首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polygalacturonase (EC 3.2.1.15) produced by Fursarium oxysporum f. sp. lycopersici was purified by chromatography on DEAE-cellulose, CM-cellulose, and hydroxyapatite. The purified enzyme consisted of two electrophoretically distinct "isozymes", that behaved as charge isomers during electrophoresis in several different concentrations of polyacrylamide gel. The two isozymes had similar "endo" modes of action on polygalacturonic acid, as determined by comparison of viscosity reduction, reducing group release, and thin-layer chromatography of oligomeric hydrolysis products. Both isozymes hydrolzyed 5% of the substrate bonds in reaching 50% viscosity reduction. The amino acid compositions of the isozymes were similar and their molecular weights were about 37000 as determined by sedimentation equilibrium. Removal of large amounts of carbohydrate during purification did not affect heat stability of the enzymes. A large proportion of the remaining carbohydrate appeared to be covalently linked to the enzyme protein.  相似文献   

2.
Separation of Two Dipeptidyl Aminopeptidases in the Human Brain   总被引:4,自引:2,他引:2  
Abstract: Soluble dipeptidyl aminopeptidases in the human cerebral cortex were purified by CM-cellulose, Sephadex G-200 and hydroxyapatite column chromatography. With hydroxyapatite chromatography two enzymes, dipeptidyl aminopeptidases A and B (DAP-A and DAP-B), were separated. DAP-A and DAP-B were different from each other in several properties: optimum pH, substrate specificity, K m values in 7-(Gly-Pro)-4-methylcoumarinamide and molecular weight. They were identified as dipeptidyl aminopeptidases based on the analysis of the products by thin-layer chromatography. DAP-A was similar to dipeptidyl aminopeptidase II, but DAP-B was different from any of the previously described dipeptidyl aminopeptidases (I-IV) and may be a new dipeptidylaminopeptidase. DAP-B liberated N-terminal Arg-Pro and subsequently Lys-Pro, from substance P as substrate. Although the physiological roles of these two enzymes in the human brain are not clear yet, they may act on regulation and degradation of biologically active peptides.  相似文献   

3.
Three adenosine nucleosidases (adenosine ribohydrolase, EC 3.2.2.7) with high substrate specificity were isolated from the extracts of tea leaves by a procedure including fractionation with ammonium sulfate, column chromatography on DEAE- and CM-cellulose, and gel filtration on Sephadex G-100. They were designated adenosine nucleosidase I, II and III, respectively, and their properties were characterized.

Among the naturally occurring nucleosides only adenosine and 2′-deoxyadenosine were hydrolyzed by these three enzymes and cleavage rate of the N-glycosidic bond in 2′-deoxyadenosine was three or four times greater than that in adenosine.  相似文献   

4.
Clostridium thermocellum cellobiohydrolase was isolated in preparative amounts from the recombinant strain of E. coli K12 C600 carrying plasmid pCU 304 with a C. thermocellum chromosomal DNA insertion. The isolation procedure included chromatography on Ultrogel AcA 44, ion-exchange chromatography on DEAE-Sepharose CL-6B, rechromatography on Ultrogel and FPLC on Mono Q resulting in a 17.6% yield and 1530-fold purification. According to data from sodium dodecylsulfate polyacrylamide gel electrophoresis performed under nondenaturing conditions and analytical gel isoelectrofocusing, the enzyme preparation contains only one active protein band with Mr 56.2 +/- 1.0 kDa and pI 4.15. The enzyme does not reduce the viscosity of the CM-cellulose solution but forms reducing sugars from this soluble substrate. Cellobiose (93-97%) is the major component produced by the enzyme from crystalline and amorphous cellulose (specific activity 2.3 x 10(-3) and 2.8 x 10(-2) U/mg, respectively). The activity optimum of the enzyme is at pH 5.6, 60 degrees C. The half-inactivation time at 60 degrees C and 65 degrees C is 450 and 15.5 min, respectively. The action pattern of the enzyme on the low molecular fluorogenic cellooligosaccharides suggests that the enzyme pertains to typical cellobiohydrolases.  相似文献   

5.
To investigate the regulatory mechanism of 20 alpha-hydroxysteroid dehydrogenase (20 alpha-HSD) (EC 1.1.1.149) activity in ovarian tissue, the enzyme was purified from ovaries of normal mature female rats. Column chromatography of the cytosolic fraction from ovaries on DEAE-Toyopearl 650M revealed two peaks of the 20 alpha-HSD activity at different ionic strengths. These peaks were designated HSD1 and HSD2, respectively. Each of the active fractions was further purified to homogeneity by dye-affinity chromatography using Matrex Green A and AF Red-Toyopearl. Both the fractions appeared as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (at Mr = 33,000 under reducing conditions). Under non-reducing conditions, similar values were obtained on gel-exclusion HPLC, indicating that the enzyme fractions were single-stranded, monomeric polypeptides. Homogeneous HSD1 and HSD2 were purified 361-fold and 509-fold, respectively, and differed in their substrate preference. The two enzyme fractions had Km values of 4.75 microM and 5.16 microM for 20 alpha-dihydroprogesterone, respectively, and showed almost the same RF values on reverse-phase HPLC and free-zone capillary electrophoresis. However, amino acid composition was slightly different, i.e. lysin content was higher in HSD1 than HSD2. Thus, it was clarified that two types of 20 alpha-HSD with very similar molecular structures are present in the rat ovary.  相似文献   

6.
Isoelectric focusing of a homogenate of Schistosoma mansoni, followed by malate dehydrogenase-specific staining, showed the presence of two major and five minor malate dehydrogenase isoenzymes (EC 1.1.1.37), with isoelectric points ranging from 7.3 to 9.5. The malate dehydrogenase isoenzymes were purified by gel filtration, followed by ion-exchange chromatography on DEAE- and CM-cellulose. The isoenzymes could be differentiated by their susceptibility to substrate inhibition. No differences in the Michaelis-Menten constants for substrate were found. One of the isoenzymes is inhibited by 5′-AMP. Further purification of this particular isoenzyme was achieved by affinity chromatography on 5′-AMP-Sepharose 4B. Analysis after subcellular fractionation indicated a mitochondrial origin for this isoenzyme. The mitochondrial isoenzyme (at a recovery of 80%) was purified 218-fold compared to the crude soluble extract, and contained about 40% of the total malate dehydrogenase activity. The enzyme has a molecular weight of 65,500 and showed absolute specificity for l-malic acid, NAD, and NADH. The final preparation has a specific activity of 451 U/mg protein. Physicochemical studies, including binding constants, substrate inhibition, thermostability, and pH optima, demonstrated differences between the mitochondrial and cytoplasmic enzymes. A role for malate dehydrogenase in Schistosoma mansoni metabolism is discussed.  相似文献   

7.
Myrosinase (beta-thioglucoside glucohydrolase; EC 3.2.3.147) from horseradish (Armoracia rusticana) roots was purified to homogeneity by ammonium sulfate fractionation, Q-sepharose, and concanavalin A sepharose affinity chromatography. The purified protein migrated as a single band with a mass of about 65 kDa on SDS-polyacrylamide gel electrophoresis. Using LC-MS/MS, this band was identified as myrosinase. Western blot analysis, using the anti-myrosinase monoclonal antibody 3D7, showed a single band of about 65 kDa for horseradish crude extract and for the purified myrosinase. The native molecular mass of the purified myrosinase was estimated, using gel filtration, to be about 130 kDa. Based on these data, it appeared that myrosinase from horseradish root consists of two subunits of similar molecular mass of about 65 kDa. The enzyme exhibited high activity at broad pH (pH 5.0-8.0) and temperature (37 and 45 degrees C). The purified enzyme remained stable at 4 degrees C for more than 1 year. Using sinigrin as a substrate, the Km and Vmax values for the purified enzyme were estimated to be 0.128 mM and 0.624 micromol min(-1), respectively. The enzyme was strongly activated by 0.5 mM ascorbic acid and was able to breakdown intact glucosinolates in a crude extract of broccoli.  相似文献   

8.
A membrane-bound phosphatidylinositol (PI) kinase (EC 2.7.1.67) was purified by affinity chromatography from bovine brain myelin. This enzyme activity was solubilized with non-ionic detergent and chromatographed on an anion-exchange column. Further purification was achieved by affinity chromatography on PI covalently coupled to epoxy-activated Sepharose, which was eluted with a combination of PI and detergent. The final step in the purification was by gel filtration on an Ultrogel AcA44 column. This procedure afforded greater than 5500-fold purification of the enzyme from whole brain myelin. The resulting activity exhibited a major silver-stained band on SDS/polyacrylamide-gel electrophoresis with an apparent Mr 45,000. The identity of this band as PI kinase was corroborated by demonstration of enzyme activity in the gel region corresponding to that of the stained protein. The purified enzyme exhibited a non-linear dependence on PI as substrate, with two apparent kinetic components. The lower-affinity component exhibited a Km similar to that observed for the phosphorylation of phosphatidylinositol 4-phosphate by the enzyme.  相似文献   

9.
Two isozymes of 3-phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.2.3), designated PGK-A and PGK-B, were purified from separate extracts of muscle and testicular tissue of DBA/2J mice, respectively. A similar procedure was used to purify the corresponding isozymes from C57BL/6J mice in order to make inter-strain comparisons. The purification involved the use of affinity chromatography with an 8-(6-aminohexyl)amino-ATP-Sepharose column and DEAE-Sephadex chromatography. Lactate dehydrogenase isozyme LDH-X was also co-purified from extract of mouse testes by this two-step procedure. The same isozyme isolated from either mouse strain was found to be identical in physical and biochemical properties. Both isozymes are monomeric as determined by gel filtration chromatography and by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Furthermore, the isozymes have similar molecular weights, of 47 000 +/- 2000 and exhibit similar Km values for both coenzymes and substrate, as well as temperature dependence of enzyme activity. However, it was observed that the B isozyme is more labile than the A isozyme by denaturation at high temperature, urea and acidic pH.  相似文献   

10.
11.
Purification and characterization of aminopeptidase N from human plasma   总被引:1,自引:0,他引:1  
Human plasma aminopeptidase N (EC 3.4.11.2) was homogeneously purified from outdated bank plasma. Purification procedures included ammonium sulfate fractionation, immunoaffinity chromatography, DEAE-cellulose column chromatography, hydroxyapatite column chromatography and Sephadex G-200 gel filtration. The final recovery of the enzyme was 18% and its specific activity was 71.6 mumol/min/mg protein. SDS-polyacrylamide gel disc electrophoresis and analytical ultracentrifugation showed the homogeneity of the enzyme. Equilibrium ultracentrifugation showed a molecular weight of 210,800. SDS-polyacrylamide gel disc electrophoresis indicated that the enzyme was a dimer consisting of two identical subunits. The isoelectric point of the enzyme was 3.9 at 4 degrees C. The amino acid composition of the enzyme was very similar to those of aminopeptidase N from human kidney, small intestine, and placenta which we have reported previously. Neutral sugar accounted for 11.6%. The Km, Vmax and Kcat values and hydrolytic coefficient (Kcat/Km) of the enzyme with L-alanyl-beta-naphthylamide as substrate were 8.7 X 10(-5) mol/l, 85.9 mumol/min/mg protein, 303/s and 3,483/mmol/l/s, respectively. The enzyme was activated by cobalt ions and markedly inhibited by amastatin. Plasma aminopeptidase N was immunologically indistinguishable from kidney aminopeptidase N.  相似文献   

12.
A low molecular weight active fragment of potato proteinase inhibitor IIPB was obtained by incubating the inhibitor with an equimolar amount of trypsin [EC 3.4.21.4] at pH 8 and 30 degrees for 16 hr, followed by gel filtration through Sephadex G-50, treatment with trichloroacetic acid, and CM-cellulose chromatography. The purified active fragment consisted of a single peptide chain with a molecular weight of 4,300, comprising 39 amino acid residues. It retained very strong inhibitory activity against chymotrypsin [EC 3.4.21.1] and subtilisin [EC 3.4.21.14]. However, the yield of this active fragment was rather low and was variable. On further incubation with trypsin, it was converted into smaller inactive peptides.  相似文献   

13.
14.
N5-(L-1-Carboxyethyl)-L-ornithine:NADP+ oxidoreductase (EC 1.5.1.-) from Streptococcus lactis K1 has been purified 8,000-fold to homogeneity. The NADPH-dependent enzyme mediates the reductive condensation between pyruvic acid and the delta- or epsilon-amino groups of L-ornithine and L-lysine to form N5-(L-1-carboxyethyl)-L-ornithine and N6-(L-1-carboxyethyl)-L-lysine, respectively. The five-step purification procedure involves ion-exchange (DE52 and phosphocellulose P-11), gel filtration (Ultrogel AcA 44), and affinity chromatography (2',5'-ADP-Sepharose 4B). Approximately 100-200 micrograms of purified enzyme of specific activity 40 units/mg were obtained from 60 g of cells, wet weight. Anionic polyacrylamide gel electrophoresis revealed a single enzymatically active protein band, whereas three species (pI 4.8-5.1) were detected by analytical electrofocusing. The purified enzyme is active over a broad pH range of 6.5-9.0 and is stable to heating at 50 degrees C for 10 min. Substrate Km values were determined to be: NADPH, 6.6 microM; pyruvate, 150 microM; ornithine, 3.3 mM; and lysine, 18.2 mM. The oxidoreductase has a relative molecular mass (Mr = 150,000) as estimated by high pressure liquid chromatography exclusion chromatography and by polyacrylamide gradient gel electrophoresis. Conventional gel filtration indicated an Mr = 78,000, and a single protein band of Mr = 38,000 was revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is composed of identical subunits of Mr = 38,000, which may associate to yield both dimeric and tetrameric forms. Polyclonal antibody to the purified protein inhibited enzyme activity. The amino acid composition of the enzyme is reported, and the sequence of the first 37 amino acids from the NH2 terminus has been determined by stepwise Edman degradation.  相似文献   

15.
Cell wall-bound invertases (EC 3.2.1.26) from both sugar beet seedlings and aged slices of mature roots were purified to homogeneity separately with CM-cellulose chromatography and Bio-Gel P-150 gel filtrations. The enzymes behaved similarly throughout the purification procedures. The purified enzymes are identical as characterized by specific activity, gel electrophoretic mobility, Km for sucrose and raffinose (1.33 and 4.0 millimolar, respectively), mobility on Bio-Gel P-150 (molecular weight 28,000), optimum pH (4.6 to 5.0), optimum temperature, and dependence on NaCl concentration for insolubilization by DNA. The results suggest that the enzymes may be encoded for by the same structural gene.  相似文献   

16.
Abstract: Prostaglandin H-E isomerase (EC 5.3.99.3) was purified from human brain cytosol. Purification was by ammonium sulfate fractionation, diethylaminoethyl-Sephar-ose chromatography, gel filtration on a BioGel P-100 column, GSH-agarose chromatography, and MonoQ chromatography. The activity was eluted in two peaks from the MonoQ column, which were designated peaks 1 and 2. The molecular weights of peaks 1 and 2, determined by gel filtration, were 42,000 and 44,000, respectively. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, peak 1 showed two bands at the molecular weights of 24,500 and 25,000, and peak 2 showed a single band at the molecular weight of 25,000, results suggesting that both were dimeric proteins. The pI values of both enzymes were ∼5.4. The enzymes catalyzed selective conversion of prostaglandin H2 to prostaglandin E2. The K m values for prostaglandin H2 of peaks 1 and 2 were 147 and 308 μ M , respectively, and the V max values were 380 and 720 nmol/min/mg of protein, respectively. GSH was required for the catalysis of both enzymes, and no other sulfhydryl compounds could support the reaction. A part of glutathione S -transferase (EC 2.5.1.18) was copurified with peaks 1 and 2 of prostaglandin H-E isomerase. Prostaglandin H-E isomerase activity of peak 2 enzyme was competitively inhibited by 1-chloro-2,4-dinitrobenzene, a substrate of glutathione S -transferase. These results suggested that prostaglandin H-E isomerases in human brain cytosol were identical with anionic forms of glutathione S -transferase.  相似文献   

17.
Purification of fractions of tea leaves peroxidase is described. During ion-exchange chromatography on DEAE- and CM-cellulose peroxidase is eluted into six fractions, differing in their electrophoretic properties. The enzyme showed optimal activity at pH 4.1-5.0, when the enzyme fractions of guaiacol adsorbed on DEAE-cellulose were used as a substrate; in case of enzyme fractions adsorbed on CM-cellulose it was observed within pH range of 5.4-6.2. The dependence curves of the initial rate of the reaction on the substrate concentration were S-shaped in case of the latter fractions. Peroxidase is shown to catalyze the oxidation of tea catechins; its activity is inhibited by the products of their condensation. The catalytic effect of the enzyme on the oxidation of phenolic acids, e.g. chlorogenic, caffeic and gallic, was far stronger than on that of tea catechins, pyrogallol and pyrocatechin. It was established that two fractions of the enzyme possess predominantly the phloroglucinol oxidase activity, whereas the other fractions do not catalyze the oxidation of phloroglucin. The molecular weights of some peroxidase fractions estimated by polyacryl amide gel electrophoresis are 26.000+/-1.100, 45.00+/-1.200 and 50.000+/-1.500.  相似文献   

18.
Rat liver rhodanese [EC 2.8.1.1] purified by ammonium sulfate fractionation, CM-cellulose and Sephadex G-200 chromatography yielded two active fractions (I & II). Their molecular weights were estimated to be 1.75 X 10(4) (I) and 1.26 X 10(4) (II) by the gel filtration method. Kinetic studies revealed that Fraction I rat liver rhodanese catalyzes thiocyanate formation from thiosulfate and cyanide by a double displacement mechanism. Carboxylic acids such as DL-isocitric, citric malic, pyruvic, and oxaloacetic acid were competitive inhibitors with respect to thiosulfate, whereas fumaric, succinic, and alpha-ketoglutaric acids were noncompetitive inhibitors with respect ot thiosulfate. Incubation of mitochondria with sulfate and alpha-ketoglutaric acid caused a significant decrease in rhodanese activity.  相似文献   

19.
The purification of Neurospora crassa myo-inositol-1-phosphate synthase (EC 5.5.1.4) was studied by affinity chromatography using the substrate (glucose-6-phosphate), the inhibitor (pyrophosphate), the coenzyme (NAD+) and the coenzyme analogues (5'AMP and Cibacron Blue F3G-A) of the enzyme as adsorbents attached to agarose gel. Myo-inositol-1-phosphate synthase could be separated completely from the contaminating substance, glucose-6-phosphate dehydrogenase (EC 1.1.1.49), on Blue Sepharose CL-6B and on pyrophosphate-Sepharose. The purified enzyme had a specific activity of 16 400 U/mg. The sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the 60 micrograms of this purified enzyme gave a homogenous band. The enzyme was found to be composed of four identical subunits having a molecular weight of 65 000.  相似文献   

20.
Two different glyceraldehyde-3-phosphate (G3P) dehydrogenase (phosphorylating) activities, namely NAD- and NADP-dependent, have been found in cell extracts of the cyanelle-bearing photosynthetic protist Cyanophora paradoxa. Whereas the two G3P dehydrogenase activities were detected with similar specific activity levels (0.1 to 0.2 U/mg of protein) in extracts of the photosynthetic organelles (cyanelles), only the NAD-dependent activity was found in the cytosol. Thus, a differential intracellular localization occurred. The perfect overlapping of the two G3P dehydrogenase activity peaks of the cyanelle in both hydrophobic interaction chromatography and subsequent FPLC (fast protein liquid chromatography) gel filtration indicated that the two activities were due in fact to a single NAD(P)-dependent G3P dehydrogenase (EC 1.2.1.-) with a molecular mass of 148,000. SDS-PAGE of active fractions from FPLC gel filtration showed that the intensity of the major protein band (molecular mass, 38,000) of the enzyme preparation clearly paralleled the activity elution profile, thus suggesting a tetrameric structure for the cyanelle dehydrogenase. On the other hand, FPLC gel filtration analysis of the cytoplasmic fraction revealed a NAD-dependent G3P dehydrogenase with a native molecular mass of 142,000, being equivalent to the classical glycolytic enzyme (EC 1.2.1.12) present in the cytosol of all the organisms so far studied. The significance of these results is discussed taking into account that the cyanobacteria, photosynthetic prokaryotes which share many structural and biochemical features with cyanelles and are considered as their ancestors, have a similar NAD(P)-dependent G3P dehydrogenase.Abbreviation FPLC Fast protein liquid chromatography  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号