of the interplay between these systems in problematic gambling. Studies in non-clinical samples indicate that interactions between dorsal “executive” and ventral “affective” processing systems are necessary for adequate responses in various emotive situations.

Methods

We conducted a generalized Psycho-Physiological Interaction (gPPI) analysis to assess the influence of affective stimuli on changes in functional connectivity associated with response inhibition in 16 treatment seeking problematic gamblers (PRGs) and 15 healthy controls (HCs) using an affective Go-NoGo fMRI paradigm including neutral, gambling-related, positive and negative pictures as neutral and affective conditions.

Results

Across groups, task performance accuracy during neutral inhibition trials was positively correlated with functional connectivity between the left caudate and the right middle frontal cortex. During inhibition in the gambling condition, only in PRGs accuracy of task performance was positively correlated with functional connectivity within sub-regions of the dorsal executive system. Group interactions showed that during neutral inhibition, HCs exhibited greater functional connectivity between the left caudate and occipital cortex than PRGs. In contrast, during inhibition in the positive condition, PRGs compared to HCs showed greater functional connectivity between the left caudate and occipital cortex. During inhibition trials in the negative condition, a stronger functional connectivity between the left caudate and the right anterior cingulate cortex in PRGs compared to HCs was present. There were no group interactions during inhibition in the gambling condition.

Conclusions

During gamble inhibition PRGs seem to benefit more from functional connectivity within the dorsal executive system than HCs, because task accuracy in this condition in PRGs is positively correlated with functional connectivity, although the groups show similar connectivity patterns during gamble inhibition. Greater functional connectivity between the ventral affective system and the dorsal executive system in PRGs in the affective conditions compared to HCs, suggests facilitation of the dorsal executive system when affective stimuli are present specifically in PRGs.  相似文献   

18.
Ventral and dorsal streams are visual pathways deputed to transmit information from the photoreceptors of the retina to the lateral geniculate nucleus and then to the primary visual cortex (V1). Several studies investigated whether one pathway is more vulnerable than the other during development, and whether these streams develop at different rates. The results are still discordant. The aim of the present study was to understand the functionality of the dorsal and the ventral streams in two populations affected by different genetic disorders, Noonan syndrome (NS) and 22q11.2 deletion syndrome (22q11.2DS), and explore the possible genotype–phenotype relationships. ‘Form coherence’ abilities for the ventral stream and ‘motion coherence’ abilities for the dorsal stream were evaluated in 19 participants with NS and 20 participants with 22q11.2DS. Collected data were compared with 55 age‐matched controls. Participants with NS and 22q11.2DS did not differ in the form coherence task, and their performance was significantly lower than that of controls. However, in the motion coherence task, the group with NS and controls did not differ, and both obtained significantly higher scores than the group with 22q11.2DS. Our findings indicate that deficits in the dorsal stream are related to the specific genotype, and that in our syndromic groups the ventral stream is more vulnerable than the dorsal stream.  相似文献   

19.
Goodale MA 《Neuron》2005,47(3):328-329
In this issue of Neuron, Shmuelof and Zohary use functional magnetic resonance imaging (fMRI) to demonstrate differential sensitivity of the ventral and dorsal cortical streams of visual processing to images of objects and grasping hands, respectively.  相似文献   

20.
As different areas within the PMC have different connectivity patterns with various cortical and subcortical regions, we hypothesized that distinct functional modules may be present within the PMC. Because the PMC appears to be the most active region during resting state, it has been postulated to play a fundamental role in the control of baseline brain functioning within the default mode network (DMN). Therefore one goal of this study was to explore which components of the PMC are specifically involved in the DMN. In a sample of seventeen healthy volunteers, we performed an unsupervised voxelwise ROI-based clustering based on resting state functional connectivity. Our results showed four clusters with different network connectivity. Each cluster showed positive and negative correlations with cortical regions involved in the DMN. Progressive shifts in PMC functional connectivity emerged from anterior to posterior and from dorsal to ventral ROIs. Ventral posterior portions of PMC were found to be part of a network implicated in the visuo-spatial guidance of movements, whereas dorsal anterior portions of PMC were interlinked with areas involved in attentional control. Ventral retrosplenial PMC selectively correlated with a network showing considerable overlap with the DMN, indicating that it makes essential contributions in self-referential processing, including autobiographical memory processing. Finally, ventral posterior PMC was shown to be functionally connected with a visual network.The paper represents the first attempt to provide a systematic, unsupervised, voxelwise clustering of the human posteromedial cortex (PMC), using resting-state functional connectivity data. Moreover, a ROI-based parcellation was used to confirm the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号