首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Twelve cases of lissencephaly are reported. A high resolution chromosome study was performed on each in order to detect small chromosomal anomalies, undetectable with routine techniques. Only one case was shown to have an unbalanced karyotype with a microdeletion of the short arm of chromosome 17(del 17p). This child also had symptoms of the Miller-Dieker syndrome, consisting of lissencephaly, characteristic facies, pre- and post-natal growth retardation and other birth defects. As proposed by Dobyns, it seems justifiable to classify lissencephalies into four different groups, according to other clinical manifestations and results of chromosome studies.  相似文献   

2.
Fluorescence in situ hybridization (FISH) using two cosmid probes (41A and P13) from the Miller-Dieker syndrome (MDS) critical region in 17p13.3 was performed in a blinded comparison of three MDS patients with submicroscopic deletions and in four normal relatives used as controls. The controls showed both chromosome 17 homologues labeled in 85%-95% of cells, while each patient showed only one homologue labeled in 75%-80% of cells. Two MDS patients with cryptic translocations were also studied. In one case, a patient and her mother had the same der(17) (p+), but the reciprocal product of the translocation could not be identified in the mother by G-banding (i.e., it was a "half-cryptic" translocation). FISH revealed a 3q;17p translocation. The other case involved a patient with apparently normal karyotype. Because a large molecular deletion was found, a translocation involving two G-negative telomeres (i.e., a "full-cryptic" translocation) was postulated. FISH studies on her father and normal brother showed an 8q;17p translocation. These studies demonstrate that in situ hybridization is an efficient method for deletion detection in Miller-Dieker syndrome. More important, parental studies by FISH on patients demonstrating molecular deletions and a normal karyotype may identify cryptic translocation events, which cannot be detected by other molecular genetic strategies. Similar in situ strategies for deletion detection can be developed for other microdeletion syndromes, such as Prader-Willi/Angelman syndrome or DiGeorge syndrome.  相似文献   

3.
Lissencephaly or agyria refers to a rare disorder that is characterized by the absence of cerebral convolutions and a poorly formed sylvian fissure, giving the appearance of a 3-4 months old fetal brain. At present more than 25 dysmorphology syndromes with lissencephaly or other disorders of neuronal migration have been described. In 1976, Norman et al. reported on two patients with lissencephaly type I and short, sloping forehead, an atypical phenotype for Miller-Dieker syndrome, a more common lissencephaly syndrome. In this article, we report two Turkish female infants whose abnormal findings were consistent with Norman-Roberts syndrome because of their very rare presentation. Both patients had typical cranio-facial abnormalities and abnormal magnetic resonance imaging findings, but no deletion in 17p13.3 for Miller-Dieker syndrome. In addition to the typical findings of Norman-Roberts syndrome, case 1 had atrial septal defect, corpus callosum agenesis, intracranial widespread calcification and case 2 had bilateral macular cherry-red spot, persistent foramen ovale, increased blood level of C6 hexanoylcarnitine, cavum septum pellucidum vergae anomaly and cerebellar atrophy. In conclusion, we would like to emphasize that Norman-Roberts syndrome should also be considered in infants with lissencephaly. A detailed physical examination, chromosomal and fluorescence in situ hybridization (FISH) analysis to exclude a deletion in 17p13.3 should be performed for the definite diagnosis of the syndrome.  相似文献   

4.
Clinical and molecular diagnosis of Miller-Dieker syndrome.   总被引:1,自引:0,他引:1       下载免费PDF全文
We report results of clinical, cytogenetic, and molecular studies in 27 patients with Miller-Dieker syndrome (MDS) from 25 families. All had severe type I lissencephaly with grossly normal cerebellum and a distinctive facial appearance consisting of prominent forehead, bitemporal hollowing, short nose with upturned nares, protuberant upper lip, thin vermilion border, and small jaw. Several other abnormalities, especially growth deficiency, were frequent but not constant. Chromosome analysis showed deletion of band 17p13 in 14 of 25 MDS probands. RFLP and somatic cell hybrid studies using probes from the 17p13.3 region including pYNZ22 (D17S5), pYNH37 (D17S28), and p144-D6 (D17S34) detected deletions in 19 of 25 probands tested including seven in whom chromosome analysis was normal. When the cytogenetic and molecular data are combined, deletions were detected in 21 of 25 probands. Parental origin of de novo deletions was determined in 11 patients. Paternal origin occurred in seven and maternal origin in four. Our demonstration of cytogenetic or molecular deletions in 21 of 25 MDS probands proves that deletion of a "critical region" comprising two or more genetic loci within band 17p13.3 is the cause of the MDS phenotype. We suspect that the remaining patients have smaller deletions involving the proposed critical region which are not detected with currently available probes.  相似文献   

5.
Summary Probe YNZ22 (D17S5) is a highly polymorphic, variable number tandem repeat (VNTR) marker previously shown to be deleted in all patients with the Miller-Dieker syndrome (MDS) but not in patients with isolated lissencephaly sequence (ILS). Primers were constructed to the unique sequence flanking the polymorphic, repetitive region of YNZ22 for amplification by the polymerase chain reaction (PCR). Analysis of 118 normal individuals revealed 12 alleles (differing in copy number of a 70-bp repeat unit) ranging in size from 168 to 938 bp. A retrospective study of eight MDS and six ILS patients was consistent with Southern blot analysis in all cases except one. In the latter, a very large allele (12 copies of the repeat unit) in a patient and her mother failed to amplify on initial attempts, but was successfully amplified by reducing the concentration of genomic DNA used in the reaction. Prospective studies on two MDS and five ILS patients were successfully performed and confirmed in all cases by Southern blot analysis. From the total sample, restriction fragment length polymorphism (RFLP) analysis was fully informative in four of ten MDS patients and showed a deletion in all four cases. Nine of eleven ILS patients were heterozygous and therefore not deleted for YNZ22. Development of primers for additional polymorphic markers in the Miller-Dieker region will lead to a rapid PCR-based diagnostic approach for all MDS and ILS patients. PCR typing of YNZ22 will also facilitate use of this marker in other applications, including genetic linkage, paternity and forensic studies, and analysis of loss of heterozygosity in tumors.  相似文献   

6.
Miller-Dieker syndrome (MDS), a disorder manifesting the severe brain malformation lissencephaly ("smooth brain"), is caused, in the majority of cases, by a chromosomal microdeletion of the distal short arm of chromosome 17. Using human chromosome 17-specific DNA probes, we have begun a molecular dissection of the critical region for MDS. To localize cloned DNA sequences to the MDS critical region, a human-rodent somatic cell hybrid panel was constructed which includes hybrids containing the abnormal chromosome 17 from three MDS patients with deletions of various sizes. Three genes (myosin heavy chain 2, tumor antigen p53, and RNA polymerase II) previously mapped to 17p were excluded from the MDS deletion region and therefore are unlikely to play a role in its pathogenesis. In contrast, three highly polymorphic anonymous probes, YNZ22.1 (D17S5), YNH37.3 (D17S28), and 144-D6 (D17S34), were deleted in each of four patients with visible deletions, including one with a ring chromosome 17 that is deleted for a portion of the single telomeric prometaphase subband p13.3. In two MDS patients with normal chromosomes, a combination of somatic cell hybrid, RFLP, and densitometric studies demonstrated deletion for YNZ22.1 and YNH37.3 in the paternally derived 17's of both patients, one of whom is also deleted for 144-D6. The results indicate that MDS can be caused by submicroscopic deletion and raises the possibility that all MDS patients will prove to have deletions at a molecular level. The two probes lie within a critical region of less than 3,000 kb and constitute potential starting points in the isolation of genes implicated in the severe brain maldevelopment in MDS.  相似文献   

7.
A NotI linking library constructed from flow-sorted human chromosome 17 material was screened to aid in construction of a long-range restriction map of the Miller-Dieker chromosome region (MDCR) in 17p13.3. A total of 66 clones were mapped to one of eight regions of chromosome 17 using a somatic cell hybrid panel, and 44/66 (67%) of these clones cross-hybridized to rodent DNA on Southern blots. Of these, 24 clones were tested and all mapped to mouse chromosome 11, the homolog of human chromosome 17. Four linking clones mapped to 17p13.3 and were used for pulsed-field gel electrophoresis studies along with six other anonymous probes previously mapped to this region. Clone L132 was found to be deleted in all Miller-Dieker patients tested (n = 15) and therefore lies within the critical region for this disorder. It detects two NotI fragments (180 and 320 kb), one of which (320 kb) was shared by YNZ22 and YNH37, two probes previously shown to be co-deleted in all patients with the Miller-Dieker syndrome (MDS). These results indicate that all MDS patients share a minimum deletion region of greater than 370 kb. Two other NotI clones, L53 and L125, mapped telomeric to the MDS critical region and share a 600-kb MluI fragment with each other and with YNZ22/YNH37. This provides a 930-kb MluI map that encompasses the distal boundary of the MDS critical region but does not include the proximal boundary. A total of over 2 Mbp is represented in the MluI fragments by probes in subband p13.3, a cytogenetic region estimated to be 3-4 Mbp.  相似文献   

8.
Summary A 12-year-old boy is described with multiple anomalies and a de novo terminal deletion of 17p13. Based on clinical examination, the Miller-Dieker syndrome was diagnosed.  相似文献   

9.
The Miller-Dieker syndrome (MDS), a syndrome with lissencephaly, distinctive craniofacial features, growth impairment, and profound developmental failure, has been associated with a deletion of the distal part of chromosome band 17p13. A minority of patients with the syndrome do not have a deletion detectable with current cytogenetic techniques. Using three highly polymorphic DNA probes (pYNZ22, pYNH37.3, and p144D6) we have detected microdeletions in three MDS patients, two of whom had no visible abnormalities of chromosome 17. Loci defined by two of the DNA probes, pYNZ22 and pYNH37.3, were deleted in all three patients. The most distal locus, defined by p144D6, was present in one MDS patient, possibly defining the distal limits of the MDS region in band 17p13.3. None of these loci were absent in one case of lissencephaly without MDS.  相似文献   

10.
Summary DNA markers YNZ22.1, YNH37.3, 144D6 and VAW508 were studied in a patient with the isolated lissencephaly sequence (ILS). A normal karyotype was found in the patient. The DNA of the patient showed deletions of markers YNZ22.1 and YNH37.3. This is the first report of a case of ILS (with grade 3 lissencephaly) with a submicroscopic deletion. The presence of a micro deletion in 17p13 in an ILS patient indicates that Miller-Dieker syndrome and ILS have a common etiology.  相似文献   

11.
Recent molecular cytogenetic data have shown that the constitution of complex chromosome rearrangements (CCRs) may be more complicated than previously thought. The complicated nature of these rearrangements challenges the accurate delineation of the chromosomal breakpoints and mechanisms involved. Here, we report a molecular cytogenetic analysis of two patients with congenital anomalies and unbalanced de novo CCRs involving chromosome 17p using high-resolution array-based comparative genomic hybridization (array CGH) and fluorescent in situ hybridization (FISH). In the first patient, a 4-month-old boy with developmental delay, hypotonia, growth retardation, coronal synostosis, mild hypertelorism, and bilateral club feet, we found a duplication of the Charcot-Marie–Tooth disease type 1A and Smith-Magenis syndrome (SMS) chromosome regions, inverted insertion of the Miller-Dieker lissencephaly syndrome region into the SMS region, and two microdeletions including a terminal deletion of 17p. The latter, together with a duplication of 21q22.3-qter detected by array CGH, are likely the unbalanced product of a translocation t(17;21)(p13.3;q22.3). In the second patient, an 8-year-old girl with mental retardation, short stature, microcephaly and mild dysmorphic features, we identified four submicroscopic interspersed 17p duplications. All 17 breakpoints were examined in detail by FISH analysis. We found that four of the breakpoints mapped within known low-copy repeats (LCRs), including LCR17pA, middle SMS-REP/LCR17pB block, and LCR17pC. Our findings suggest that the LCR burden in proximal 17p may have stimulated the formation of these CCRs and, thus, that genome architectural features such as LCRs may have been instrumental in the generation of these CCRs.  相似文献   

12.
A yeast artificial chromosome (YAC) library has been constructed from a somatic cell hybrid containing a t(1p;19q) chromosome and chromosome 17. After amplification, part of this library was analyzed by high-density colony filter screening with a repetitive human DNA probe (Alu). The human YACs distinguished by the screening were further analyzed by Alu fingerprinting and Alu PCR. Fluorescent in situ hybridization (FISH) was performed to localize the YACs to subchromosomal regions of chromosome 1p, 17, or 19q. We have obtained a panel of 123 individual YACs with a mean size of 160 kb, and 77 of these were regionally localized by FISH: 33 to 1p, 10 to 17p, 25 to 17q, and 9 to 19q. The YACs cover a total of 19.7 Mb or 9% of the 220 Mb of human DNA contained in the hybrid. No overlapping YACs have yet been detected. These YACs are available upon request and should be helpful in mapping studies of disease loci, e.g., Charcot-Marie-Tooth disease, Miller-Dieker syndrome, hereditary breast tumor, myotonic dystrophy, and malignant hyperthermia.  相似文献   

13.
A child with normal growth and development and the abnormal karyotype 46,XY,17ps, was analyzed using molecular probes localized to 17p13. The results indicated the presence of two copies of the probes YNZ22.1 (D17S5) and YNH37.3 (D17S28), previously shown to be deleted in all Miller-Dieker (MDS) patients studied. However, the patient was hemizygous for probe p144D6 (D17S34), which is absent in approximately 75% of the MDS patients. As the patient is active at 9 months of age, with no clinical signs of MDS, the results confirm that the absence of locus D17S34 does not lead to the phenotypic expression of MDS. Furthermore, this deletion should assist in defining the distal limits of this contiguous gene syndrome.  相似文献   

14.
15.
A yeast artificial chromosome (YAC) library has been constructed from a somatic cell hybrid containing a t(1p;19q) chromosome and chromosome 17. After amplification, part of this library was analyzed by high-density colony filter screening with a repetitive human DNA probe (Alu). The human YACs distinguished by the screening were further analyzed by Alu fingerprinting and Alu PCR. Fluorescent in situ hybridization (FISH) was performed to localize the YACs to subchromosomal regions of chromosome 1p, 17, or 19q. We have obtained a panel of 123 individual YACs with a mean size of 160 kb, and 77 of these were regionally localized by FISH: 33 to 1p, 10 to 17p, 25 to 17q, and 9 to 19q. The YACs cover a total of 19.7 Mb or 9% of the 220 Mb of human DNA contained in the hybrid. No overlapping YACs have yet been detected. These YACs are available upon request and should be helpful in mapping studies of disease loci, e.g., Charcot-Marie-Tooth disease, Miller-Dieker syndrome, hereditary breast tumor, myotonic dystrophy, and malignant hyperthermia.  相似文献   

16.
17.
Lissencephaly (agyria-pachygyria) is a brain malformation manifested by a smooth cerebral surface, resulting from arrest of neuronal migration at 10-14 wk gestation. Type I, or classical, lissencephaly can occur either in association with the Miller-Dieker syndrome (MDS) or as an isolated finding, termed "isolated lissencephaly sequence" (ILS). About 90% of MDS patients have visible or submicroscopic deletions of 17p13.3. We therefore investigated the possibility that some ILS patients have smaller deletions in this chromosomal region. Forty-five ILS patients with gyral abnormalities ranging from complete agyria to mixed agyria/pachygyria and complete pachygyria were studied. RFLP analysis with five polymorphic loci in 17p13.3 was performed on all patients and their parents. Somatic cell hybrids were constructed on three patients, to confirm a deletion or to determine the boundaries of a deletion. In-situ hybridization using cosmid probes from within a newly defined lissencephaly critical region was performed on 31 patients as a further method of deletion detection. Six submicroscopic deletions were detected (13.3%). Three of the deletions among 45 ILS patients were detected by RFLP analysis, 4 deletions in 31 patients were detected by in situ hybridization, and one deletion was detected only by somatic cell hybrid studies (in situ hybridization was not performed). Overall, in situ hybridization proved to be the most rapid and sensitive method of deletion detection. The centromeric boundary of these deletions overlapped that of MDS patients, while the telomeric boundary for four ILS deletions was proximal to that of MDS and narrows the critical region for a lissencephaly locus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
BACKGROUND: Wiedemann-Rautenstrauch syndrome (WRS) characterizes a neonatal progeroid entity. In the last 30 years, 28 cases have been reported. In most cases of WRS, survival is short and long-term studies are impossible. CASE: In the present report, we describe a patient with WRS followed for 17 years at the Instituto de Genética, Universidad Nacional de Colombia; this is an exceptional survival period for a person with WRS. The information collected through 17 years for the present patient provides new knowledge about the natural evolution of this syndrome. New clinical and laboratory characteristics are compared with those reported for Rautenstrauch's patient "G." CONCLUSIONS: Our results confirm the variability of this syndrome, especially at the neurological level. However, many etiological and pathological aspects of this syndrome remain unknown.  相似文献   

19.
20.
Disorders known to be caused by molecular and cytogenetic abnormalities of the proximal short arm of chromosome 17 include Charcot-Marie-Tooth disease type 1A (CMT1A), hereditary neuropathy with liability to pressure palsies (HNPP), Smith-Magenis syndrome (SMS), and mental retardation and congenital anomalies associated with partial duplication of 17p. We identified a patient with multifocal mononeuropathies and mild distal neuropathy, growth hormone deficiency, and mild mental retardation who was found to have a duplication of the SMS region of 17p11.2 and a deletion of the peripheral myelin protein 22 (PMP22) gene within 17p12 on the homologous chromosome. Further molecular analyses reveal that the dup(17)(p11.2p11.2) is a de novo event but that the PMP22 deletion is familial. The family members with deletions of PMP22 have abnormalities indicative of carpal tunnel syndrome, documented by electrophysiological studies prior to molecular analysis. The chromosomal duplication was shown by interphase FISH analysis to be a tandem duplication. These data indicate that familial entrapment neuropathies, such as carpal tunnel syndrome and focal ulnar neuropathy syndrome, can occur because of deletions of the PMP22 gene. The co-occurrence of the 17p11.2 duplication and the PMP22 deletion in this patient likely reflects the relatively high frequency at which these abnormalities arise and the underlying molecular characteristics of the genome in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号