首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
15-hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes NAD(+)-linked oxidation of 15 (S)-hydroxyl group of prostaglandins and lipoxins and is the key enzyme responsible for the biological inactivation of these eicosanoids. The enzyme was found to be under-expressed as opposed to cyclooxygenase-2 (COX-2) being over-expressed in lung and other tumors. A549 human lung adenocarcinoma cells were used as a model system to study the role of 15-PGDH in lung tumorigenesis. Up-regulation of COX-2 expression by pro-inflammatory cytokines in A549 cells was accompanied by a down-regulation of 15-PGDH expression. Over-expression of COX-2 but not COX-1 by adenoviral-mediated approach also attenuated 15-PGDH expression. Similarly, over-expression of 15-PGDH by the same strategy inhibited IL-1beta-induced COX-2 expression. It appears that the expression of COX-2 and 15-PGDH is regulated reciprocally. Adenoviral-mediated transient over-expression of 15-PGDH in A549 cells resulted in apoptosis. Xenograft studies in nude mice also showed tumor suppression with cells transiently over-expressing 15-PGDH. However, cells stably over-expressing 15-PGDH generated tumors faster than those control cells. Examination of different clones of A549 cells stably expressing different levels of 15-PGDH indicated that the levels of 15-PGDH expression correlated positively with those of mesenchymal markers, and negatively with those of epithelial markers. It appears that the stable expression of 15-PGDH induces epithelial-mesenchymal transition (EMT) which may account for the tumor promotion in xenograft studies. A number of anti-cancer agents, such as transforming growth factor-beta1 (TGF-beta1), glucocorticoids and some histone deacetylase inhibitors were found to induce 15-PGDH expression. These results suggest that tumor suppressive action of these agents may, in part, be related to their ability to induce 15-PGDH expression.  相似文献   

3.
4.
The enzyme system, 15-hydroxyprostaglandin dehydrogenase, which catalyzes the first inactivation step in the catabolism of the prostaglandins has been isolated and purified 107-fold from human placenta. Kinetic studies reveal different Michaelis-Menten constants for most of the naturally occurring prostaglandins. The Km for PGE2 was found to be 10 μM, for PGE1, 27 μM; for PGA2, 32 μM; for PGA1, 33 μM; and for PGF 59 μM. The enzyme has a sharp pH-optimum between 7.5 and 8.8. Prostaglandin dehydrogenase appears to be isoenzymic as judged by separation on polyacrylamide disc gel electrophoresis. Inhibition studies with the partially purified enzyme indicate that progesterone and estrogen may influence the conversion of biologically active prostaglandins into the biologically inactive 15-ketoprostaglandins. These findings offer evidence for the control of prostaglandin metabolism in the human placenta.  相似文献   

5.
Two types of 15-hydroxyprostaglandin dehydrogenase (NAD+ and NADP+ dependent) were demonstrated in bovine mesentric arteries and veins. The 15-hydroxyprostaglandin dehydrogenase activity was found in the high-speed supernatant, suggesting that these enzymes are associated with the cytoplasmic fraction of the blood vessels. The levels of activities of both NAD+- and NADP+-dependent dehydrogenases were similar in mesentric blood vessels. Prostaglandin F was preferred to the prostaglandin E2 as subtrate by both NAD+ and NADP+ dependent enzymes. The presence of 15-hydroxyprostaglandin dehydrogenase in blood vessels may play a siginificant role in the regulation of intracellular levels of prostaglandins of the E and F series in blood vessels.  相似文献   

6.
An endogenous inhibitor of the NAD+-dependent 15-hydroxyprostaglandin dehydrogenase was isolated from the 105,000 X g supernatant fraction of lungs of pregnant rabbits following DEAE chromatography. The material was heat stable and was resistant to pronase treatment. The inhibitor contained a mixture of saturated and mono-unsaturated fatty acids and cholesterol with palmitate and oleate representing the major fatty acids in the inhibitory factor. The factor inhibited prostaglandin dehydrogenase activity but had only minor effects on the activity of NAD+-dependent alcohol and lactate dehydrogenases or the NADP+-dependent isocitrate dehydrogenase. In an attempt to develop a greater understanding of the inhibitory action of fatty acids on prostaglandin dehydrogenase activity, a variety of standard fatty acids were examined for their ability to decrease enzymic activity. Oleate and palmitate inhibited enzymic activity by 70% at 10 microM, whereas arachidonate and myristate were only 30% inhibitory at this concentration. A comparison among the 18-carbon-containing fatty acids demonstrated that oleate was more potent than linoleate and linolenate in inhibiting prostaglandin dehydrogenase activity. The coenzyme A derivatives of oleate, linoleate and linolenate were less inhibitory than the free fatty acids.  相似文献   

7.
8.
A NAD-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) was purified to a specific activity of over 25,000 nmol NADH formed/min/mg protein with 50 microM prostaglandin E1 as substrate from the lungs of 28-day-old pregnant rabbits. This represented a 2600-fold purification of the enzyme with a recovery of 6% of the starting enzyme activity. The lungs of pregnant rabbits were used because a 42- to 55-fold induction of the PGDH activity was observed after 20 days of gestation. The enzyme was purified by CM-cellulose, DEAE-cellulose, Sephadex G-75, octylamino-agarose, and hydroxylapatite chromatography. The enzyme could not be purified by affinity chromatography using NAD- or blue dextran-bound resins. The purified enzyme was specific for NAD and had a subunit molecular weight of 29,000. The optimal pH range for the oxidation of prostaglandin E1 was between 10.0 and 10.4 using 3-(cyclohexylamino)propanesulfonic acid as the buffer. The Km and Vmax values for prostaglandin E1 were 33 microM and 40,260 nmol/min/mg protein, respectively, while the Km and Vmax values for prostaglandin E2 were 59 microM and 43,319 nmol/min/mg protein, respectively. The Km for prostaglandin F2 alpha was four times the value for prostaglandin E1. The PGDH activity was inhibited by p-chloromercuriphenylsulfonic acid but the enzymatic activity was restored by the addition of dithiothreitol. n-Ethylmaleimide also produced a rapid decline in enzymatic activity but when NAD was included in the incubation system, no inhibition was observed.  相似文献   

9.
A polyclonal antibody was produced in guinea pig against the lung NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) purified from pregnant rabbits. Western blot analysis demonstrated that the protein identified by this antibody in the 105,000g supernatant fraction of lung tissue from pregnant rabbits had a molecular mass of 30 kDa and comigrated with the purified PGDH. The specific activity of the lung PGDH in pregnant rabbits (25- to 28-day gestations) was 36.7 nmol NADH formed/min/mg protein compared to 0.3 nmol NADH formed/min/mg protein in nonpregnant rabbits. Although the PGDH activity in the lung cytosol of nonpregnant rabbits was inhibited by the anti-lung PGDH antibody, the 30-kDa protein was not detected by Western blot analysis. An examination of this 30-kDa protein during the gestational period indicated that the protein was present after 10 days and the amount of the protein increased from Day 10 to Day 28. This increase in the immunochemically reactive protein correlated with the marked increase in PGDH specific activity between 10 and 28 days. An immunochemically reactive protein also was observed in the ovary of 25- to 28-day pregnant rabbits and the specific activity of the ovary PGDH was 19.3 nmol NADH formed/min/mg protein. Only trace levels of the PGDH activity were detected in the ovaries of nonpregnant rabbits. A 30-kDa protein was not detected by the anti-rabbit lung PGDH in brain, kidney, bladder, uterus, liver, and heart tissue of pregnant or nonpregnant rabbits. When rabbit or human placental cytosol was examined with the anti-rabbit lung PGDH only faint 30-kDa bands were observed by Western blot analysis. A monoclonal antibody prepared against human placental PGDH did not recognize the 30-kDa band in the pregnant rabbit lung. Localization studies indicated a marked increase in immunochemical staining in pulmonary epithelial cells of pregnant rabbits as compared to nonpregnant rabbits. Lung epithelial cells but not endothelial cells were identified as containing the PGDH.  相似文献   

10.
An NAD-linked 15-hydroxyprostaglandin dehydrogenase has been purified 13,100-fold from human placental tissue. The specific activity of the purified enzyme ranges from 6900 to 8300 mU/mg protein depending on the method used to determine the protein concentration. On discontinuous electrophoresis in sodium dodecyl sulfate more than 95% of the protein migrates as a single band; its estimated molecular weight is 25.5-26.0 kDa. This is half the value obtained when the molecular weight is estimated under non-denaturing conditions and suggests that the enzyme is composed of two identical or nearly identical subunits.  相似文献   

11.
An NAD-linked 15-hydroxyprostaglandin dehydrogenase has been purified 13, 100-fold from human placental tissue. The specific activity of the purified enzyme ranges from 6900 to 8300 mU/mg protein depending on the method used to determine the protein concentration. On discontinous electrophoresis in sodium dodecyl sulfate more than 95% of the protein migrates as a single band; its estimated molecular weight is 25.5–26.0 kDa. This is half the value obtained when the molecular weight is estimated under non-denaturing conditions and suggests that the enzyme is composed of two identical or nearly identical subunits.  相似文献   

12.
Glucagon addition to isolated rat hepatocytes increases the level of Cyclic AMP inside the cells and the activity of the enzyme phenylalanine hydroxylase. These effects of glucagon are time and dose dependent and are detectable at hormone concentration as low as 0.02nM. The glucagon concentrations causing half-maximal increases in Cyclic AMP production and phenylalanine hydroxylase activity are 0.2nM and 0.1 nM respectively. When hepatocytes are incubated with norepinephrine or the ionophore A23187, at concentrations between 1 nM and 10 μM, a slight increase in enzyme activity is seen only at the highest dose of either drug. The effect of norepinephrine can be completely antagonized by 20 μM propranolol but not by 20 μM ergocryptine. These results suggest that the activity of phenylalanine hydroxylase can be hormonally regulated, in vivo, through a phosphorylation mechanism catalyzed by a Cyclic AMP-dependent protein kinase.  相似文献   

13.
Papaverine was found to inhibit NAD+-linked 15-hydroxyprostaglandin dehydrogenase partially purified from guinea pig lung. The inhibition was noncompetitive with prostaglandin E2, uncompetitive with NAD+, and reversible. The Ki was calculated to be 26 μM. Papaverine also inhibited the enzyme from swine lung, chicken and dog heart, and rat and dog kidney. The inhibitory effects of papaverine on the 15-hydroxyprostaglandin dehydrogenase were compared with those on cyclic AMP phosphodiesterases in these tissues.  相似文献   

14.
Human erythrocytes were found to contain two prostaglandin metabolizing enzymes: a prostaglandin E 9-ketoreductase catalyzing the reduction of prostaglandin E2 to form prostaglandin F and a 15-hydroxyprostaglandin dehydrogenase that catalyzes the oxidation of prostaglandin F to form 15-ketoprostaglandin F. Both enzymes are found in the cytoplasmic fraction of erythrocytes and both enzymes use the triphosphopyridine nucleotides as cofactors more effectively than the diphosphopyridine nucleotides. These two enzymes were partially purified from erythrocyte homogenates and some of their properties were studied.  相似文献   

15.
NAD-dependent 15-hydroxyprostaglandin dehydrogenase has been isolated from human term placenta. About 9,000-fold enrichment was achieved with a yield of 7.6%. Electrophoretic analyses suggested that glycerol stabilized an active structure of the enzyme, and sodium dodecyl sulfate might dissociate it. The instability of the enzyme activity may relate to its labile oligomeric structure which is easily dissociated into subunits.  相似文献   

16.
15-Hydroxyprostaglandin dehydrogenase (15-PGDH) catalyzes NAD(+)-dependent oxidation of 15(S)-hydroxyl group of prostaglandins and has been considered a key enzyme involved in biological inactivation of prostaglandins. This enzyme is markedly induced by androgens in hormone-sensitive human prostate cancer cells (Tong M., Tai H. H. Biochem Biophys Res Commun 2000; 276: 77-81) and may be involved in tumorigenesis. Inhibition of this enzyme may be of value in anticancer therapy. Non-steroidal anti-inflammatory drugs (NSAIDs) which inhibit cyclooxygenases (COXs) have been shown to be chemopreventive in epidemiological and animal-model studies. However, chemoprevention by these drugs may not be directly related to their inhibition of COXs. Other targets may be also involved in their chemopreventive activity. We have examined a variety of NSAIDs including COX-2 selective inhibitors, peroxisome proliferator-activated receptor (PPAR) gamma agonists and phytophenolic compounds which have been shown to be chemopreventive for their effect on 15-PGDH. It was found that most of these compounds were potent inhibitors of 15-PGDH. Among these compounds, ciglitazone appeared to be the most powerful inhibitor (IC(50)=2.7 microM). Inhibition by ciglitazone was non-competitive with respect to NAD(+) and uncompetitive with respect to PGE(2).  相似文献   

17.
18.
19.
A simple, rapid, and sensitive spectrofluorometric assay for 15-hydroxyprostaglandin dehydrogenase activity was developed in which the rate of production of NADH was monitored. The cytosolic fraction prepared from human placental tissue was employed as the enzyme source. The assay was conducted at pH 9.5 since 15-ketoprostaglandin Δ13-reductase and NADH oxidase activities were inhibited at this pH, thereby minimizing the interference of the reactions catalyzed by these enzymes in the assay of prostaglandin dehydrogenase activity.  相似文献   

20.
15-Hydroxyprostaglandin dehydrogenase has been purified from swine kidney to a specific activity of near 100 miliunits per mg of protein. The purified enzyme was found to be inhibited by thyroid hormone analogues of which triiodothyroacetic acid was the most potent inhibitor. The concentration required for 50% inhibition was 5 μM for triiodothyroacetic acid. The inhibition by thyroid hormones was uncompetitive and non-competitive with regard to NAD+ and prostaglandin E1, respectively. The sensitivity of this enzyme to thyroid hormones suggests that these hormones may regulate the metabolism of prostaglandins in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号