首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cardiac hypertrophy is the uppermost risk factor for the development of heart failure, leading to irreversible cardiac structural remodeling and sudden death. As a major mediator of cardiac remodeling, oncostatin M (OSM) and its receptor, OSMR, attract plenty of interest. Recent studies have demonstrated key effects of noncoding RNAs on myocardial remodeling. However, whether noncoding RNAs that regulate the expression of OSMR would regulate the process of remodeling remain unclear. Herein, we observed that long noncoding RNA (lncRNA) Pvt1 expression showed to be significantly elicited by aortic banding (AB) operation in vivo and by angiotensin (Ang II) treatment in vitro. Pvt1 knockdown significantly attenuated the myocardial hypertrophy caused by pressure overload within rats and the cardiac myocyte hypertrophy caused by Ang II in vitro. Moreover, Pvt1 knockdown also decreased cellular myomesin and B-raf, which was involved in OSM function in cardiac remodeling. Based on online tools prediction, miR-196b may simultaneously target Pvt1 and OSMR 3′ untranslated region (UTR). In rat H9c2 cells and primary cardiac myocyte, Pvt1 and miR-196b exerted negative regulatory effects on each other and miR-196b negatively regulated OSMR expression. Pvt1 directly targeted miR-196b to relieve miR-196b-induced OSMR suppression via acting as a competing endogenous RNA (ceRNA). Moreover, the effect of miR-196b suppression upon the B-raf was opposite to Pvt1 knockdown, and miR-196b suppression might significantly attenuate the effect of Pvt1 knockdown. In summary, Pvt1/miR-196b axis modulating cardiomyocyte hypertrophy and remodeling via OSMR. Our findings provide a rationale for further studies on the potential therapeutic benefits of Pvt1 function and mechanism in cardiac and cardiomyocyte hypertrophy by a lncRNA-miRNA-mRNA network.  相似文献   

3.
Understanding the regulation of cardiac fibrosis is critical for controlling adverse cardiac remodeling during heart failure. Previously we identified miR-378 as a cardiomyocyte-abundant miRNA down-regulated in several experimental models of cardiac hypertrophy and in patients with heart failure. To understand the consequence of miR-378 down-regulation during cardiac remodeling, our current study employed a locked nucleic acid-modified antimiR to target miR-378 in vivo. Results showed development of cardiomyocyte hypertrophy and fibrosis in mouse hearts. Mechanistically, miR-378 depletion was found to induce TGFβ1 expression in mouse hearts and in cultured cardiomyocytes. Among various secreted cytokines in the conditioned-media of miR-378-depleted cardiomyocytes, only TGFβ1 levels were found to be increased. The increase was prevented by miR-378 expression. Treatment of cardiac fibroblasts with the conditioned media of miR-378-depleted myocytes activated pSMAD2/3 and induced fibrotic gene expression. This effect was counteracted by including a TGFβ1-neutralizing antibody in the conditioned-medium. In cardiomyocytes, adenoviruses expressing dominant negative N-Ras or c-Jun prevented antimiR-mediated induction of TGFβ1 mRNA, documenting the importance of Ras and AP-1 signaling in this response. Our study demonstrates that reduction of miR-378 during pathological conditions contributes to cardiac remodeling by promoting paracrine release of profibrotic cytokine, TGFβ1 from cardiomyocytes. Our data imply that the presence in cardiomyocyte of miR-378 plays a critical role in the protection of neighboring fibroblasts from activation by pro-fibrotic stimuli.  相似文献   

4.
Emerging data have shown that microRNAs (miRNAs) have important functions in the processes of cardiac hypertrophy and heart failure that occur during the postnatal period. Cardiac overexpression of miR-195 results in pathological cardiac growth and heart failure in transgenic mice. In the present study, we analyzed the roles of miR-195 in cardiomyocyte hypertrophy and found that miR-195 was greatly upregulated during isoprenaline-induced cardiomyocyte hypertrophy. By using mRNA microarray and molecular approach, we identified a novel putative target of miR-195 called high-mobility group A1 (HMGA1). Total mRNA microarray showed that HMGA1 was downregulated in primary cardiomyocytes that overexpressed miR-195. Using luciferase activity assay, we demonstrated that miR-195 interacts with the 3′-untranslated region of HMGA1 mRNA. Moreover, we showed that miR-195 in primary cardiomyocytes downregulates the expression of HMGA1 at the protein level. Taken together, our data demonstrated that miR-195 can negatively regulate a new target, HMGA1, which is involved in cardiomyocyte hypertrophy.  相似文献   

5.
In the Dlk1-Dio3 imprinted domain, an intergenic differentially methylated region (IG-DMR) regulates the parental allele-specific expression of imprinted genes. The maternally inherited deletion of IG-DMR (IG-DMR(−/+)) results in perinatal lethality because of the overexpression of paternally expressed genes and repression of maternally expressed noncoding RNAs (ncRNAs), including Gtl2. To better understand the possible contribution of paternally expressed genes to the lethality, we attempted to rescue the lethality of IG-DMR(−/+) mutants by restoring the paternally expressed genes. Because the paternally inherited Gtl2 deletion (Gtl2(+/−)) induced a decrease in the expression of paternally expressed genes, we crossed female IG-DMR heterozygous mice and male Gtl2 heterozygous mutant mice. The resultant IG-DMR(−/+)/Gtl2(+/−) double mutant mice had normal expression levels of paternally expressed genes, and none of them showed perinatal lethality; however, most mice showed postnatal lethality with decreased expression of the maternally expressed ncRNAs. Thus, we inferred that paternally expressed genes are necessary for perinatal survivability and that maternally expressed ncRNAs are involved in postnatal lethality.  相似文献   

6.
Earlier, our study demonstrated that lysophosphatidic acid (LPA) receptor mediated cardiomyocyte hypertrophy. However, the subtype-specific functions for LPA1 and LPA3 receptors in LPA-induced hypertrophy have not been distinguished. Growing evidence indicates that microRNAs (miRNAs) are involved in the pathogenesis of cardiac hypertrophy by down-regulating target molecules. The present work therefore aimed at elucidating the functions mediated by different subtypes of LPA receptors and investigating the modulatory role of miRNAs during LPA induced hypertrophy. Experiments were done with cultured neonatal rat cardiomyocytes (NRCMs) exposed to LPA and we showed that knockdown of LPA1 by small interfering RNA (siRNA) enhanced LPA-induced cardiomyocyte hypertrophy, whereas LPA3 silencing repressed hypertrophy. miR-23a, a pro-hypertrophic miRNA, was up-regulated by LPA in cardiomyocytes and its down-regulation reduced LPA-induced cardiomyocyte hypertrophy. Importantly, luciferase reporter assay confirmed LPA1 to be a target of miR-23a, indicating that miR-23a is involved in mediating the LPA-induced cardiomyocyte hypertrophy by targeting LPA1. In addition, knockdown of LPA3, but not LPA1, eliminated miR-23a elevation induced by LPA. And PI3K inhibitor, LY294002, effectively prevented LPA-induced miR-23a expression in cardiomyocytes, suggesting that LPA might induce miR-23a elevation by activating LPA3 and PI3K/AKT pathway. These findings identified opposite subtype-specific functions for LPA1 and LPA3 in mediating cardiomyocyte hypertrophy and indicated LPA1 to be a target of miR-23a, which discloses a link between miR-23a and the LPA receptor signaling in cardiomyocyte hypertrophy.  相似文献   

7.
Regulation of zebrafish heart regeneration by miR-133   总被引:2,自引:0,他引:2  
Zebrafish regenerate cardiac muscle after severe injuries through the activation and proliferation of spared cardiomyocytes. Little is known about factors that control these events. Here we investigated the extent to which miRNAs regulate zebrafish heart regeneration. Microarray analysis identified many miRNAs with increased or reduced levels during regeneration. miR-133, a miRNA with known roles in cardiac development and disease, showed diminished expression during regeneration. Induced transgenic elevation of miR-133 levels after injury inhibited myocardial regeneration, while transgenic miR-133 depletion enhanced cardiomyocyte proliferation. Expression analyses indicated that cell cycle factors mps1, cdc37, and PA2G4, and cell junction components cx43 and cldn5, are miR-133 targets during regeneration. Using pharmacological inhibition and EGFP sensor interaction studies, we found that cx43 is a new miR-133 target and regeneration gene. Our results reveal dynamic regulation of miRNAs during heart regeneration, and indicate that miR-133 restricts injury-induced cardiomyocyte proliferation.  相似文献   

8.
Epigenetic factors such as DNA methylation and microRNAs (miRNAs) are now increasingly recognized as vital contributors to lupus etiology. In this study, we investigated the potential interaction of these two epigenetic factors in lupus-prone MRL-lpr mice. We recently reported dysregulated expression of miRNAs in splenocytes of MRL-lpr mice. Here, we report that a majority of the upregulated miRNAs in MRL-lpr mice is located at the genomic imprinted DLK1-Dio3 domain. Further, we show a differential magnitude of upregulation of DLK1-Dio3 miRNA cluster in purified splenic CD4+ T, CD19+ B, and splenic CD4-CD19- cells from MRL-lpr lupus mice when compared to control MRL mice. MRL-lpr splenocytes (especially CD19+ and CD4-CD19- subsets) were hypomethylated compared to cells from control, MRL mice. We further show that deliberate demethylation of splenocytes from control MRL mice, but not from MRL-lpr lupus mice, with specific DNA methylation inhibitor 5-Aza-2’-deoxycytidine significantly augmented DLK1-Dio3 miRNAs expression. These findings strongly indicate that the upregulation of DLK1-Dio3 miRNAs in lupus splenic cell subsets is associated with reduced global DNA methylation levels in lupus cells. There was a differential upregulation of DLK-Dio3 miRNAs among various demethylated splenic cell subsets, which implies varied sensitivity of DLK1-Dio3 miRNA cluster in these cell subsets to DNA hypomethylation. Finally, inhibition of select DLK1-Dio3 miRNA such as miR-154, miR-379 and miR-300 with specific antagomirs significantly reduced the production of lupus-relevant IFNγ, IL-1β, IL-6, and IL-10 in lipopolysaccharide (LPS) activated splenocytes from MRL-lpr mice. Our study is the first to show that DNA methylation regulates genomic imprinted DLK1-Dio3 miRNAs in autoimmune lupus, which suggests a connection of DNA methylation, miRNA and genomic imprinting in lupus pathogenesis.  相似文献   

9.
10.
11.

Background

MicroRNAs (miRNAs) are small, noncoding RNAs (ribonucleic acids) that regulate translation. Several miRNAs have been shown to be altered in whole cancer tissue compared to normal tissue when quantified by microarray. Based on previous such evidence of differential expression, we chose to study the functional significance of miRNAs miR-30a and -191 alterations in human lung cancer.

Methodology/Principal Findings

The functional significance of miRNAs miR-30a and -191 was studied by creating stable transfectants of the lung adenocarcinoma cell line A549 and the immortalized bronchial epithelial cell line BEAS-2B with modest overexpression of miR-30a or -191 using a lentiviral system. When compared to the corresponding controls, both cell lines overexpressing miR-30a or -191 do not demonstrate any significant changes in cell cycle distribution, cell proliferation, adherent colony formation, soft agar colony formation, xenograft formation in a subcutaneous SCID mouse model, and drug sensitivity to doxorubicin and cisplatin. There is a modest increase in cell migration in cell lines overexpressing miR-30a compared to their controls.

Conclusions/Significance

Overexpression of miR-30a or -191 does not lead to an alteration in cell cycle, proliferation, xenograft formation, and chemosensitivity of A549 and BEAS-2B cell lines. Using microarray data from whole tumors to select specific miRNAs for functional study may be a suboptimal strategy.  相似文献   

12.
Noncoding RNAs are important for the regulation of cardiac hypertrophy. The function of MALAT1 (a long noncoding mRNA), miR-181a, and HMGB2, their contribution to cardiac hypertrophy, and the regulatory relationship between them during this process remain unknown. In the present study, we treated primary cardiomyocytes with angiotensin II (Ang II) to mimic cardiac hypertrophy. MALAT1 expression was significantly downregulated in Ang II-treated cardiomyocytes compared with control cardiomyocytes. Ang II-induced cardiac hypertrophy was suppressed by overexpression of MALAT1 and promoted by genetic knockdown of MALAT1. A dual-luciferase reporter assay demonstrated that MALAT1 acted as a sponge for miR-181a and inhibited its expression during cardiac hypertrophy. Cardiac hypertrophy was suppressed by overexpression of an miR-181a inhibitor and enhanced by overexpression of an miR-181a mimic. HMGB2 was downregulated during cardiac hypertrophy and was identified as a target of miR-181a by bioinformatics analysis and a dual-luciferase reporter assay. miR-181a overexpression decreased the mRNA and protein levels of HMGB2. Rescue experiments indicated that MALAT1 overexpression reversed the effect of miR-181a on HMGB2 expression. In summary, the results of the present study show that MALAT1 acts as a sponge for miR-181a and thereby regulates expression of HMGB2 and development of cardiac hypertrophy. The novel MALAT1/miR-181a/HMGB2 axis might play a crucial role in cardiac hypertrophy and serve as a new therapeutic target.Key words: Hypertrophy, cardiomyocytes, MALAT1, miR-181a, HMGB2  相似文献   

13.
14.
15.
16.
Numerous cardiac diseases, including myocardial infarction (MI) and chronic heart failure, have been associated with cardiomyocyte apoptosis. Promoting cell survival by inhibiting apoptosis is one of the effective strategies to attenuate cardiac dysfunction caused by cardiomyocyte loss. miR-24 has been shown as an anti-apoptotic microRNA in various animal models. In vivo delivery of miR-24 into a mouse MI model suppressed cardiac cell death, attenuated infarct size, and rescued cardiac dysfunction. However, the molecular pathway by which miR-24 inhibits cardiomyocyte apoptosis is not known. Here we found that miR-24 negatively regulates mouse primary cadiomyocyte cell death through functioning in the intrinsic apoptotic pathways. In ER-mediated intrinsic pathway, miR-24 genetically interacts with the CEBP homologous gene CHOP as knocking down of CHOP partially attenuated the induced apoptosis by miR-24 inhibition. In mitochondria–involved intrinsic pathway, miR-24 inhibits the initiation of apoptosis through suppression of Cytochrome C release and Bax translocation from cytosol to mitochondria. These results provide mechanistic insights into the miR-24 mediated anti-apoptotic effects in murine cardiomyocytes.  相似文献   

17.
18.
MicroRNAs (miRNAs) are small non-coding RNAs, which inhibit the stability and/or translation of a mRNA. miRNAs have been found to play a powerful role in various cardiovascular diseases. Recently, we have demonstrated that a microRNA (miR-181c) can be encoded in the nucleus, processed to the mature form in the cytosol, translocated into the mitochondria, and ultimately can regulate mitochondrial gene expression. However the in vivo impact of miR-181c is unknown. Here we report an in-vivo method for administration of miR-181c in rats, which leads to reduced exercise capacity and signs of heart failure, by targeting the 3′-end of mt-COX1 (cytochrome c oxidase subunit 1). We cloned miR-181c and packaged it in lipid-based nanoparticles for systemic delivery. The plasmid DNA complexed nanovector shows no apparent toxicity. We find that the mRNA levels of mitochondrial complex IV genes in the heart, but not any other mitochondrial genes, are significantly altered with miR-181c overexpression, suggesting selective mitochondrial complex IV remodeling due to miR-181c targeting mt-COX1. Isolated heart mitochondrial studies showed significantly altered O2-consumption, ROS production, matrix calcium, and mitochondrial membrane potential in miR-181c-treated animals. For the first time, this study shows that miRNA delivered to the heart in-vivo can lead to cardiac dysfunction by regulating mitochondrial genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号