首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Globally, coral bleaching has been responsible for a significant decline in both coral cover and diversity over the past two decades. During the summer of 2010–11, anomalous large-scale ocean warming induced unprecedented levels of coral bleaching accompanied by substantial storminess across more than 12° of latitude and 1200 kilometers of coastline in Western Australia (WA).

Methodology/Principal Findings

Extreme La-Niña conditions caused extensive warming of waters and drove considerable storminess and cyclonic activity across WA from October 2010 to May 2011. Satellite-derived sea surface temperature measurements recorded anomalies of up to 5°C above long-term averages. Benthic surveys quantified the extent of bleaching at 10 locations across four regions from tropical to temperate waters. Bleaching was recorded in all locations across regions and ranged between 17% (±5.5) in the temperate Perth region, to 95% (±3.5) in the Exmouth Gulf of the tropical Ningaloo region. Coincident with high levels of bleaching, three cyclones passed in close proximity to study locations around the time of peak temperatures. Follow-up surveys revealed spatial heterogeneity in coral cover change with four of ten locations recording significant loss of coral cover. Relative decreases ranged between 22%–83.9% of total coral cover, with the greatest losses in the Exmouth Gulf.

Conclusions/Significance

The anomalous thermal stress of 2010–11 induced mass bleaching of corals along central and southern WA coral reefs. Significant coral bleaching was observed at multiple locations across the tropical-temperate divide spanning more than 1200 km of coastline. Resultant spatially patchy loss of coral cover under widespread and high levels of bleaching and cyclonic activity, suggests a degree of resilience for WA coral communities. However, the spatial extent of bleaching casts some doubt over hypotheses suggesting that future impacts to coral reefs under forecast warming regimes may in part be mitigated by southern thermal refugia.  相似文献   

2.
Bleaching is generally expected to produce detrimental impacts on coral reproduction. This study compared the fecundity of bleached and unbleached colonies of the Hawaiian coral Montipora capitata. It was hypothesized that bleaching would have no effect on reproduction because previous studies have shown that Montipora capitata can increase heterotrophic feeding following bleaching. Reproductive parameters, total reproductive output (bundles released ml−1 coral colony), number of eggs bundle−1, and egg size, measured in the summer of 2005 did not differ between colonies that bleached or did not bleach during 2004. These data were collected following a single bleaching event and cannot be used to predict the outcome should bleaching episodes become more frequent or severe.  相似文献   

3.
Scleractinian corals are known to suffer bleaching or loss of their symbiotic zooxanthellae under conditions of elevated seawater temperatures often associated with climate change (i.e. global warming). This can occur on a massive scale and has caused the decimation of reefs on a global basis. During the bleaching process, the expelled zooxanthellae suffer cell damage from heat stress, characterized by irreversible ultrastructural and physiological changes which are symptomatic of cell degeneration and death (called apoptosis) or necrosis. A question that remains unanswered, however, is whether the coral hosts themselves are sensitive to seawater temperatures, and, if so, to what degree? In a controlled experiment, we exposed corals Acropora hyacinthus (Dana, 1846) and Porites solida (Forskål, 1775) with their symbiotic zooxanthellae (Symbiodinium sp.) to temperatures of 28 °C (control), 30 °C, 32 °C, and 34 °C for 48 h and also to 36 °C for 12 h. We assessed coral and zooxanthellar cells in-situ for symptoms of apoptosis and necrosis using transmission electron microscopy (TEM), fluorescent microscopy (FM), and flow cytometry (FC). We found that the coral host cells in-situ exhibited, for the most part, little or no mortality from increased seawater temperatures. Damage to the coral hosts only occurred under conditions of prolonged exposure (≥ 12 h) at high temperatures (34 °C), or at exceptionally high temperatures (e.g. 36 °C). On the other hand, we found high levels of apoptosis and necrosis in the zooxanthellae in-situ under all treatment conditions of elevated seawater temperatures. We found that during bleaching, the host cells are not experiencing much mortality - but the zooxanthellae, even while still within the host, are. The host corals exhibit exaptation to accommodate temperatures as high as ≥ 34 °C. Temperature stress within these highly specific and coevolved symbiotic systems is derived not from host sensitivity to temperature, but from the symbiont's sensitivity and the loss of the coral's endosymbiotic partners.  相似文献   

4.
Coral patch reefs around San Salvador Island, Bahamas have been monitored with the aid of Earthwatch volunteers three times a year since 1992. During that period two significant mass bleaching events occurred: autumn 1995, and late summer 1998. Elsewhere in 1995, bleaching was caused by higher-than-normal summer sea temperatures; in San Salvador, however, temperatures were normal. In 1998 a prolonged period of higher-than-normal sea temperatures preceded bleaching on San Salvador and worldwide. During the 1995 event, one of the monitored reefs had twice the percentage of coral colonies bleached as the other two. Bleaching was more evenly distributed among the reefs during the 1998 event. In 1995 Agaricia agaricites was significantly more affected than other coral species, with almost 50% of all its colonies showing bleaching. Bleaching was more evenly spread among coral species in 1998, with five species showing bleaching on more than 40% of their colonies. Bleaching began on Millepora as early as August during the 1998 event and progressed to other species through the remainder of the autumn. In 1995 bleaching was not seen until late autumn and appeared to impact all affected species at about the same time. Recovery from the 1995 event was complete: no coral death or damage above normal background levels were seen. In the 1998 event, all Acropora cervicornis on the monitored reefs died and A. palmata was severely damaged. Millepora sp. lost almost half of their live tissue, and Montastraea sp. showed significant tissue damage following this event. Phototransect analysis suggests that more than 20% of total live tissue on affected species died during the 1998 event. A. cervicornis has demonstrated no re-growth from 1998 to 2000 on monitored reefs. Monitoring has suggested significant differences in causes and courses in these two events.  相似文献   

5.
Starting in June 1983, 25 species of hermatypic corals, gorgonians, hydrocorals, anemones and zoanthids in the San Blas Islands, Panama, began showing signs of a loss of colour leading in some cases to a white bleached appearance. Histologic examination of six coral species indicated that bleaching was associated with drastic reductions in the density of zooxanthellae and with the atrophy and necrosis of the animal tissue. The severity of the bleaching varied among species and many species were unaffected. The species most extensively affected were: Agaricia spp., which became completely bleached and frequently died; Montastraea annularis which bleached and continued to survive; and Millepora spp. which bleached white but quickly regained their colouration. Shallow reefs dominated by Agaricia spp. suffered the most extensive bleaching. At one site, Pico Feo, 99% of the Agaricia (32% of the living cover) was bleached. On fore reers, which were dominated by Agaricia spp. and M. annularis, the proportion of M. annularis bleached ranged from 18 to 100% and that of Agaricia spp. from 30 to 53%. Transects at Sail Rock and House Reef were surveyed in August 1983 and January 1984. At those sites, 53% of the Agaricia cover died between August and January. The remaining living cover of Agaricia and of all other species exhibited normal colouration in January. Salinity and temperature were monitored every second day at 4 m depth between May 10 and August 28, 1983 at one of the localities. Bleaching was first observed within two weeks of a 2 °C rise in temperature which occurred in late May 1983. Temperatures remained at or above 31.5 °C for the following 3 weeks and were at or above 30 °C for an additional 4 weeks. The bleaching of corals in the San Blas was most likely due to those elevanted temperatures.  相似文献   

6.
Deeper coral reefs experience reduced temperatures and light and are often shielded from localized anthropogenic stressors such as pollution and fishing. The deep reef refugia hypothesis posits that light‐dependent stony coral species at deeper depths are buffered from thermal stress and will avoid bleaching‐related mass mortalities caused by increasing sea surface temperatures under climate change. This hypothesis has not been tested because data collection on deeper coral reefs is difficult. Here we show that deeper (mesophotic) reefs, 30–75 m depth, in the Caribbean are not refugia because they have lower bleaching threshold temperatures than shallow reefs. Over two thermal stress events, mesophotic reef bleaching was driven by a bleaching threshold that declines 0.26 °C every +10 m depth. Thus, the main premise of the deep reef refugia hypothesis that cooler environments are protective is incorrect; any increase in temperatures above the local mean warmest conditions can lead to thermal stress and bleaching. Thus, relatively cooler temperatures can no longer be considered a de facto refugium for corals and it is likely that many deeper coral reefs are as vulnerable to climate change as shallow water reefs.  相似文献   

7.
Coral bleaching and mortality are predicted to increase as climate change‐induced thermal‐stress events become more frequent. Although many studies document coral bleaching and mortality patterns, few studies have examined deviations from the expected positive relationships among thermal stress, coral bleaching, and coral mortality. This study examined the response of >30,000 coral colonies at 80 sites in Palau, during a regional thermal‐stress event in 2010. We sought to determine the spatial and taxonomic nature of bleaching and examine whether any habitats were comparatively resistant to thermal stress. Bleaching was most severe in the northwestern lagoon, in accordance with satellite‐derived maximum temperatures and anomalous temperatures above the long‐term averages. Pocillopora populations suffered the most extensive bleaching and the highest mortality. However, in the bays where temperatures were higher than elsewhere, bleaching and mortality were low. The coral‐community composition, constant exposure to high temperatures, and high vertical attenuation of light caused by naturally high suspended particulate matter buffered the corals in bays from the 2010 regional thermal‐stress event. Yet, nearshore reefs are also most vulnerable to land‐use change. Therefore, nearshore reefs should be given high conservation status because they provide refugia for coral populations as the oceans continue to warm.  相似文献   

8.
Darwin Point: A threshold for atoll formation   总被引:6,自引:0,他引:6  
Summary A threshold for atoll formation, herein termed the Darwin Point, exists at the northern end of the Hawaiian Archipelago at 29°N latitude. Hawaiian atolls and coral islands transported northwest by tectonic movement of the Pacific Plate appear to have drowned near the Darwin Point during the last 20 million years. Measures of gross carbonate production by corals across the archipelago show that growth rates decrease with increasing latitude. At the Darwin Point, corals may contribute only 20% of the calcium carbonate necessary to keep pace with recent changes in sea level and thus appear to be more important as builders of framework than producers of limestone. Reduction in this function rather than total carbonate production may be the determining factor in the formation of atolls and coral islands. Elsewhere in the world other Darwin Points may exist but probably not at the same latitude due to differences in ecological conditions, coral species composition, island area, rates of erosion and tectonic histories.Hawaii Institute of Marine Biology Contribution No. 627  相似文献   

9.
In 1998, the Indian Ocean coral reefs suffered a severe and extensive mass bleaching event. The thermal tolerances of corals were exceeded and their photosynthetic symbionts (zooxanthellae) lost. Mortalities of up to 90% were recorded on the reefs of Seychelles, Maldives, Kenya and Tanzania. South African coral reefs were among the few that largely escaped the 1998 mass bleaching event, but may be threatened in the future if global warming increases. This study assessed the extent of coral bleaching and partial recovery at Sodwana Bay, South Africa during 2000 and 2001. Bleaching levels in this study varied over the course of a year, which suggested that seasonally varying parameters such as sea temperature were the most likely cause of bleaching. Bleaching levels were highest at the shallowest site. However, these bleaching levels were very low in comparison with those of reefs elsewhere in the Indian Ocean. The greater volume of water over the relatively deeper reefs of Sodwana Bay may have protected the reefs from severe bleaching. Field measurements on the three reefs indicated that, although the reefs at Sodwana Bay are still healthy, bleaching increased from <1% in 1998 to 5–10% in 2002. Bleaching occurred in 26 coral genera. The Alcyonacea were highly susceptible to bleaching, especially Sarcophyton sp. Among the hard corals, Montipora spp. were the species most susceptible to bleaching. The sensitivity of these genera to early and slight increases in temperature suggests that they can forewarn of a possible greater bleaching event. In contrast, the coral genera Turbinaria and Stylophora were most resistant to bleaching.  相似文献   

10.

Background

Coral bleaching events vary in severity, however, to date, the hierarchy of susceptibility to bleaching among coral taxa has been consistent over a broad geographic range and among bleaching episodes. Here we examine the extent of spatial and temporal variation in thermal tolerance among scleractinian coral taxa and between locations during the 2010 thermally induced, large-scale bleaching event in South East Asia.

Methodology/Principal Findings

Surveys to estimate the bleaching and mortality indices of coral genera were carried out at three locations with contrasting thermal and bleaching histories. Despite the magnitude of thermal stress being similar among locations in 2010, there was a remarkable contrast in the patterns of bleaching susceptibility. Comparisons of bleaching susceptibility within coral taxa and among locations revealed no significant differences between locations with similar thermal histories, but significant differences between locations with contrasting thermal histories (Friedman = 34.97; p<0.001). Bleaching was much less severe at locations that bleached during 1998, that had greater historical temperature variability and lower rates of warming. Remarkably, Acropora and Pocillopora, taxa that are typically highly susceptible, although among the most susceptible in Pulau Weh (Sumatra, Indonesia) where respectively, 94% and 87% of colonies died, were among the least susceptible in Singapore, where only 5% and 12% of colonies died.

Conclusions/Significance

The pattern of susceptibility among coral genera documented here is unprecedented. A parsimonious explanation for these results is that coral populations that bleached during the last major warming event in 1998 have adapted and/or acclimatised to thermal stress. These data also lend support to the hypothesis that corals in regions subject to more variable temperature regimes are more resistant to thermal stress than those in less variable environments.  相似文献   

11.
Summary Several polar continental air masses intruding into the south Florida/northern Bahama Bank region during January 1981 caused record low air temperatures and rapid chilling of extensive shallow-water carbonate systems. Numerous coral kills along the Florida reef tract and massive fish mortalities in Florida Bay were attributable to unusually cold waters generated at this time. Thermal evolution of Florida Bay/Florida reef tract and northern Bahama Bank waters from 8 to 21 January was assessed from thermal infrared data acquired by the NOAA-6 environmental satellite, in situ water temperatures, local meteorological data, and a computerized heat flux model. Field observations and laboratory experiments identify 16°C as a thermal stress threshold for most reef corals (Mayor 1915; Davis 1981). Temperaturecorrected digital satellite data indicated that water temperatures below 16°C were generated in Florida Bay and on Little and Great Bahama Banks during a 10-day period in January. Lowest temperatures on the Florida reef tract resulted from offshelf transport of Florida Bay water through major tidal channels. Offshelf movement of bay water is driven primarily by strong northerly winds, density gradients, and tidal pumping. Absence of reef development opposite major tidal passes along the Florida reef tract (Ginsburg and Shinn 1964) and aperiodic coral kills along bank margins can be attributed to this process, which has probably had a limiting influence on Holocene reef development in these areas.  相似文献   

12.
Hawaiian waters show a trend of increasing temperature over the past several decades that are consistent with observations in other coral reef areas of the world. The first documented large‐scale coral bleaching occurred in the Hawaii region during late summer of 1996, with a second in 2002. The bleaching events in Hawaii were triggered by a prolonged regional positive oceanic sea surface temperature (SST) anomaly greater than 1°C that developed offshore during the time of annual summer temperature maximum. High solar energy input and low winds further elevated inshore water temperature by 1–2°C in reef areas with restricted water circulation (bays, reef flats and lagoons) and in areas where mesoscale eddies often retain water masses close to shore for prolonged periods of time. Data and observations taken during these events illustrate problems in predicting the phenomena of large‐scale bleaching. Forecasts and hind‐casts of these events are based largely on offshore oceanic SST records, which are only a first approximation of inshore reef conditions. The observed oceanic warming trend is the ultimate cause of the increase in the frequency and severity of bleaching events. However, coral reefs occur in shallow inshore areas where conditions are influenced by winds, orographic cloud cover, complex bathymetry, waves and inshore currents. These factors alter local temperature, irradiance, water motion and other physical and biological variables known to influence bleaching.  相似文献   

13.

Background

Coral reefs face increasing pressures particularly when on the edge of their distributions. The Houtman Abrolhos Islands (Abrolhos) are the southernmost coral reef system in the Indian Ocean, and one of the highest latitude reefs in the world. These reefs have a unique mix of tropical and temperate marine fauna and flora and support 184 species of coral, dominated by Acropora species. A significant La Niña event during 2011 produced anomalous conditions of increased temperature along the whole Western Australian coastline, producing the first-recorded widespread bleaching of corals at the Abrolhos.

Methodology/ Principal Findings

We examined long term trends in the marine climate at the Abrolhos using historical sea surface temperature data (HadISST data set) from 1900–2011. In addition in situ water temperature data for the Abrolhos (from data loggers installed in 2008, across four island groups) were used to determine temperature exposure profiles. Coupled with the results of coral cover surveys conducted annually since 2007; we calculated bleaching thresholds for monitoring sites across the four Abrolhos groups.

Conclusions/ Significance

In situ temperature data revealed maximum daily water temperatures reached 29.54°C in March 2011 which is 4.2°C above mean maximum daily temperatures (2008–2010). The level of bleaching varied across sites with an average of ∼12% of corals bleached. Mortality was high, with a mean ∼50% following the 2011 bleaching event. Prior to 2011, summer temperatures reached a mean (across all monitoring sites) of 25.1°C for 2.5 days. However, in 2011 temperatures reached a mean of 28.1°C for 3.3 days. Longer term trends (1900–2011) showed mean annual sea surface temperatures increase by 0.01°C per annum. Long-term temperature data along with short-term peaks in 2011, outline the potential for corals to be exposed to more frequent bleaching risk with consequences for this high latitude coral reef system at the edge of its distribution.  相似文献   

14.
Severe coral bleaching occurred throughout the tropics in 1997/98. We report high-resolution skeletal oxygen isotope (18O) and carbon isotope (13C) microprofiles for bleached corals from Pandora Reef, Great Barrier Reef, and Ishigaki Island, Japan, in order to examine the ability of Porites corals to record clear signals of bleaching. Analysis of the annual cycle in 18O revealed abrupt reductions in skeletal extension immediately after the 1997–98 summer temperature maximum, indicating that bleaching inhibits coral calcification. Skeletal 13C in the Ishigaki corals showed lower values during bleaching, indicating depressed coral metabolism associated with a reduction in calcification. In contrast, microprofiles of skeletal 13C from the shaded sides of Pandora Reef corals exhibited little change, possibly because algal photosynthesis was already slow prior to bleaching, thus subduing the 13C-response to bleaching. Comparison of 18O microprofiles from bleached corals with instrumental temperature records showed that Porites corals can recover following 5 months with little skeletogenesis. The results indicate that isotopic microprofiling may be the key to identifying gaps in coral growth that are diagnostic of past bleaching events. We have tested this hypothesis using blue UV fluorescent bands to guide us to coral skeleton where isotope microprofiling identifies bleaching events in 1986, 1989, and 1990. These events, detected by proxy, suggest that coral bleaching may have occurred more commonly on Ishigaki Island than previously recorded.  相似文献   

15.
Laurencia brongniartii is usually found at depths below 4 m, but can be found in shallow subtidal areas in crevices and on the walls of a coral reef in Amami Oshima Island, Kagoshima Prefecture, Japan, where irradiances were significantly lower than those at similar depths in open water. In preparation for the possible cultivation of this species for its antibiotic compounds, the effects of temperature and irradiance on photosynthesis and growth were measured. Photosynthesis and growth rates of L. brongniartii explants were highest at 26 and 28 °C, which closely corresponded to temperatures found during August to late December when it was most abundant. The estimated maximum photosynthesis rate (P max) was 4.41 mol photon m–2 s–1 at 26 °C and 4.07 mol photon m–2 s–1 at 28 °C. Saturating irradiance occurred at 95 mol photon m–2 s–1 at 26 °C and 65 mol photon m–2 s–1 at 28 °C. In contrast, growth experiments at 41.7 mol photon m–2 s–1 caused bleaching of explants and the maximum growth rate observed during the study was 3.02 ± 0.75% day–1 at 28 °C and 25 mol photon m–2 s–1. The difference in the saturating irradiance for photosynthesis and the irradiance that caused bleaching in growth experiments suggests that long-term exposure to high irradiance was detrimental and should be addressed before the initiation of large scale cultivation.  相似文献   

16.
Ocean warming and coral bleaching are patchy phenomena over a wide range of scales. This paper is part of a larger study that aims to understand the relationship between heat stress and ecological impact caused by the 2002-bleaching event in the Great Barrier Reef (GBR). We used a Bayesian belief network (BBN) as a framework to refine our prior beliefs and investigate dependencies among a series of proxies that attempt to characterize potential drivers and responses: the remotely sensed environmental stress (sea surface temperature — SST); the geographic setting; and topographic and ecological attributes of reef sites for which we had field data on bleaching impact. Sensitivity analyses helped us to refine and update our beliefs in a manner that improved our capacity to hindcast areas of high and low bleaching impact. Our best predictive capacity came by combining proxies for a sites heat stress in 2002 (remotely sensed), acclimatization temperatures (remote sensed), the ease with which it could be cooled by tidal mixing (modeled), and type of coral community present at a sample of survey sites (field data). The potential for the outlined methodology to deliver a transparent decision support tool to aid in the process of identifying a series of locations whose inclusion in a network of protected areas would help to spread the risk of bleaching is discussed.  相似文献   

17.
Extensive coral bleaching occurred during sea-water warming (as a result of the 1982/3 El Niño Southern Oscillation event) in 1983 on the shallow reefs in the Java Sea. Mean seawater temperatures rose by 2–3° C over a six month period with values greater than 33° C being recorded between 1200–1500 h. As many as 80–90% of corals died on the reef flats at the study sites, with the major casualties being branching species in the genera Acropora and Pocillopora. Five years after the event the community structure of the study sites has recovered significantly, though coral cover is still 50% of its former level. Contrasting patterns of recovery at two selected sites, in close proximity to each other, are discussed.  相似文献   

18.

Background

Periods of anomalously warm ocean temperatures can lead to mass coral bleaching. Past studies have concluded that anthropogenic climate change may rapidly increase the frequency of these thermal stress events, leading to declines in coral cover, shifts in the composition of corals and other reef-dwelling organisms, and stress on the human populations who depend on coral reef ecosystems for food, income and shoreline protection. The ability of greenhouse gas mitigation to alter the near-term forecast for coral reefs is limited by the time lag between greenhouse gas emissions and the physical climate response.

Methodology/Principal Findings

This study uses observed sea surface temperatures and the results of global climate model forced with five different future emissions scenarios to evaluate the “committed warming” for coral reefs worldwide. The results show that the physical warming commitment from current accumulation of greenhouse gases in the atmosphere could cause over half of the world''s coral reefs to experience harmfully frequent (p≥0.2 year−1) thermal stress by 2080. An additional “societal” warming commitment, caused by the time required to shift from a business-as-usual emissions trajectory to a 550 ppm CO2 stabilization trajectory, may cause over 80% of the world''s coral reefs to experience harmfully frequent events by 2030. Thermal adaptation of 1.5°C would delay the thermal stress forecast by 50–80 years.

Conclusions/Significance

The results suggest that adaptation – via biological mechanisms, coral community shifts and/or management interventions – could provide time to change the trajectory of greenhouse gas emissions and possibly avoid the recurrence of harmfully frequent events at the majority (97%) of the world''s coral reefs this century. Without any thermal adaptation, atmospheric CO2 concentrations may need to be stabilized below current levels to avoid the degradation of coral reef ecosystems from frequent thermal stress events.  相似文献   

19.
In 2010, high sea surface temperatures that were recorded in several parts of the world and caused coral bleaching and coral mortality were also recorded in the southwest Atlantic Ocean, between latitudes 0°S and 8°S. This paper reports on coral bleaching and diseases in Rocas Atoll and Fernando de Noronha archipelago and examines their relationship with sea surface temperature (SST) anomalies recorded by PIRATA buoys located at 8°S30°W, 0°S35°W, and 0°S23°W. Adjusted satellite data were used to derive SST climatological means at buoy sites and to derive anomalies at reef sites. The whole region was affected by the elevated temperature anomaly that persisted through 2010, reaching 1.67 °C above average at reef sites and 1.83 °C above average at buoys sites. A significant positive relationship was found between the percentage of coral bleaching that was observed on reef formations and the corresponding HotSpot SST anomaly recorded by both satellite and buoys. These results indicate that the warming observed in the ocean waters was followed by a warming at the reefs. The percentage of bleached corals persisting after the subsidence of the thermal stress, and disease prevalence increased through 2010, after two periods of thermal stress. The in situ temperature anomaly observed during the 2009–2010 El Niño event was equivalent to the anomaly observed during the 1997–1998 El Niño event, explaining similar bleaching intensity. Continued monitoring efforts are necessary to further assess the relationship between bleaching severity and PIRATA SST anomalies and improve the use of this new dataset in future regional bleaching predictions.  相似文献   

20.
Summary The yellow mutant y-1 ofEuglena gracilis, whose plastids are chlorophyll-deficient, is stable only in the dark and at suboptimal growth temperatures (below 26 C).At growth temperature of 30 C (in darkness) this strain is unstable and undergoes permanent bleaching. The process is enhanced by light so that bleaching may be increased up to 100 per cent. The degree of bleaching is proportional to light intensity.Bleaching is possible only during the active cell division. In the resting medium there is no bleaching, but total carotenoid synthesis is stimulated by illumination. At suboptimal growth temperature (26 C) the mutant is bleached only in the light, if light intensity exceeds 2,000 Lux. The results indicate that the process of bleaching in the yellow mutant is much more sensitive to temperature and light than in wild typeEuglena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号