首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To define the role of inorganic electrolyte secretion in hepatic bile formation, the effects of secretin, glucagon, and differently structured bile acids on bile flow and composition were studied in the dog, guinea pig, and rat. In the dog and guinea pig, secretin (2.5-10 clinical units X kg-1 X 30 min-1) increased bile flow and bicarbonate concentration in bile, a finding consistent with the hypothesis that the hormone stimulates a bicarbonate-dependent secretion possibly at the level of the bile ductule-duct. In the rat, secretin (5-15 CU X kg-1 X 30 min-1) failed to increase bile secretion. Glucagon (1.25-300 micrograms X kg-1 X 30 min-1) increased bile flow in all the three species, and produced no changes in biliary bicarbonate concentrations in the dog and rat. In the guinea pig, however, glucagon choleresis was associated with an increase in bicarbonate concentration in bile, similar to that observed with secretin. The choleretic activities of various bile acids (taurocholate, chenodeoxycholate, glycochenodeoxycholate, tauroursodeoxycholate, and ursodeoxycholic acid, infused at 30-360 mumol X kg-1 X 30 min-1) were similar in the rat (6.9-7.2 microL/mumol), but different in the guinea pig (11-31 microL/mumol). In the latter species, the more hydrophobic the bile acid, the greater was its choleretic activity. In all instances, bile acid choleresis was associated with a decline in the biliary concentrations of chloride, but with no major change in bicarbonate levels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Effects of secretin and Cholecystokinin-Pancreozymin (CCK-PZ) on the secretion of bile in anaesthetized rabbits have been studied. Single injections of secretin (5.0 u.kg(-1) significantly increased the flow of bile irrespectively of whether the cystic duct was free or had been tied. A sustained increase in bile flow could be obtained by the continuous infusion of secretin. Cholecystokinin-Pancreozymin was effective in increasing the bile flow in doses of 1.0 u.kg(-1). Much of the effect could be attributed to contraction of the gallbladder but a significant increase in flow could still be elicited after ligation of the cystic duct. Our findings strongly suggest that the biliary secretion in rabbits is not as different from the general pattern as has previously been suggested.  相似文献   

3.
促胰液素和胆囊收缩素族激素对豚鼠肝胆汁分泌的影响   总被引:1,自引:0,他引:1  
敖子良  梅懋华 《生理学报》1988,40(3):223-230
用具备胃瘘和胆瘘的豚鼠于人工维持胆汁酸池恒定的条件下,观察促胰液素(SEC)和胆囊收缩素(CCK)族激素[包括雨蛙肽(CAE)、五肽胃泌素(G5)和内源性CCK]对肝胆汁分泌的影响及其相互作用。结果表明:静脉灌注SEC、CAE或肠内灌注左旋苯丙氨酸(L-PHE,促内源性CCK释放剂)后,胆汁流量、胆汁HCO~-_3和Cl~-排出量均显著增多,并呈剂量-效应关系,但静脉注射G5则无利胆效应。在恒速灌注SEC的背景下,CAE或CCK对胆汁HCO~-_3排出的效应分别大于它们单独给予时的效应(P<0.05或P<0.01)。这些激素对胆汁酸的排出量均无影响。上述结果表明,SEC,CAE和内源性CCK均有利胆作用,所刺激的肝胆汁属于不依赖胆汁酸部分。G5则无利胆效应。对胆汁中HCO~-_3的排出,SEC与CAE或内源性CCK间有相互加强作用。  相似文献   

4.
5.
The effects of a cyclic hexapeptide analog of somatostatin, [cyclo(Pro-Phe-D-Trp-Lys-Thr-Phe)] (cyclo-SS), administered intravenously (iv) or instilled into the duodenum (id) on the pancreatic response to endogenous (meal and duodenal acidification) and exogenous (secretin, CCK) stimulants were compared in five dogs with esophageal, gastric, and pancreatic fistulae. Cyclo-SS given iv in graded doses against a constant background stimulation with secretin caused a similar and dose-dependent inhibition of pancreatic HCO3 and protein secretion being about twice as potent as somatostatin-14 (SS-14). Cyclo-SS, whether applied topically to the duodenal mucosa in a dose of 1 microgram/kg or given iv at a dose of 0.5 microgram/kg-hr, resulted in a similar inhibition of pancreatic secretion induced by feeding a meat meal, sham-feeding, duodenal acidification, or infusion of secretin or CCK. The inhibition of pancreatic secretion by cyclo-SS was due in part to direct inhibitory action on the exocrine pancreas as well as to the suppression of the release of secretin, insulin, and pancreatic polypeptide. It is concluded that cyclo-SS is a more potent inhibitor of pancreatic secretion than SS-14 and that it is active when administered both parenterally and intraduodenally.  相似文献   

6.
It is well established that duodenal acidification strongly inhibits gastric acid secretion, gastric emptying rate and gastrin release. These effects are at least partly mediated via hormonal pathways, but it is not known whether they are mediated by the release of one peptide named in the past enterogastrone, or by several peptides acting together. The effects of duodenal acidification on gastric acid secretion and gastrin release can be reproduced by infusion of small doses of secretin and plasma secretin levels increase during duodenal acidification or after a meal. This peptide is thus the most probable candidate as an enterogastrone. It has however never been clearly shown that administration of low doses of secretin do decrease gastric emptying rate as well as acid secretion. Experiments were performed on four dogs with gastric fistulas. A peptone solution was infused into the stomach. The experiments were repeated during infusion of synthetic secretin. Our results indicate that infusion of low doses of secretin reproduce all the effects of duodenal acidification: a significant inhibition of gastric acid secretion, gastrin release and gastric emptying rate.  相似文献   

7.
Effects of bile acids on actin polymerization in vitro   总被引:1,自引:0,他引:1  
Bile acids are major determinants of canalicular bile secretion, and there are indications that choleretic bile acids increase bile canalicular contractions, in isolated rat hepatocytes. Therefore, we examined the influence of various bile acids on the rate of actin polymerization in vitro. The free forms of cholic acid, ursodeoxycholic acid, and chenodeoxycholic acid, as well as their taurine and glycine conjugates, were incubated with purified muscle actin, at a concentration of 100-300 nmoles/mg actin. The rate of actin polymerization was measured by viscometry and the fluorescence of the pyrene probe, linked to actin. Results showed that all bile acids slow the rate of polymerization, and that the effect was dose-dependent. However, the reduction by chenodeoxycholic acid was greater than that caused by the other bile acids. The results indicate that bile acids, particularly in high concentrations interact with actin, a finding that may be related to the increased bile canalicular contractility, and altered canalicular membrane morphology, induced by choleretic bile acids.  相似文献   

8.
Gastric acid secretion, gastrin and secretin serum levels after duodenal acidification were studied in 6 dogs, before and after a troncular vagotomy was performed in each one. After duodenal acidification in normal dogs, a 45.2% inhibition of gastric acid secretion with parallel 55-84% increases in the serum secretin levels, without changes in the serum gastrin levels, was noted. When a troncular vagotomy was performed in the same dogs, duodenal acidification produced a 20% (non significant) inhibition of gastric acid secretion with parallel 34-72% increases in the serum secretin levels and without changes in the serum gastrin levels. It is concluded that vagus nerve is necessary to assess a physiological inhibition of gastric secretion after duodenal acidification and it is suggested that humoral and nervous factors are implicated and coexist in these mechanisms.  相似文献   

9.
Gastrin serum levels after acidification of the second portion of the duodenum were studied, in dogs and humans, while simultaneously measuring secretin levels and gastric acid secretion. After duodenal acidification in dogs, a 50% inhibition of gastric acid secretion with parallel 100% increases in the serum secretin levels was noted whereas gastrin serum levels did not change (after duodenal acidification). In humans, a 25% inhibition of gastric acid secretion with parallel 50% (not significative) increases in the secretin serum levels was noted. In the entire group gastrin levels did not change, but in 35.2% of the subjects a little increment without statistical significance was noted. It is concluded that the inhibition mechanism of gastric acid secretion after duodenal acidification is more important in dog than in man, and that, probably, gastrin does not play an important role in this mechanism.  相似文献   

10.
Cholestasis is a significant contributor to liver pathology and can lead to primary sclerosis and liver failure. Cholestatic bile acids induce apoptosis and necrosis in hepatocytes but these effects can be partially alleviated by the pharmacological application of choleretic bile acids. These actions of bile acids on hepatocytes require changes in the release of Ca(2+) from intracellular stores and in Ca(2+) entry. However, the nature of the Ca(2+) entry pathway affected is not known. We show here using whole cell patch clamp experiments with H4-IIE liver cells that taurodeoxycholic acid (TDCA) and other choleretic bile acids reversibly activate an inwardly-rectifying current with characteristics similar to those of store-operated Ca(2+) channels (SOCs), while lithocholic acid (LCA) and other cholestatic bile acids inhibit SOCs. The activation of Ca(2+) entry was observed upon direct addition of the bile acid to the incubation medium, whereas the inhibition of SOCs required a 12 h pre-incubation. In cells loaded with fura-2, choleretic bile acids activated a Gd(3+)-inhibitable Ca(2+) entry, while cholestatic bile acids inhibited the release of Ca(2+) from intracellular stores and Ca(2+) entry induced by 2,5-di-(tert-butyl)-1,4-benzohydro-quinone (DBHQ). TDCA and LCA each caused a reversible redistribution of stromal interaction molecule 1 (STIM1, the endoplasmic reticulum Ca(2+) sensor required for the activation of Ca(2+) release-activated Ca(2+) channels and some other SOCs) to puncta, similar to that induced by thapsigargin. Knockdown of Stim1 using siRNA caused substantial inhibition of Ca(2+)-entry activated by choleretic bile acids. It is concluded that choleretic and cholestatic bile acids activate and inhibit, respectively, the previously well-characterised Ca(2+)-selective hepatocyte SOCs through mechanisms which involve the bile acid-induced redistribution of STIM1.  相似文献   

11.
The effects of sodium cyclobutyrate, a synthetic hydrocholeretic drug, on biliary lipid secretion and on the biliary outputs of several plasma-membrane enzymes were investigated in anaesthetized rats. Administration of a single oral dose of cyclobutyrol (0.72 mmol/kg body wt.) reduced biliary concentration and output of cholesterol and phospholipid. However, bile acid secretion was not significantly modified. This uncoupling effect of lipid secretion remained even when the choleretic response to the drug had ceased. It additionally led to a statistically significant decrease in the cholesterol/bile acid and phospholipid/bile acid molar ratios and in the lithogenic index of the bile. The biliary outputs of the plasma-membrane enzymes alkaline phosphatase and gamma-glutamyltransferase were markedly reduced by the drug. When cyclobutyrol was administered to rats which had been previously fed with a high-cholesterol diet, the effects of cyclobutyrol persisted, but were less marked. Our results demonstrate that the bile acid-independent choleresis induced by cyclobutyrol (related to its pharmacokinetic effect) is accompanied by a pharmacodynamic action that selectively reduces the secretion of biliary lipids. This is due to an uncoupling of the secretion of cholesterol and phospholipids from that of bile acids. Possible explanations for the biliary response to cyclobutyrol are discussed.  相似文献   

12.
K Miyasaka  K Kitani 《Life sciences》1986,38(22):2053-2061
The effects of different species of bile salts: deoxycholate, taurochenodeoxycholate, ursodeoxycholate, glycodeoxycholate, tauroursodeoxycholate, chenodeoxycholate and cholate (DCA, TCDC, UDCA, GDCA, TUDC, CDCA, CA) on bile secretion were examined in anesthetized rabbits using two different infusion routes. When bile salts were infused intravenously, all bile salts (except for TCDC) significantly increased the volume of bile and bile salt excretion, but their respective efficiency for bile formation was different. The concentration of bicarbonate ion in the bile significantly increased during the choleretic periods induced by DCA, UDCA, GDCA and CDCA but remained unchanged with the other bile salts (CA, TCDC, TUDC). In rabbits, where a bile salt solution was infused in the duodenum and then drained from the intestine through an incision in the distal part of duodenum, none of these bile salts affected bile secretion. The effects of intravenously administered bile salts on rabbit bile secretion are different in terms of their choleretic potency and bicarbonate excretion depending on the species of bile salts used. Furthermore, it was concluded that the intraduodenal infusion of UDCA, which was found to stimulate the pancreatic exocrine function, did not affect bile secretion.  相似文献   

13.
We sought to establish Endothelin (ET-3) role in the central regulation of bile secretion in the rat. The intracerebroventricular (icv) injection of ET-3 evoked a cholestatic or a choleretic effect depending on the administered dose. Lower doses increased bile flow and bicarbonate excretion, whereas higher doses decreased bile flow and bile acid output. ET-3 effects were dependent on brain nitric oxide and independent of the autonomic nervous system or hemodynamic variations. A selective ETB antagonist abolished the cholestatic effect, whereas the choleretic effect was totally inhibited by either ETA or ETB selective blockade. These results show that ET-3 applied to the brain modified through a nitric oxide pathway distinct bile flow fractions depending on the administered dose and give further insights into the complexity of brain-liver interaction.  相似文献   

14.
The role of Endothelin-1 (ET-1) in the central nervous system is not fully understood yet although several studies strongly support its neuromodulatory role. A high density of endothelin receptors is present in the dorsal vagal complex that is the major site for the regulation of the digestive function. Therefore in the present study we sought to establish the role of ET-1 in the central regulation of bile secretion in the rat. Intracerebroventricular ET-1 injection exhibited opposite behaviors on spontaneous bile secretion according to the dose administered. Lower doses of ET-1 (1 fM) increased bile flow and bicarbonate excretion whereas higher doses (1 nM) decreased bile flow and bile acid output. Both the choleretic and the cholestatic effects of ET-1 were abolished in animals pretreated with icv BQ-610 (selective ETA antagonist) but not with BQ-788 (selective ETB antagonist). In addition, truncal vagotomy but not adrenergic blockade abolished ET-1 effects on bile secretion. Brain nitric oxide was not involved in ET-1 response since L-NAME pretreatment failed to affect ET-1 actions on the liver. Portal venous pressure was increased by centrally administered ET-1 being the magnitude of the increase similar with low and high doses of the peptide. These results show that centrally applied ET-1 modified different bile flow fractions independent of hemodynamic changes. Lower doses of ET-1 increased bile acid independent flow whereas higher doses decreased bile acid dependent flow. Vagal pathways through the activation of apparently distinct ETA receptors mediated the cholestatic as well as the choleretic effects induced by ET-1. Present findings show that ET-1 participates in the central regulation of bile secretion in the rat and give further insights into the complexity of brain-liver interaction.  相似文献   

15.
5-Hydroxytryptamine (serotonin, 5-HT) is a hormone and neurotransmitter regulating gastrointestinal functions. 5-HT receptors are widely distributed in gastrointestinal mucosa and the enteric nervous system. Duodenal acidification stimulates not only the release of both 5-HT and secretin but also pancreatic exocrine secretion. We investigated the effect of 5-HT receptor antagonists on the release of secretin and pancreatic secretion of water and bicarbonate induced by duodenal acidification in anesthetized rats. Both the 5-HT(2) receptor antagonist ketanserin and the 5-HT(3) receptor antagonist ondansetron at 1-100 microg/kg dose-dependently inhibited acid-induced increases in plasma secretin concentration and pancreatic exocrine secretion. Neither the 5-HT(1) receptor antagonists pindolol and 5-HTP-DP nor the 5-HT(4) receptor antagonist SDZ-205,557 affected acid-evoked release of secretin or pancreatic secretion. None of the 5-HT receptor antagonists affected basal pancreatic secretion or plasma secretin concentration. Ketanserin or ondansetron at 10 microg/kg or a combination of both suppressed the pancreatic secretion in response to intravenous secretin at 2.5 and 5 pmol x kg(-1) x h(-1) by 55-75%, but not at 10 pmol x kg(-1) x h(-1). Atropine (50 microg/kg) significantly attenuated the inhibitory effect of ketanserin on pancreatic secretion but not on the release of secretin. These observations suggest that 5-HT(2) and 5-HT(3) receptors mediate duodenal acidification-induced release of secretin and pancreatic secretion of fluid and bicarbonate. Also, regulation of pancreatic exocrine secretion through 5-HT(2) receptors may involve a cholinergic pathway in the rat.  相似文献   

16.
These experiments were performed to evaluate the effects of cytochalasin B on pancreatic enzyme secretion and thus perhaps establish a role for microfilaments in the exocytosis process. The alkaloid at a concentration of 1 microgram/ml (2micron) inhibits amylase secretion induced by urecholine or cholecystokinin-pancreozymin (CCK-PZ) but does not modify that induced by dibutyryl cyclic AMP. The inhibitory effect of the drug is reversible after a 30-min washing out period. It does not affect O2 consumption, basal calcium efflux, or efflux caused by CCK-PZ. Amino acid accumulation in the tissue and their incorporation into proteins are not modified. It is suggested that cytochalasin B inhibits pancreatic enzyme secretion, probably through an effect on the microfilament system.  相似文献   

17.
Only one secretin receptor has been cloned and its properties characterized in native and transfected cells. To test the hypothesis that stimulatory and inhibitory effects of secretin are mediated by different secretin receptor subtypes, pancreatic and gastric secretory responses to secretin and secretin-Gly were determined in rats. Pancreatic fluid secretion was increased equipotently by secretin and secretin-Gly, but secretin was markedly more potent for inhibition of basal and gastrin-induced acid secretion. In Chinese hamster ovary cells stably transfected with the rat secretin receptor, secretin and secretin-Gly equipotently displaced (125)I-labeled secretin (IC(50) values 5.3 +/- 0.5 and 6.4 +/- 0.6 nM, respectively). Secretin, but not secretin-Gly, caused release of somatostatin from rat gastric mucosal D cells. Thus the equipotent actions of secretin and secretin-Gly on pancreatic secretion appear to result from equal binding and activation of the pancreatic secretin receptor. Conversely, secretin more potently inhibited gastric acid secretion in vivo, and only secretin released somatostatin from D cells in vitro. These results support the existence of a secretin receptor subtype mediating inhibition of gastric acid secretion that is distinct from the previously characterized pancreatic secretin receptor.  相似文献   

18.
Bile salt dependent flow and electrolyte secretion in response to two bile salts were studied in awake rabbits. It was found that sodium glycodeoxycholate had a much greater choleretic and cholioneretic efficiency than sodium taurocholate. The effect of the bile salts on flow and electrolyte secretion was not linear across the range of bile salt secretion rates studied. When amiloride was administered significant decreases in choleretic and cholioneretic efficiencies occurred, but furosemide had no effect. It is concluded that bile salts stimulate electrolyte transport via amiloride inhibitable cellular processes, and that this electrolyte transport is in part responsible for bile salt dependent bile flow.  相似文献   

19.
Previous studies have indicated that plasma levels of peptide YY (PYY) increase significantly after a meal. The purpose of this study was to characterize the interaction of PYY and secretin in the inhibition of gastric acid secretion, and to determine whether PYY can influence acid-induced inhibition of gastric acid secretion in conscious dogs. I.v. administration of PYY at 200 pmol/kg/h inhibited pentagastrin (1 microgram/kg/h)-stimulated gastric acid output (P less than 0.05). PYY further augmented i.v. secretin-induced inhibition of pentagastrin-stimulated gastric acid output by 32 +/- 7%, and intraduodenal hydrochloric acid-induced inhibition of pentagastrin-stimulated gastric acid output by 40 +/- 12%. The mean integrated release of secretin response to duodenal acidification (3.9 +/- 1.0 ng-[0-60] min/ml) was not affected by PYY (3.3 +/- 0.9 ng-[0-60] min/ml). The present study demonstrates that PYY can interact with secretin and duodenal acidification in an additive fashion to inhibit pentagastrin-stimulated gastric acid secretion. Our results suggest that several hormones that are released postprandially can interact with each other to inhibit gastric acid secretion.  相似文献   

20.
The effects of 10 differently structured bile acids on bile flow and composition were studied in anesthetized, bile duct-cannulated guinea pigs. At the infusion rates of 2 and 4 mumole/min/kg, all bile acids produced choleresis. The most potent was chenodeoxycholate, which increased bile flow by an average of 31.25 microliters/mumole of bile acids excreted in bile. The weakest choleretic was tauroursodeoxycholate (11.02 mu/mumole). When the choleretic activity was plotted against bile acid hydrophobicity (high-performance liquid chromatography retention factor, obtained from the literature), linearity was observed with similarly conjugated bile acids. The order of potency was deoxycholate greater than chenodeoxycholate greater than cholate greater than ursodeoxycholate, both for the glycine and taurine conjugates, and for the unconjugated bile acids as well. Conjugation was also important, and the rank ordering for the choleretic activity (unconjugated bile acids greater than glycine-conjugates greater than taurine-conjugates) was the same as that for the hydrophobicity. When the choleretic activity was plotted against bile acid micellar aggregation number (in 0.15 M NaCl at 36 degrees C, obtained from the literature), a linear, direct relationship was observed. All bile acids produced similar effects on bile electrolyte concentrations: both bicarbonate and chloride slightly declined during choleresis, whereas bile acid concentrations increased. These studies suggest that, in the guinea pig the differing choleretic activities of differently structured bile acids are not due to their forming micelles in bile of different sizes; either the more hydrophobic bile acids form vesicles, whereas the more hydrophilic form micelles; or bile acids produce choleresis, in part or exclusively, by stimulating an additional secretory mechanism, possibly an inorganic ion pump; or both.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号