首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decreased expression of specific microRNAs (miRNAs) occurs in human tumors, which suggests a function for miRNAs in tumor suppression. Herein, levels of the miR-17-5p/miR-20a miRNA cluster were inversely correlated to cyclin D1 abundance in human breast tumors and cell lines. MiR-17/20 suppressed breast cancer cell proliferation and tumor colony formation by negatively regulating cyclin D1 translation via a conserved 3' untranslated region miRNA-binding site, thereby inhibiting serum-induced S phase entry. The cell cycle effect of miR-17/20 was abrogated by cyclin D1 siRNA and in cyclin D1-deficient breast cancer cells. Mammary epithelial cell-targeted cyclin D1 expression induced miR-17-5p and miR-20a expression in vivo, and cyclin D1 bound the miR-17/20 cluster promoter regulatory region. In summary, these studies identify a novel cyclin D1/miR-17/20 regulatory feedback loop through which cyclin D1 induces miR-17-5p/miR-20a. In turn, miR-17/20 limits the proliferative function of cyclin D1, thus linking expression of a specific miRNA cluster to the regulation of oncogenesis.  相似文献   

2.
3.
Breast cancer is a leading cause of morbidity and mortality among women. Metastasis is initiated after epithelial-mesenchymal-transition (EMT). We have found a connection between EMT markers and the expression of four microRNAs (miRs) mediated by the signaling enzyme phospholipase D (PLD). Low aggressive MCF-7 breast cancer cells have low endogenous PLD enzymatic activity and cell invasion, concomitant with high expression of miR-203, -887, and -3619 (that decrease PLD2 translation and a luciferase reporter) and miR-182 (targeting PLD1) that are, therefore, “tumor-suppressor-like” miRs. The combination miR-887+miR-3619 abolished >90% of PLD enzymatic activity. Conversely, post-EMT MDA-MB-231 cells have low miR expression, high levels of PLD1/2, and high aggressiveness. The latter was reversed by ectopically transfecting the miRs, which was negated by silencing miRs with specific siRNAs. We determined that the molecular mechanism is that E-cadherin triggers expression of the miRs in pre-EMT cells, whereas vimentin dampens expression of the miRs in post-EMT invasive cells. This novel work identifies for the first time a set of miRs that are activated by a major pre-EMT marker and deactivated by a post-EMT marker, boosting the transition from low invasion to high invasion, as mediated by the key phospholipid metabolism enzyme PLD.  相似文献   

4.
5.
Both miRNAs and nitric oxide (NO) play important roles in colonic inflammation and tumorigenesis. Resistance of colonic epithelial cells to apoptosis may contribute to tumor development. We hypothesized that some miRNAs could increase the resistance of colonic cancer cells to nitric oxide-induced apoptotic cell death. Here we show that NO induced apoptosis and stimulated expression of some miRNAs. Loss of p53 not only blocked NO-induced apoptosis but also dramatically inhibited the expression of NO-related miRNAs, such as miR-34, miR-203, and miR-1301. In addition, blockage of p53-dependent miRNAs significantly reduced NO-induced apoptosis. Furthermore, forced expression of these miRNAs rendered HT-29 cells, which are resistant to apoptosis with mutant p53, more sensitive to NO-induced apoptotic cell death. Most interestingly, in a colitis-associated colon cancer mouse model, the level of miRNAs dropped significantly, accompanied by downregulation of p21, which is a key target gene of p53. In human colorectal cancer samples, the expression of miR-34 significantly correlated with the level of inducible nitric oxide synthase (iNOS). We contend that increased NO production may select cells with low levels of p53-dependent miRNAs which contributes to human colonic carcinogenesis and tumor progression.  相似文献   

6.
Bo J  Yang G  Huo K  Jiang H  Zhang L  Liu D  Huang Y 《The FEBS journal》2011,278(5):786-792
It is increasingly clear that microRNAs (miRNAs) play an important role in many diseases, including tumorigenesis. However, the mechanisms by which miRNAs regulate bladder cancer development remain poorly understood. Here, we evaluated the expression of microRNA-203 (miR-203) in bladder cancer tissues using real-time PCR, and defined the target genes and biologically functional effect using luciferase reporter assay, flow cytometry and western blot analysis. We first verified that the expression of miR-203 was decreased in bladder cancer tissues. Moreover, ectopic expression of miR-203 promoted the apoptosis of human bladder cancer cell lines and inhibited cell proliferation, whereas its depletion increased cell growth. We further verified that miR-203 directly targeted 3'-untranslated region of the bcl-w gene, and decreased its expression in vitro and in vivo. Western blot analysis also showed that the expression level of miR-203 was negatively correlated with bcl-w level in tumor tissues. These data suggest an important role for miR-203 in the molecular etiology of bladder cancer and implicate the potential application of miR-203 in bladder cancer therapy.  相似文献   

7.
8.
Cervical cancer is common cancer among women with high morbidity. MicroRNAs (miRs) are involved in the progression and development of cervical cancer. This study aimed to explore the effect of miR-99b-5p (miR-99b) on invasion and migration in cervical cancer through the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway. The microarray-based analysis was used to screen out differentially expressed miRNAs. Expression of miR-99b, PI3K, AKT, mTOR, and ribosomal protein S6 kinase (p70S6K) was determined in both cervical cancer tissues and paracancerous tissues. Next, alteration of miR-99b expression in cervical cancer was conducted to evaluate levels of PI3K, AKT, mTOR, p70S6K matrix metallopeptidase 2, epithelial cell adhesion molecule, and intercellular adhesion molecule 1, as well as the effect of miR-99b on cell proliferation, invasion, migration, cell cycle distribution, and apoptosis. The results demonstrated that miR-99b expression was decreased and levels of PI3K, AKT, mTOR, and p70S6K were elevated in cervical cancer tissues. More important, overexpressed miR-99b repressed the PI3K/AKT/mTOR signaling pathway, inhibited cell proliferation, invasion, and migration, blocked cell cycle entry, and promoted apoptosis in cervical cancer. These results indicate that miR-99b attenuates the migration and invasion of human cervical cancer cells through downregulation of the PI3K/AKT/mTOR signaling pathway, which provides a therapeutic approach for cervical cancer treatment.  相似文献   

9.
A search for regulators of estrogen receptor alpha (ERalpha) expression has yielded a set of microRNAs (miRNAs) for which expression is specifically elevated in ERalpha-negative breast cancer. Here we show distinct expression of a panel of miRNAs between ERalpha-positive and ERalpha-negative breast cancer cell lines and primary tumors. Of the elevated miRNAs in ERalpha-negative cells, miR-221 and miR-222 directly interact with the 3'-untranslated region of ERalpha. Ectopic expression of miR-221 and miR-222 in MCF-7 and T47D cells resulted in a decrease in expression of ERalpha protein but not mRNA, whereas knockdown of miR-221 and miR-222 partially restored ERalpha in ERalpha protein-negative/mRNA-positive cells. Notably, miR-221- and/or miR-222-transfected MCF-7 and T47D cells became resistant to tamoxifen compared with vector-treated cells. Furthermore, knockdown of miR-221 and/or miR-222 sensitized MDA-MB-468 cells to tamoxifen-induced cell growth arrest and apoptosis. These findings indicate that miR-221 and miR-222 play a significant role in the regulation of ERalpha expression at the protein level and could be potential targets for restoring ERalpha expression and responding to antiestrogen therapy in a subset of breast cancers.  相似文献   

10.
11.
12.
13.
Trastuzumab, a humanized monoclonal antibody directed against the extracellular domain of the HER2 oncoprotein, can effectively target HER2-positive breast cancer through several mechanisms. Although the effects of trastuzumab on cancer cell proliferation, angiogenesis and apoptosis have been investigated in depth, the effect of trastuzumab on microRNA (miRNA) has not been extensively studied. We have performed miRNA microarray profiling before and after trastuzumab treatment in SKBr3 and BT474 human breast cancer cells that overexpress HER2. We found that trastuzumab treatment of SKBr3 cells significantly decreased five miRNAs and increased three others, whereas treatment of BT474 cells significantly decreased two miRNAs and increased nine. The only change in miRNA expression observed in both cell lines following trastuzumab treatment was upregulation of miRNA-194 (miR-194) that was further validated in vitro and in vivo. Forced expression of miR-194 in breast cancer cells that overexpress HER2 produced no effect on apoptosis, modest inhibition of proliferation, significant inhibition of cell migration/invasion in vitro and significant inhibition of xenograft growth in vivo. Conversely, knockdown of miR-194 promoted cell migration. Increased miR-194 expression markedly reduced levels of the cytoskeletal protein talin2 and specifically inhibited luciferase reporter activity of a talin2 wild-type 3'-untranslated region, but not that of a mutant reporter, indicating that talin2 is a direct downstream target of miR-194. Trastuzumab treatment inhibited breast cancer cell migration and reduced talin2 expression in vitro and in vivo. Knockdown of talin2 inhibited cell migration/invasion. Knockdown of trastuzumab-induced miR-194 expression with a miR-194 inhibitor compromised trastuzumab-inhibited cell migration in HER2-overexpressing breast cancer cells. Consequently, trastuzumab treatment upregulates miR-194 expression and may exert its cell migration-inhibitory effect through miR-194-mediated downregulation of cytoskeleton protein talin2 in HER2-overexpressing human breast cancer cells.  相似文献   

14.
15.

Background

The HER3 receptor functions as a major cause of drug resistance in cancer treatment. It is believed that therapeutic targeting of HER3 is required to improve patient outcomes. It is not clear whether a novel strategy with two functional cooperative miRNAs would effectively inhibit erbB3 expression and potentiate the anti-proliferative/anti-survival effects of a HER2-targeted therapy (trastuzumab) and chemotherapy (paclitaxel) on HER2-overexpressing breast cancer cells.

Results

Combination of miR-125a and miR-205, as compared to either miRNA alone, potently inhibited expression of HER3 in HER2-overexpressing breast cancer BT474 cells. Co-expression of the two miRNAs not only reduced the levels of phosphorylated erbB3 (P-erbB3), Akt (P-Akt), and Src (P-Src), it also inhibited cell proliferation and increased cells at G1 phase. A multi-miRNA lentiviral vector - the cluster of miR-125a and miR-205 - was constructed to simultaneously express the two miRNAs in HER2-overexpressing breast cancer cells. Concurrent expression of miR-125a and miR-205 via the miRNA cluster transfection significantly enhanced trastuzumab-mediated growth inhibition and cell cycle G1 arrest in BT474 cells and markedly increased paclitaxel-induced apoptosis in another HER2-overexpressing breast cancer cell line HCC1954.

Conclusions

Here, we showed that functional cooperative miRNAs effectively suppressed erbB3 expression. This novel approach targeting of HER3 was able to enhance the therapeutic efficacy of trastuzumab and paclitaxel against HER2-overexpressing breast cancer.
  相似文献   

16.
17.
Breast cancer is the first common cancer among women worldwide. One of the major signaling pathways playing a role in the onset and progression of this disease is PI3K/Akt/mTOR, which can be inhibited by PTEN. miRNAs are small non-coding molecules that regulate the expression of their targets by inhibition or suppression, and thus, their dysregulated expression results in the development of cancer. Using various software applications predicting miRNAs and evaluating GEO microarray data, miR-144 was selected as an inhibitor of PTEN. The expression of miR-144 and PTEN was evaluated in 18 triple negative breast cancer (TNBC) clinical samples and cell lines including 4T1, MDA-MB-231, MDA-MB-468, SK-BR-3, and MCF-7 in comparison with normal cells. PTEN and miR-144 expression analysis revealed their elevated expression in MCF-7 cells. MDA-MB-468, SK-BR-3, and MDA-MB-231 cells showed decreased levels of PTEN and increased levels of miR-144. In contrast, 4T1 cells had an increased expression of PTEN and decreased expression of miR-144. In clinical samples, miR-144 was up-regulated in 22% of the cases and PTEN was down-regulated in 78% of the cases. The results showed that the expression of PTEN and miR-144 was inversely correlated in metastatic breast cancer cell lines. However, in TNBC clinical samples, there was no correlation between the expression of miR-144 and PTEN. Literature shows that there are other influencing factors affecting the expression of miRNAs. Therefore, care should be taken in interpreting the results of gene expression studies and its relation with cancer diagnosis/prognosis.  相似文献   

18.
19.
microRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by targeting mRNAs, inhibiting the expression of the associated proteins. Although a role for aberrant miRNA expression in cancer has been postulated, the pathophysiologic role and relevance of aberrantly expressed miRNAs in tumor biology has not been established. We evaluated the expression pattern of miRNAs in human breast cancer cells by qPCR, finding out an up-regulated miRNA miR-29b and studying its biological effect by migration assay. We defined a target gene PTEN by bioinformatics approach and western blot. In breast cancer cell line MDA-MB-231 cell, which migrate faster than MCF-7, we observed that miR-29b was highly over-expressed. Inhibition of miR-29b in cultured cells increased the expression of the phosphatase and tensin homolog (PTEN) tumor suppressor, promoting apoptosis, decreasing migration, and decreasing invasion. In contrast, enhanced miR-29b expression by transfection with pre-miR-29b decreased the expression of PTEN and impaired apoptosis, increasing tumor cell migration and invasion. Moreover, PTEN was shown to be a direct target of miR-29b and was also shown to contribute to the miR-29b-mediated effects on cell invasion. Modulation of miR-29b altered the role of PTEN involved in cell migration and invasion. Aberrant expression of miR-29b, which modulates PTEN expression, can contribute to migration, invasion, and anti-apoptosis.  相似文献   

20.

Introduction

Metformin is proposed as adjuvant therapy in cancer treatment because of its ability to limit cancer incidence by negatively modulating the PI3K/AKT/mTOR pathway. In vitro, in addition to inhibiting cancer cell proliferation, metformin can also induce apoptosis. The molecular mechanism underlying this second effect is still poorly characterized and published data are often contrasting. We investigated how nutrient availability can modulate metformin-induced apoptosis in three breast cancer cell lines.

Material and Methods

MCF7, SKBR3 and MDA-MB-231 cells were plated in MEM medium supplemented with increasing glucose concentrations or in DMEM medium and treated with 10 mM metformin. Cell viability was monitored by Trypan Blue assay and treatment effects on Akt/mTOR pathway and on apoptosis were analysed by Western Blot. Moreover, we determined the level of expression of pyruvate kinase M2 (PKM2), a well-known glycolytic enzyme expressed in cancer cells.

Results

Our results showed that metformin can induce apoptosis in breast cancer cells when cultured at physiological glucose concentrations and that the pro-apoptotic effect was completely abolished when cells were grown in high glucose/high amino acid medium. Induction of apoptosis was found to be dependent on AMPK activation but, at least partially, independent of TORC1 inactivation. Finally, we showed that, in nutrient-poor conditions, metformin was able to modulate the intracellular glycolytic equilibrium by downregulating PKM2 expression and that this mechanism was mediated by AMPK activation.

Conclusion

We demonstrated that metformin induces breast cancer cell apoptosis and PKM2 downregulation only in nutrient-poor conditions. Not only glucose levels but also amino acid concentration can influence the observed metformin inhibitory effect on the mTOR pathway as well as its pro-apoptotic effect. These data demonstrate that the reduction of nutrient supply in tumors can increase metformin efficacy and that modulation of PKM2 expression/activity could be a promising strategy to boost metformin anti-cancer effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号