首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
N6,O2-′Dibutyryl cyclic AMP (dibutyryl cyclic AMP), a derivative of 3′,5′-adenosine monophosphate (cyclic AMP) resistant to phosphodiesterase inactivation, has been reported to stimulate serotonin and melatonin synthesis in the pineal gland in vitro1–3. In brain adenyl cyclase and phosphodiesterase, which catalyse the formation and the inactivation of cyclic AMP, are found chiefly in the synaptosomal fraction of the tissue homogenates4, where vesicles containing monoamine are also present5. These factors prompted us to study the effects of cyclic AMP and its dibutyryl derivative on the synthesis of brain monoamines.  相似文献   

2.
The stimulatory effects of N6,O2′-dibutyryl adenosine 3′,5′-monophosphate on proteoglycans released from immature rabbit ear cartilage were studied in vitro. Cartilage incubated in medium containing dibutyryl cyclic AMP resulted in a significant increase of proteoglycans released in concentrations above 0.5 mM. Theophylline (1 mM) which did not significantly stimulate proteoglycans released alone, was found to potentiate the action of this nucleotide. ATP, 5′-AMP and butyric acid in the presence of theophylline, did not stimulate proteoglycans released. The addition of protein or RNA synthesis inhibitors depressed proteoglycans released by dibutyryl cyclic AMP and theophylline.Gel chromatographic and chemical investigations of the proteoglycans released into the culture media in the presence of dibutyryl cyclic AMP indicated a reduction in the proportion of protein associated with these complexes. This result, together with enzyme inhibitor studies, leads us to speculate that the observed action of dibutyryl cyclic AMP on rabbit ear cartilages may be mediated by the neural proteases.  相似文献   

3.
CYCLIC 3′5′-adenosine monophosphate (cyclic AMP) regulates many physiological phenomena1,2. Cellular morphology changes when the dibutyryl derivative of cyclic AMP is added in vitro to the nutrient media of cultured mammalian cells3–6. Dibutyryl cyclic AMP has also been shown to restore controlled growth to transformed cells3, change the cell's surface architecture3,7 and induce axon formation8 with an accompanied increase in acetylcholinesterase activity9 in neuroblastoma cells growing in culture. These effects suggest that the cyclic AMP moiety may have some basic regulatory action on cell growth and cell specialization.  相似文献   

4.
5.
6.
The effects of N6-2′-O-dibutyryl cyclic AMP on glucose metabolism and lipolysis in fragments of rat epididymal adipose tissue were studied. Measurements were made of glucose uptake, conversion of glucose carbon to CO2 and tissue fatty acids and glyceride-glycerol, lactate production, and glycerol release. Low concentrations of dibutyryl cyclic AMP (0.1–0.5 mM) increased all parameters of glucose metabolism and inhibited glycerol release in tissue from both normally fed and fasted rats. Higher concentrations of dibutyryl cyclic AMP (3–5 mM) diminished glucose utilization and greatly accelerated lipolysis. Insulin, 50 μunits/ml, accelerated glucose metabolism in the presence of either low or high concentrations of dibutyryl cyclic AMP though the effect of insulin was greatly reduced by 3 mM dibutyryl cyclic AMP. Tissue exposed to concentrations of dibutyryl cyclic AMP which inhibited glucose metabolism (5 mM), then rinsed and reincubated without dibutyryl cyclic AMP, displayed increased glucose utilization. The results of these experiments emphasize the need for caution in interpretation of the effects of dibutyryl cyclic AMP on adipose tissue metabolism and the need for further research to elucidate the role of cyclic AMP in the regulation of glucose metabolism.  相似文献   

7.
The present study has investigated the influence of agents which elevate intracellular levels of endogenous platelet adenosine 3′5′-cyclic monophosphate (cyclic AMP), and the effect of the exogenous cyclic AMP analog, dibutyryl cyclic AMP, on the conversion of 14C-arachidonic acid by washed platelets. Prostaglandin E1 (PGE1), PGE1 with theophylline, or dibutyryl cyclic AMP incubated with washed platelets prevented arachidonic acid induced platelet aggregation, but had no effect on the conversion of arachidonic acid to 12L-hydroxy-5,8,10, 14-eicosatetraenoic acid (HETE), 12L-hydroxy-5,8,10 heptadecatrienoic acid (HHT), or thromboxane B2. Ultrastructural studies of the platelet response revealed that agents acting directly or indirectly to increase the level of cyclic AMP inhibited the action of arachidonic acid on washed platelets and prevented internal platelet contraction as well as aggregation. The influence of PGE1 with theophylline, and dibutyryl cyclic AMP on the thrombin induced release of 14C-arachidonic acid from platelet membrane phospholipids was also investigated. These agents were found to be potent inhibitors of the thrombin stimulated release of arachidonic acid from platelet phospholipids, due most likely to an inhibition of platelet phospholipase A activity. The results show that dibutyryl cyclic AMP and agents which elevate intracellular cyclic AMP levels act to inhibit platelet activation at two steps 1) internal contraction and 2) release of arachidonic acid from platelet phospholipids.  相似文献   

8.
IN VITRO studies have suggested that adenosine 3′,′-monophosphate (cyclic AMP) regulates cell morphology. During treatment with the dibutyryl analogue of cyclic AMP, N6,O2′-dibutyryl cyclic AMP, transformed fibroblasts acquire several morphological characteristics of untransformed fibroblasts1,3. Cell processes are extended, the cells occupy a greater surface area and in some cases there is a parallel alignment of cells. Chinese hamster ovary cells are affected in the same way. In neuroblastoma cells5, dibutyryl cyclic AMP induces neurite extension and increases the activity of acetylcholinesterase, an indicator of biochemical differentiation6. Cyclic AMP is known to control the dispersion of melanin7,8 and the differentiation of melanoblasts into melanocytes. We have now found that during treatment with dibutyryl cyclic AMP, melanoma cells spread out, appear larger and produce considerably more pigment than untreated cells.  相似文献   

9.
Cyclic AMP-induced tyrosinase synthesis in Neurospora crassa   总被引:6,自引:0,他引:6  
Cyclic AMP induces the synthesis of tyrosinase in Neurospora crassa. Adenine, adenosine, 3′-AMP, 5′-AMP, and 2′,3′-cyclic AMP have no inductive effect while 8-bromocyclic AMP and dibutyryl cyclic AMP are good inducers. Caffeine and theophylline, inhibitors of cyclic AMP phosphodiesterase, also induce tyrosinase. A possible relationship between cyclic AMP induction and previously reported induction by cycloheximide is suggested.  相似文献   

10.
Specific activity of the myelin enzyme, 2′:3′-cyclic-nucleotide 3′-phosphohydrolase (EC 3.1.4.37), increases 2- to 10-fold when sparsely inoculated cultures of C6 rat glioma cells are allowed to grow to high cell density. Cyclic-nucleotide phosphohydrolase specific activity is also induced in C6 cells and in oligodendrocytes by dibutyryl cyclic AMP or by agents that elevate intracellular cyclic AMP. In this report, we have compared the density-dependent induction of cyclic-nucleotide phosphohydrolase activity with the cyclic AMP-dependent induction. Dibutyryl cyclic AMP induced cyclic-nucleotide phosphohydrolase specific activity in both sparse and dense cultures which had very different density-dependent cyclic-nucleotide phosphohydrolase activities. Induction of both cyclic-nucleotide phosphohydrolase specific activity and intracellular cyclic AMP content by norepinephrine also occurred to a similar degree in sparse and dense cultures. Similar results were obtained for several clones of C6 cells, and for a clone of oligodendrocyte x C6 cell hybrids. Induction of cyclic-nucleotide phosphohydrolase by norepinephrine or dibutyryl cyclic AMP was not due to a change in cell density or rate of cell proliferation, nor did cell density have any appreciable effect on cyclic AMP content of the cells. These results show that regulation of cyclic-nucleotide phosphohydrolase activity in C6 cells involves two distinct mechanisms.  相似文献   

11.
12.
The mechanism of mammalian neural differentiation is still obscure; but the availability of mouse neuroblastoma cells in vitro provides an opportunity to study some possible inducers of differentiation and this may help to elucidate the events involved at the molecular level. We have reported1 that X-irradiation of mouse neuroblastoma cells in vitro induces the formation of axons. The differentiated cells seem to undergo maturation: the soma and nucleus increase in size and the cytoplasm becomes granular. Here we report that N6O2 dibutyryl adenosine 3′:5′-cyclic monophosphate (dibutyryl cyclic AMP) induces axon formation in mouse neuroblastoma cells in vitro.  相似文献   

13.
1.
1. Accumulation of intracellular radioactivity was measured during incubation of isolated bovine thyroid cells with cyclic [32P]AMP, cyclic [8-3H]AMP and dibutyryl cyclic [8-3H]AMP. With cyclic [32P]AMP, 32P cell/medium ratios ranged from 0 to to 0.04 compared to a maximum 3H cell/medium ratio of 0.29 with cyclic [3H]AMP and 0.16 with dibutyryl cyclic [3H]AMP. The excess of intracellular cyclic [3H] over cyclic [32P]AMP radioactivity was due to extracellular formation of more penetrable dephosphorylated cyclic AMP metabolites which probably served as precursor of intra-cellular cyclic AMP.  相似文献   

14.
α-Aminoisobutyrate accumulation by human fetal liver explants in organ culture is stimulated by dibutyryl cyclic AMP (N6, 2′O-dibutyryl adenosine 3′–5′: cyclic monophosphate), glucagon or insulin. Theophylline increased the effect of submaximal concentrations of dibutyryl cyclic AMP or glucagon. Maximal concentrations of glucagon and dibutyryl cyclic AMP yielded the same results as either agent alone. A period of about 4–6 h was required to observe the stimulatory effect of dibutyryl cyclic AMP or insulin, which could be completely prevented by simultaneous incubation with cycloheximide. Maximal effects of either dibutyryl cyclic AMP or glucagon plus insulin produced additive results. These data support the hypothesis that insulin acts via a mechanism independent of the glucagon—cyclic AMP pathway in liver tissue.In addition, the pharmacologic receptor for glucagon was detected in liver explants from a 30-mm (crown - rump) specimen (6 weeks gestation). The liver had the competence to respond to dibutyryl cyclic AMP by the 36-mm stage. Tissue from a 36-mm specimen did not respond to insulin, but a clear response was elicited from a specimen at the 48-mm stage. These data demonstrate the ability of human fetal liver to respond to hormones at a very early stage in gestation.  相似文献   

15.
Forskolin, an adenylate cyclase activator and a cyclic AMP analogue, dibutyryl cyclic AMP have been used to examine the relationship between intracellular levels of cyclic AMP and lipid synthesis inMycobacterium smegmatis. Total phospholipid content was found to be increased in forskolin grown cells as a result of increased cyclic AMP levels caused by activation of adenylate cyclase. Increased phospholipid content was supported by increased [14C] acetate incorporation as well as increased activity of glycerol-3-phosphate acyltransferase. Pretreatment of cells with dibutyryl cyclic AMP had similar effects on lipid synthesis. Taking all these observations together it is suggested that lipid synthesis is being controlled by cyclic AMP in mycobacteria.  相似文献   

16.
KB cell cultures exposed to 10−4 M dibutyryl cyclic AMP were significantly inhibited and exhibited contact inhibition of growth at cell densities of 8 × 104/cm2 irrespective of the initial plating density. Control cultures reached densities of 2.5 × 105/cm2. Inhibition of growth did not occur in KB cells when the density was below 1 × 104 cells/cm2. When dibutyryl cyclic AMP was removed from KB cells in the contact-inhibited state, growth resumed with DNA synthesis beginning in about 6 h. Labeled metaphases increased rapidly after 22 h without the appearance of an early rise in unlabeled metaphases. This suggests that the inhibitory effect of dibutyryl cyclic AMP is on the G1 phase of the cell cycle.  相似文献   

17.
NORADRENALINE increases the intracellular concentration of adenosine 3′,5′-monophosphate (cyclic AMP)1,2 which, in turn, enhances glycogenosis3 and lipolysis4,5 in adipose tissue by increasing Phosphorylase and lipase activities. Prostaglandin E1 (PGE1) antagonizes the induced increases in Phosphorylase activity6,7 and glycerol release in human adipose tissues8,9 and isolated adipocytes7. The finding that the stimulatory effects of the cyclic AMP analogue N6—O2 dibutyryl cyclic AMP, which mimics the hormonal effect of noradrenaline in human fat cells, are not blocked by PGE17 suggests that noradrenaline and PGE1 alter fat cell metabolism by acting on the adenyl cyclase system10. Whether noradrenaline and PGE1 alter concentrations of cyclic AMP in human fat cells, however, has not been reported.  相似文献   

18.
The effects of dibutyryl cyclic AMP on glycoprotein biosynthesis, intracellular mobilization, and secretion in isolated rat hepatocytes are described. Dibutyryl cyclic AMP (2.5 mm) initially suppresses [3H]glucosamine or [3H]fucose incorporation into cellular macromolecular material; however, after 312 h, the incorporation of these radiolabeled carbohydrates into macromolecular material was stimulated relative to control cells. The stimulation in accumulation of cellular glycoprotein occurred in membrane-associated fractions, with most of this accumulation occurring in the Golgi elements. The glycoprotein produced in the presence of dibutyryl cyclic AMP was quantitatively precipitated by antibodies directed against rat serum, suggesting that the accumulated cellular material is normally destined for secretion from the cell. Dibutyryl cyclic AMP also produced a drastic inhibition of glycoprotein secretion which persisted during the cellular accumulation of glycosylated material. Exposure of the hepatocytes to colchicine (10 μm) produced a similar increase in accumulation of [3H]glucosamine-containing immunoprecipitable material in the cellular fraction and a similar inhibition in secretion. The initial dibutyryl cyclic AMP-mediated suppression of synthesis of intracellular glycosylated material occurred entirely in non-membrane-associated intracellular fractions. Also, the initial accumulation of [3H]glucosamine-containing immunoprecipitable material was not suppressed during the first 312 h after exposure to dibutyryl cyclic AMP, suggesting the initial suppression represents a metabolic process unrelated to secretion. The incorporation of [3H]leucine into macromolecular material was inhibited in both cellular and secreted fractions after exposure to dibutyryl cyclic AMP; however, the accumulation into the extracellular environment was inhibited to a greater extent. The patterns of [3H]glucosamine-containing lipid biosynthesis were unaffected by dibutyryl cyclic AMP.  相似文献   

19.
1. 1. Incubation of isolated hepatocytes with glucagon (10−6 M) or dibutyryl cyclic AMP (0.1 mM) causes a decrease in pyruvate kinase activity of 50%, measured at suboptimal substrate (phosphoenolpyruvate) concentrations and 1 mM Mgfree2+. The magnitude of the decrease in activity is not influenced by the applied extracellular concentrations of lactate (1 and 5 mM), glucose (5 and 30 mM) or fructose (10 and 25 mM). With all three substrates comparable inhibition percentages are induced by glucagon or dibutyryl cyclic AMP.
2. 2. The extent of inhibition of pyruvate kinase induced by incubation of hepatocytes with glucagon or dibutytyl cyclic AMP is not influenced by the extracellular Ca2+ concentration nor by the presence of 2 mM EGTA. The reactivation of pyruvate kinase seems to be inhibited by a high concentration of extracellular Ca2+ (2.6 mM) as compared to a low concentration of extracellular Ca2+ (0.26 mM).
3. 3. Incubation of hepatocytes in a Na+-free, high K+-concentration medium does not influence the magnitude of the pyruvate kinase inhibition induced by dibutyryl cyclic AMP. However, the reactivation reaction is stimulated under these incubation conditions.
4. 4. Incubation of hepatocytes with dibutyryl cyclic GMP (0.1 mM) leads to a 25% decrease in pyruvate kinase activity. The magnitude of the inhibition by dibutyryl cyclic (GMP) is not influenced by the presence of pyruvate (1 mM) or glucose (5 mM and 30 mM).
5. 5. The relative insensitivity of the pyruvate kinase inhibition induced by glucagon, dibutyryl cyclic AMP and dibutyryl cyclic GMP to the extracellular environment leads to the conclusion that the hormonal regulation of pyruvate kinase is not the only site of hormonal regulation of glycolysis and gluconeogenesis. It is concluded that hormonal regulation of pyruvate kinase activity is exerted by changes in the degree of (de)phosphorylation of the enzyme reflecting acute hormonal control as well as by changes in the concentration of the allosteric activator fructose 1,6-diphosphate. The latter depends at least in part on the hormonal control of the phosphofructokinase-fructose-1,6-phosphatase cycle.
Abbreviations: Bt2-cAMP, dibutyryl cyclic AMP; Bt2-cGMP, dibutyryl cyclic GMP  相似文献   

20.
J W Putney 《Life sciences》1978,22(8):631-638
The role of intracellular Ca in the exocytosis of α-amylase stimulated by derivatives of cyclic AMP was investigated. Partial depletion of cellular Ca stores was accomplished by prolonged (100–120 min) incubation in media containing no added Ca and 5.0 mM ethyleneglycolbis (aminoethylether)-N,N′-tetraacetic acid (EGTA). Release of α-amylase in response to the N6, O2′-dibutyryl or N6-monobutyryl derivatives of cyclic adenosine-3′,5′-monophosphate (cyclic AMP) was significantly inhibited by this procedure. When [K+]° was increased from 5.0 mM to 25.0 mM, Ca-depletion was accelerated, as was the inhibition of the response to the monobutyryl derivative. The Ca-depletion regimen did not affect the cellular content of other cations, suggesting that the effects were specific for Ca. The effects of the cyclic AMP derivatives on release of Ca was also investigated. Both monobutyryl and dibutyryl cyclic AMP significantly enhanced the rate of release of 45Ca from pre-loaded parotid slices. These observations lend support to the hypothesis previously set forth suggesting that in the parotid, cyclic AMP acts to release Ca from intracellular stores. It is this rise in cytosolic Ca which may catalyze the events ultimately leading to exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号