首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
T S Huang  P Palese    M Krystal 《Journal of virology》1990,64(11):5669-5673
An artificial vaccinia virus vector-driven replication system for influenza virus RNA has been developed. In this system, a synthetic NS-like gene is replicated and expressed by influenza virus proteins supplied through infection with vaccinia virus recombinant vectors. The minimum subset of influenza virus proteins needed for specific replication and expression of the viral ribonucleoprotein was found to be the three polymerase proteins (PB1, PB2, and PA) and the nucleoprotein.  相似文献   

2.
Histone deacetylase inhibitors (HDI) dampen cellular innate immune response by decreasing interferon production and have been shown to increase the growth of vesicular stomatitis virus and HSV. As attenuated tumour-selective oncolytic vaccinia viruses (VV) are already undergoing clinical evaluation, the goal of this study is to determine whether HDI can also enhance the potency of these poxviruses in infection-resistant cancer cell lines. Multiple HDIs were tested and Trichostatin A (TSA) was found to potently enhance the spread and replication of a tumour selective vaccinia virus in several infection-resistant cancer cell lines. TSA significantly decreased the number of lung metastases in a syngeneic B16F10LacZ lung metastasis model yet did not increase the replication of vaccinia in normal tissues. The combination of TSA and VV increased survival of mice harbouring human HCT116 colon tumour xenografts as compared to mice treated with either agent alone. We conclude that TSA can selectively and effectively enhance the replication and spread of oncolytic vaccinia virus in cancer cells.  相似文献   

3.
Virotherapy using oncolytic vaccinia virus strains is one of the most promising new strategies for cancer therapy. In this study, we analyzed for the first time the therapeutic efficacy of the oncolytic vaccinia virus GLV-1h68 in two human hepatocellular carcinoma cell lines HuH7 and PLC/PRF/5 (PLC) in cell culture and in tumor xenograft models. By viral proliferation assays and cell survival tests, we demonstrated that GLV-1h68 efficiently colonized, replicated in, and did lyse these cancer cells in culture. Experiments with HuH7 and PLC xenografts have revealed that a single intravenous injection (i.v.) of mice with GLV-1h68 resulted in a significant reduction of primary tumor sizes compared to uninjected controls. In addition, replication of GLV-1h68 in tumor cells led to strong inflammatory and oncolytic effects resulting in intense infiltration of MHC class II-positive cells like neutrophils, macrophages, B cells and dendritic cells and in up-regulation of 13 pro-inflammatory cytokines. Furthermore, GLV-1h68 infection of PLC tumors inhibited the formation of hemorrhagic structures which occur naturally in PLC tumors. Interestingly, we found a strongly reduced vascular density in infected PLC tumors only, but not in the non-hemorrhagic HuH7 tumor model. These data demonstrate that the GLV-1h68 vaccinia virus may have an enormous potential for treatment of human hepatocellular carcinoma in man.  相似文献   

4.
Bernt K  Liang M  Ye X  Ni S  Li ZY  Ye SL  Hu F  Lieber A 《Journal of virology》2002,76(21):10994-11002
We have developed a new class of adenovirus vectors that selectively replicate in tumor cells. The vector design is based on our recent observation that a variety of human tumor cell lines support DNA replication of adenovirus vectors with deletions of the E1A and E1B genes, whereas primary human cells or mouse liver cells in vivo do not. On the basis of this tumor-selective replication, we developed an adenovirus system that utilizes homologous recombination between inverted repeats to mediate precise rearrangements within the viral genome resulting in replication-dependent activation of transgene expression in tumors (Ad.IR vectors). Here, we used this system to achieve tumor-specific expression of adenoviral wild-type E1A in order to enhance viral DNA replication and spread within tumor metastases. In vitro DNA replication and cytotoxicity studies demonstrated that the mechanism of E1A-enhanced replication of Ad.IR-E1A vectors is efficiently and specifically activated in tumor cells, but not in nontransformed human cells. Systemic application of the Ad.IR-E1A vector into animals with liver metastases achieved transgene expression exclusively in tumors. The number of transgene-expressing tumor cells within metastases increased over time, indicating viral spread. Furthermore, the Ad.IR-E1A vector demonstrated antitumor efficacy in subcutaneous and metastatic models. These new Ad.IR-E1A vectors combine elements that allow for tumor-specific transgene expression, efficient viral replication, and spread in liver metastases after systemic vector application.  相似文献   

5.
Recently, we showed that the oncolytic vaccinia virus GLV-1h68 has a significant therapeutic potential in treating lymph node metastases of human PC-3 prostate carcinoma in tumor xenografts. In this study, underlying mechanisms of the virus-mediated metastases reduction were analyzed. Immunohistochemistry demonstrated that virus-treatment resulted in a drastically decrease of blood and lymph vessels, representing essential routes for PC-3 cell migration, in both tumors and metastases. Thus, GLV-1h68 drastically reduced essential routes for the metastatic spread of PC-3 cells. Furthermore, analysis of viral distribution in GLV-1h68-injected tumor-bearing mice by plaque assays, revealed significantly higher virus titers in metastases compared to solid tumors. To elucidate conditions potentially mediating the preferential viral colonization and eradication of metastases, microenvironmental components of uninfected tumors and metastases were compared by microscopic studies. These analyses revealed that PC-3 lymph node metastases showed increased vascular permeability, higher proliferation status of tumor cells as determined by BrdU- and Ki-67 assays and lesser necrosis of PC-3 cells than solid tumors. Moreover, an increased number of immune cells (MHCII+/CD68+ macrophages, MHCII+/CD19+ B lymphocytes) combined with an up-regulated expression of pro-inflammatory cytokines was observed in metastases in comparison to primary PC-3 tumors. We propose that these microenvironmental components mediated the metastatic tropism of GLV-1h68. Therefore, vaccinia virus-based oncolytic virotherapy might offer a novel treatment of metastatic prostate carcinomas in humans.  相似文献   

6.
Mammary tumor virus (MTV) replication was confined primarily to cells organized as acini in intact mouse mammary glands. Primary mammary tumors maintained a high degree of acinar organization and cells therein continued to replicate MTV vegetatively. Nonacinar mammary cells, derived by serial transplantation of acinar tumor cells, no longer actively replicated MTV. This suggests that phenotypic differences exist among mammary epithelial cells in their ability to support virus replication, that a fundamental relationship exists between the organization of epithelium for secretion and active virus replication, and that this relationship is not altered as a primary consequence of neoplastic transformation. Mammary epithelial cells from pregnant, non-tumor-bearing, MTV-infected BALB/cfC3H mice or from acinar mammary tumors from a number of mouse strains were grown in primary monolayer cultures. Such cell cultures under the influence of insulin and cortisol exhibited the ability to organize into discrete three-dimensional structures called "domes." MTV replication in such cultures took place primarily in cells within the organized domes. Cells cultured from nonacinar tumors did not exhibit any propensity to organize into domes, nor did they replicate MTV in primary culture. This suggests that the cell organizational requirement for MTV replication observed in vivo is conserved in primary culture. Dome formation is not an effect of virus replication, as cells from uninfected BALB/c animals organized into domes in culture without concomitant MTV replication. Growth-regulating signals, exerted between contiguous cells in cultures of non-MTV-infected mammary epithelium, were not modified by the occurrence of active virus replication nor as a direct consequence of neoplastic transformation. Cells derived from nontumor BALB/cfC3H glands and from spontaneous tumors exhibited cell growth kinetics, saturation densities, and deoxyribonucleic acid synthesis kinetics nearly identical to those of noninfected normal mammary epithelium in primary culture. Cell to cell growth regulatory signals were modified in cultures of nonalveolar tumor cells wherein evidence of overgrowth is documented.  相似文献   

7.
The advance of a DNA replication fork requires an unwinding of the parental double helix. This in turn creates a positive superhelical stress, a (+)-DeltaLk, that must be relaxed by topoisomerases for replication to proceed. Surprisingly, partially replicated plasmids with a (+)-DeltaLk were not supercoiled nor were the replicated arms interwound in precatenanes. The electrophoretic mobility of these molecules indicated that they have no net writhe. Instead, the (+)-DeltaLk is absorbed by a regression of the replication fork. As the parental DNA strands re-anneal, the resultant displaced daughter strands base pair to each other to form a four-way junction at the replication fork, which is locally identical to a Holliday junction in recombination. We showed by restriction endonuclease digestion that the junction can form at either the terminus or the origin of replication and we visualized the structure with scanning force microscopy. We discuss possible physiological implications of the junction for stalled replication in vivo.  相似文献   

8.
We have studied the replication of ecotropic murine leukemia viruses (MuLV) in the spleens and thymuses of mice infected with the lymphocytic leukemia-inducing virus Moloney MuLV (M-MuLV), with the erythroleukemia-inducing virus Friend MuLV (F-MuLV), or with in vitro-constructed recombinants between these viruses in which the long terminal repeat (LTR) sequences have been exchanged. At 1 week after infection both the parents and the LTR recombinants replicated predominantly in the spleens with only low levels of replication in the thymus. At 2 weeks after infection, the patterns of replication in the spleens and thymuses were strongly influenced by the type of LTR. Viruses containing the M-MuLV LTR exhibited a remarkable elevation in thymus titers which frequently exceeded the spleen titers, whereas viruses containing the F-MuLV LTR replicated predominantly in the spleen. In older preleukemic mice (5 to 8 weeks of age) the structural genes of M-MuLV or F-MuLV predominantly influenced the patterns of replication. Viruses containing the structural genes of M-MuLV replicated efficiently in both the spleen and thymus, whereas viruses containing the structural genes of F-MuLV replicated predominantly in the spleen. In leukemic mice infected with the recombinant containing F-MuLV structural genes and the M-MuLV LTR, high levels of virus replication were observed in splenic tumors but not in thymic tumors. This phenotypic difference suggested that tumors of the spleen and thymus may have originated by the independent transformation of different cell types. Quantification of polytropic MulVs in late-preleukemic mice infected with each of the ecotropic MuLVs indicated that the level of polytropic MuLV replication closely paralleled the level of replication of the ecotropic MuLVs in all instances. These studies indicated that determinants of tissue tropism are contained in both the LTR and structural gene sequences of F-MuLV and M-MuLV and that high levels of ecotropic or polytropic MuLV replication, per se, are not sufficient for leukemia induction. Our results further suggested that leukemia induction requires a high level of virus replication in the target organ only transiently during an early preleukemic stage of disease.  相似文献   

9.
I have used a plasmid containing two copies of the Saccharmyces cerevisiae his3 gene to study intramolecular homologous recombination in vaccina virus-infected cells. Recombination of the plasmid was monitored by restriction enzyme digestion and Southern blot hybridization in cells infected with representatives from each of 32 complementation groups of temperature-sensitive mutants ts42 and ts17 did not replicate nor detectably recombine the input plasmid. All except one of the mutants that synthesized normal amounts of viral DNA and protein replicated and recombined the plasmid in a manner indistinguishable from wild-type virus. The remaining mutant, ts13, only poorly replicated and recombined the input plasmid. Thus, the processes of replication and recombination could not be separated by using this battery of mutants. Viral mutants defective in late protein synthesis were unable to resolve the vaccinia virus concatemer junction in plasmids but carried out intramolecular homologous recombination with plasmids as efficiently as did wild-type virus at the conditionally lethal temperature. This result distinguishes homologous recombination, which requires early gene products, from resolution of concatemer junctions, which requires additional late gene products.  相似文献   

10.
11.
The efficient replication of large DNA viruses requires dNTPs supplied by a viral ribonucleotide reductase. Viral ribonucleotide reductase is an early gene product of both vaccinia and herpes simplex virus. For productive infection, the apoprotein must scavenge iron from the endogenous, labile iron pool(s). The membrane-permeant, intracellular Fe(2+) chelator, 2,2'-bipyridine (bipyridyl, BIP), is known to sequester iron from this pool. We show here that BIP strongly inhibits the replication of both vaccinia and herpes simplex virus, type 1. In a standard plaque assay, 50 microm BIP caused a 50% reduction in plaque-forming units with either virus. Strong inhibition was observed only when BIP was added within 3 h post-infection. This time dependence was observed also in regards to inhibition of viral late protein and DNA synthesis by BIP. BIP did not inhibit the activity of vaccinia ribonucleotide reductase (RR), its synthesis, nor its stability indicating that BIP blocked the activation of the apoprotein. In parallel with its inhibition of vaccinia RR activation, BIP treatment increased the RNA binding activity of the endogenous iron-response protein, IRP1, by 1.9-fold. The data indicate that the diiron prosthetic group in vaccinia RR is assembled from iron taken from the BIP-accessible, labile iron pool that is sampled also by ferritin and the iron-regulated protein found in the cytosol of mammalian cells.  相似文献   

12.
Virotherapy on the basis of oncolytic vaccinia virus (VACV) infection is a promising approach for cancer therapy. In this study we describe the establishment of a new preclinical model of feline mammary carcinoma (FMC) using a recently established cancer cell line, DT09/06. In addition, we evaluated a recombinant vaccinia virus strain, GLV-5b451, expressing the anti-vascular endothelial growth factor (VEGF) single-chain antibody (scAb) GLAF-2 as an oncolytic agent against FMC. Cell culture data demonstrate that GLV-5b451 virus efficiently infected, replicated in and destroyed DT09/06 cancer cells. In the selected xenografts of FMC, a single systemic administration of GLV-5b451 led to significant inhibition of tumor growth in comparison to untreated tumor-bearing mice. Furthermore, tumor-specific virus infection led to overproduction of functional scAb GLAF-2, which caused drastic reduction of intratumoral VEGF levels and inhibition of angiogenesis.In summary, here we have shown, for the first time, that the vaccinia virus strains and especially GLV-5b451 have great potential for effective treatment of FMC in animal model.  相似文献   

13.
A novel method has been developed to study the functional roles of individual vaccinia virus gene products that is neither limited by the possible essentiality of the target gene nor by the availability of conditional lethal mutants. The system utilises the E. coli lac repressor protein, the operator sequence to which it binds and the specific inducer IPTG. It allows the generation of recombinant viruses in which the expression of any chosen gene, and hence virus replication, can be externally controlled. In principle, this system is broadly applicable to the functional analysis of genes in any large DNA virus. This approach has demonstrated that the gene encoding the 14 kDa membrane protein of vaccinia virus is non-essential for the production of infectious intracellular virus particles, but essential for the envelopment of intracellular virions by Golgi membrane and for egress of mature extracellular viral particles. This is the first vaccinia virus protein shown to be specifically required for these processes. In vivo this system may prove useful as a means of attenuating recombinant vaccinia virus vaccines by preventing virus spread without reducing the amount of the foreign antigen expressed in each infected cell. Attenuation of other live virus vaccines may be developed in a similar way.  相似文献   

14.
A short sequence, located between the A14L and A15L open reading frames (ORFs) of vaccinia virus, was predicted to encode a hydrophobic protein of 53 amino acids that is conserved in orthopoxviruses, leporipoxviruses, yatapoxiruses, and molluscipoxviruses. We constructed a recombinant vaccinia virus with a 10-codon epitope tag appended to the C terminus of the A14.5L ORF. Synthesis of the tagged protein occurred at late times and was blocked by an inhibitor of DNA replication, consistent with regulation by a predicted late promoter just upstream of the A14.5L ORF. Hydrophobicity of the protein was demonstrated by extraction into the detergent phase of Triton X-114. The protein was associated with purified vaccinia virus particles and with membranes of immature and mature virions that were visualized by electron microscopy of infected cells. Efficient release of the protein from purified virions occurred after treatment with a nonionic detergent and reducing agent. A mutant virus, in which the A14.5L ORF was largely deleted, produced normal-size plaques in several cell lines, and the yields of infectious intra- and extracellular viruses were similar to those of the parent. In contrast, with a mouse model, mutant viruses with the A14.5L ORF largely deleted were attenuated relative to that of the parental virus or a mutant virus with a restored A14.5L gene.  相似文献   

15.
The augmenting effect of vaccinia virus infection of tumor cells on induction of tumor-specific resistance was examined in mice. C3H/HeN mice were primed intraperitoneally (ip) with live vaccinia virus after whole-body irradiation with 250 rad of X-rays. Three weeks later the mice were immunized ip 3 times at weekly intervals with syngeneic murine hepatoma MH134 or spontaneous myeloma X5563 which had been infected in vitro with vaccinia virus and subsequently irradiated with 7000 rad of X-rays. One week after the third immunization, the mice were challenged with 1 X 10(5) viable cells of MH134 or X5563 ip or 1 X 10(6) tumor cells intradermally (id). On ip challenge with viable MH134 cells all mice that had not been pretreated died within 3 weeks due to ascites tumor out-growth, whereas all mice that had been vaccinia virus-primed and immunized with vaccinia virus-infected MH134 cells survived. On ip challenge with X5563 cells, the percentage survival of vaccinia virus-primed and vaccinia virus-modified tumor-immunized mice was 80%. On id challenge with MH134 and X5563 tumor cells, in un-treated mice tumors grew to more than 5 mm in diameter within 3 weeks, whereas 90% and 60%, respectively, of the mice that had been vaccinia virus-primed and immunized with vaccinia virus-infected tumor cells showed no tumor out-growth. Pretreatment by only immunization with vaccinia virus-infected cells or vaccinia virus-priming and immunization with virus non-infected tumor cells were not effective for preventing induction of tumor-resistance to either ip or id challenge with MH134 or X5563 tumor cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.

Background

Oncolytic viruses hold much promise for clinical treatment of many cancers, but a lack of systemic delivery and insufficient tumor cell killing have limited their usefulness. We have previously demonstrated that vaccinia virus strains are capable of systemic delivery to tumors in mouse models, but infection of normal tissues remains an issue. We hypothesized that interferon-beta (IFN-β) expression from an oncolytic vaccinia strain incapable of responding to this cytokine would have dual benefits as a cancer therapeutic: increased anticancer effects and enhanced virus inactivation in normal tissues. We report the construction and preclinical testing of this virus.

Methods and Findings

In vitro screening of viral strains by cytotoxicity and replication assay was coupled to cellular characterization by phospho-flow cytometry in order to select a novel oncolytic vaccinia virus. This virus was then examined in vivo in mouse models by non-invasive imaging techniques. A vaccinia B18R deletion mutant was selected as the backbone for IFN-β expression, because the B18R gene product neutralizes secreted type-I IFNs. The oncolytic B18R deletion mutant demonstrated IFN-dependent cancer selectivity and efficacy in vitro, and tumor targeting and efficacy in mouse models in vivo. Both tumor cells and tumor-associated vascular endothelial cells were targeted. Complete tumor responses in preclinical models were accompanied by immune-mediated protection against tumor rechallenge. Cancer selectivity was also demonstrated in primary human tumor explant tissues and adjacent normal tissues. The IFN-β gene was then cloned into the thymidine kinase (TK) region of this virus to create JX-795 (TK/B18R/IFN-β+). JX-795 had superior tumor selectivity and systemic intravenous efficacy when compared with the TK/B18R control or wild-type vaccinia in preclinical models.

Conclusions

By combining IFN-dependent cancer selectivity with IFN-β expression to optimize both anticancer effects and normal tissue antiviral effects, we were able to achieve, to our knowledge for the first time, tumor-specific replication, IFN-β gene expression, and efficacy following systemic delivery in preclinical models.  相似文献   

17.
痘苗病毒减毒株作为基因表达载体,广泛应用于多种疾病的预防和治疗。复制缺陷型痘苗病毒天坛株(Non-replicating Tiantan vaccinia virus,NTV)作为一株高度减毒的痘苗病毒株,其生物学特性和复制缺陷机制还有待研究。探究NTV细胞生物学特性和复制缺陷机制。在不同种属和组织来源的细胞中测定NTV复制能力、细胞嗜性和毒力;Western Blot检测HeLa细胞中的NTV的A17/A27蛋白表达水平,Real-time PCR检测晚期蛋白A17/A27转录水平。NTV在BHK-21、CEF细胞中可有效复制和扩散,而在Vero细胞及人源细胞HeLa、2BS、Hep-2和143TK-中均不能有效复制;在HeLa细胞中,晚期蛋白A17和A27蛋白表达受阻,而转录水平基本不变。NTV是一株复制缺陷型痘苗病毒,在多种细胞中复制和扩散受限;NTV晚期蛋白A17和A27的表达受阻且与蛋白表达转录水平无关,初步判定蛋白表达受阻发生在蛋白翻译阶段。  相似文献   

18.
The Chinese hamster ovary (CHO) cell line is nonpermissive for vaccinia virus, and translation of viral intermediate genes was reported to be blocked (A. Ramsey-Ewing and B. Moss, Virology 206:984-993, 1995). However, cells are readily killed by vaccinia virus. A vaccinia virus-resistant CHO mutant, VV5-4, was isolated by retroviral insertional mutagenesis. Parental CHO cells, upon infection with vaccinia virus, die within 2 to 3 days, whereas VV5-4 cells preferentially survive this cytotoxic effect. The survival phenotype of VV5-4 is partial and in inverse correlation with the multiplicity of infection used. In addition, viral infection fails to shut off host protein synthesis in VV5-4. VV5-4 was used to study the relationship of progression of the virus life cycle and cell fate. We found that in parental CHO cells, vaccinia virus proceeds through expression of viral early genes, uncoating, viral DNA replication, and expression of intermediate and late promoters. In contrast, we detect only expression of early genes and uncoating in VV5-4 cells, whereas viral DNA replication appears to be blocked. Consistent with the cascade regulation model of viral gene expression, we detect little intermediate- and late-gene expression in VV5-4 cells. Since vaccinia virus is known to be cytolytic, isolation of this mutant therefore demonstrates a new mode of the cellular microenvironment that affects progression of the virus life cycle, resulting in a different cell fate. This process appears to be mediated by a general mechanism, since VV5-4 is also resistant to Shope fibroma virus and myxoma virus killing. On the other hand, VV5-4 remains sensitive to cowpox virus killing. To examine the mechanism of VV5-4 survival, we investigated whether apoptosis is involved. DNA laddering and staining of apoptotic nuclei with Hoechst 33258 were observed in both CHO and VV5-4 cells infected with vaccinia virus. We concluded that the cellular pathway, which blocks viral DNA replication and allows VV5-4 to survive, is independent of apoptosis. This mutant also provides evidence that an inductive signal for apoptosis upon vaccinia virus infection occurs prior to viral DNA replication.  相似文献   

19.
The murine Mx1 protein is an interferon-inducible protein which confers selective resistance to influenza virus infection both in vitro and in vivo. The precise mechanism by which the murine Mx1 specifically inhibits replication of influenza virus is not known. Previously, sensitive replication systems for influenza virus ribonucleoprotein, in which a synthetic influenza virus-like ribonucleoprotein is replicated and transcribed by influenza virus proteins provided in trans, have been developed. With these systems, the antiviral activity of the murine Mx1 protein was examined. It was found that continued expression of influenza polymerase polypeptides via vaccinia virus vectors can titrate out the inhibitory action of the murine Mx1 protein. This titration of inhibitory activity also occurs when the viral PB2 protein alone is overexpressed, suggesting that an antiviral target for the murine Mx1 polypeptide is the viral PB2 protein.  相似文献   

20.
Vaccinia virus A6L is a previously uncharacterized gene that is conserved in all sequenced vertebrate poxviruses. Here, we constructed a recombinant vaccinia virus encoding A6 with an epitope tag and showed that A6 was expressed in infected cells after viral DNA replication and packaged in the core of the mature virion. Furthermore, we showed that A6 was essential for vaccinia virus replication by performing clustered charge-to-alanine mutagenesis on A6, which resulted in two vaccinia virus mutants (vA6L-mut1 and vA6L-mut2) that displayed a temperature-sensitive phenotype. At 31 degrees C, both mutants replicated efficiently; however, at 40 degrees C, vA6L-mut1 grew to a low titer, while vA6L-mut2 failed to replicate. The A6 protein expressed by vA6L-mut2 exhibited temperature-dependent instability. At the nonpermissive temperature, vA6L-mut2 was normal at viral gene expression and viral factory formation, but it was defective for proteolytic processing of the precursors of several major virion proteins, a defect that is characteristic of a block in virion morphogenesis. Electron microscopy further showed that the morphogenesis of vA6L-mut2 was arrested before the formation of immature virion with nucleoid and mature virion. Taken together, our data show that A6 is a virion core protein that plays an essential role in virion morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号