首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular and species specificity of glucocorticoid suppression of corticosteroidogenesis was investigated in isolated adrenocortical cells. Trypsin-isolated cells from male rat, domestic fowl and bovine adrenal glands were incubated with or without steroidogenic agents and with or without steroids. Glucocorticoids were measured by radioimmunoassay or fluorometric assay after 1-2 h incubation. Glucocorticoids suppressed ACTH-induced steroidogenesis of isolated rat cells with the following relative potencies: corticosterone greater than cortisol = cortisone greater than dexamethasone. The mineralocorticoid, aldosterone did not affect steroidogenesis. Suppression by glucocorticoids was acute (within 1-2 h), and varied directly with the glucocorticoid concentration. Testosterone also suppressed ACTH-induced steroidogenesis. Glucocorticoid-type steroids have equivalent suppressive potencies, thus suggesting that these steroids may induce suppression at least partly by a common mechanism. Although corticosterone caused the greatest suppression, testosterone was more potent. The steroid specificity of suppression of cyclic AMP (cAMP)-induced and ACTH-induced steroidogenesis were similar, suggesting that suppression is not solely the result of interference with ACTH receptor function or the induction of adenylate cyclase activity. Exogenous glucocorticoids also suppressed ACTH-induced steroidogenesis of cells isolated from domestic fowl and beef adrenal glands, thus suggesting that this observed suppression may be a general mechanism of adrenocortical cell autoregulation.  相似文献   

2.
The aim of the study was to investigate the effect of prolonged ACTH administration on quantitative structural changes of the rat adrenal cortex and on function of its cells with particular emphasis on correlation of the results of biochemical estimations with stereologic parameters. Daily injections of 20 micrograms ACTH (Synacthen, Depot) for 35 days results in a marked enlargement of the cortex due to an increase in the volume of all the zones. This increase depends upon hypertrophy and hyperplasia of parenchymal cells. At day 21 of experiment the number of parenchymal cells markedly decreased if compared with day 14, the lost of cells being observed mainly in the zona reticularis. Prolonged ACTH treatment only insignificantly changed serum corticosterone concentration and--if calculated per mg of adrenal weight--did not change adrenal corticosterone concentration and 11 beta-hydroxylase activity and decreased corticosterone output by adrenal homogenate. If expressed per adrenocortical cell or per pair of glands, ACTH increased corticosterone concentration and 11 beta-hydroxylase activity while the drop in corticosterone output occurred only at days 28 and 35 of experiment. The striking differences in and among various functional parameters depicting adrenal steroidogenesis show for necessity--in case of long-term experiments leading to hypertrophy or atrophy of the gland--of using coupled stereologic and biochemical techniques which better evaluate the cytophysiological state of adrenocortical cells.  相似文献   

3.
ACTH release under the effect of median eminence extract (ME) was studied in both incubation and superfusion experiments. ACTH content of the incubation medium was measured by radioimmunoassay or by the corticosterone production of trypsinisolated adrenocortical cells. Dopamine at low concentration led to a slight increase of basal ACTH secretion, while at higher concentration failed to influence ACTH release. The dopamine agonist CB-154 produced a significant rise of ACTH secretion and augmented the ME extract-induced increase of pituitary ACTH release. Chlorpromazine and haloperidol suppressed basal ACTH secretion and inhibited the ME extract-induced release. The simultaneous administration of CB-154 and haloperidol into the incubation medium prevented the haloperidol-induced inhibition of ACTH release. The observations indicate that dopaminergic receptors play a role in the activation of CRF-induced ACTH secretion under in vitro experimental conditions.  相似文献   

4.
1. The combined actions of ACTH, corticosterone and prolactin (PRL) in the acute regulation of corticosteroidogenesis were investigated using isolated adrenocortical cells from intact and hypophysectomized (hypox) rats (Rattus norvegicus) and from intact male domestic fowl (Gallus gallus domesticus). 2. Exogenous corticosterone suppressed to about 50% ACTH-induced corticosterone production of cells from either species. This suppression, in part, was due to corticosterone degradation. 3. oPRL, in the presence or absence of ACTH, raised corticosterone production of hypox rat cells, but not intact rat and domestic fowl cells. 4. In addition, oPRL counteracted the corticosterone-induced suppression of net ACTH-stimulated corticosterone production of hypox rat and intact domestic fowl cells, but not intact rat cells. 5. The potency of oPRL with domestic fowl cells was 4 times that with hypox rat cells. 6. Furthermore, in domestic fowl cells, the effect of oPRL was Ca2+-dependent.  相似文献   

5.
Dispersed chick adrenal cells were incubated with either ACTH, cholera toxin or forskolin. All three agents stimulated cyclic AMP accumulation and secretion of corticosterone and aldosterone by the dispersed cells. The dose-response to ACTH was similar for cyclic AMP and corticosterone but aldosterone secretion appeared to be more sensitive to ACTH stimulation. Concentrations higher than 10(-8) M of ACTH caused suppression of corticosterone output but not of cyclic AMP accumulation or aldosterone secretion. A significant cyclic AMP accumulation occurred within 30 min of exposure to ACTH whereas significant increases in steroid secretion were observed only after 30 min. An early increase (within 30 min) in cyclic AMP accumulation with both cholera toxin and forskolin was not accompanied by any significant stimulation of steroid secretion, which occurred only after 120 min. The results with the avian adrenal cells are consistent with the thesis that steroid production in the adrenocortical cells is stimulated by cyclic AMP-dependent pathways, whereas steroid release may be modulated by others.  相似文献   

6.
The role of the cyclic AMP-protein kinase system in mediating the steroidogenic effect of ACTH, prostaglandin E1 and dibutyryl cyclic AMP, induced similar stimulations of protein kinase activity, cyclic AMP was studied using human adrenal cells isolated from normal and adrenocortical secreting tumors. At high concentrations of ACTH, complete activation of protein kinase of normal adrenal cells was observed within 3 min, at the time when cyclic AMP production was slightly increased and there was still no stimulation of steroidogenesis. At supramaximal concentrations, ACTH, PGE1 and dibutyryl cyclic AMP and cortisol productions in adrenal cells isolated from normal and from one adrenocortical tumor. In one tumor in which the adenylate cyclase activity was insensitive to ACTH, the hormone was unable to stimulate protein kinase or steroidogenesis, but the cells responded to both PGE1 and dibutyryl cyclic AMP. In another tumor in which the adenylate cyclase was insensitive to PGE1, this compound also did not increase protein kinase activity or steroidogenesis, but both parameters were stimulated by ACTH and dibutyryl cyclic AMP. After incubation of normal adrenal cells with increasing concentrations of ACTH (0.01-100 nM) marked differences were found between cyclic AMP formation and cortisol production. However at the lowest concentrations of ACTH exerting an effect on steroid production a close linked correlation was found between protein kinase activation and cortisol production, but half-maximal and maximal cortisol production occurs at lower concentration of ACTH than was necessary to induce the same stimulation of protein kinase. Similar findings were found after incubating the adrenal cells with dibutyryl cyclic AMP (0.01-10 mM). The results implicate an important role of the cyclic AMP-protein kinase system during activation of adrenal cell steroidogenesis by low concentrations of steroidogenic compounds.  相似文献   

7.
Cell suspensions of normal adult rad adrenals have been prepared by trypsinization and incubated in Ham's nutrient mixture F10 containing horse serum, fetal calf serum, and lima bean trypsin inhibitor. In most experiments culture medium was not changed during incubation. In this system the number of cells fell to 50% after 2 days, then slowly declined to 20% after 1 month of incubation. A corticosterone (B) response was seen to as little as 5 muU of ACTH per millilitre, a concentration which is within the range found in normal rat serum. With maximal stimulation (100 mU ACTH/ml) the rate of accumulation was highest during the first 24 h then slowly decreased over the following 9 days. When in separate experiments ACTH was added after various times of incubation up to 3 weeks, there was a B response which continued for as long as 1 week after the ACTH was added; the later the time at which ACTH was added the lesser was the initial B response and the longer the lag period before a substantial response occurred. In cell suspensions in medium containing 5.0 mequiv. of K+ per litre, aldosterone content increased for approximately 24 h, then showed little or no change over the next 9 days. With increased K+ concentration, aldosterone was found in greater amounts and accumulation continued for longer periods, both without and with ACTH. This adrenal cell system appears suitable for long term study of factors affecting steroidogenesis.  相似文献   

8.
The present in vitro experiment was designed to test whether 48 h of pretreatment with glucocorticoids, cortisol, or dexamethasone (DEX), would affect basal and corticotrophin (ACTH) stimulated (24 h) cortisol secretion from primary cultures of pig adrenocortical cells. Cells were divided into six groups: control pretreatment with or without ACTH challenge, cortisol pretreatment with or without ACTH challenge, and DEX pretreatment with or without ACTH. The culture medium and cells were collected at the end of treatment. Cortisol concentration in medium was measured by radioimmunoassay, and protein content of glucocorticoid receptor (GR) and key regulatory factors for steroidogenesis, including melanocortin type 2 receptor (MC2R), steroidogenic acute regulatory protein (StAR) and cholesterol side-chain cleavage cytochrome P450 (P450scc), were detected by Western blot analysis. The results showed that glucocorticoid pretreatment did not affect cortisol secretion under basal condition without ACTH challenge, but significantly enhanced ACTH-stimulated cortisol secretion. Furthermore, the protein content of GR, MC2R, StAR, and P450scc was all increased in groups pretreated with glucocorticoids. These results indicate that adrenocortical cells pretreated with glucocorticoids display higher steroidogenic capacity under ACTH challenge, through the upregulation of GR and other steroidogenic regulatory factors.  相似文献   

9.
The results from a number of clinical and experimental studies have suggested that during endotoxemia, suppression of adrenocortical steroidogenesis may occur. We have examined the possibility that macrophages are the source of a factor that suppresses adrenocortical steroidogenesis. Resident and peptone-elicited peritoneal exudate macrophages (PEM) from C3HeB/FeJ mice were incubated for 4 hr at 37 degrees C in the presence or absence of T cell hybridoma-derived lymphokine (LK) that contained high concentrations of MAF activity (assessed by induction of nonspecific tumoricidal activity in PEM). The LK was removed by rinsing, and fresh medium was added, followed by Salmonella minnesota R595 LPS (final concentration 10 micrograms/ml). After 18 hr at 37 degrees C the PEM supernatants and control medium from flasks without cells were harvested and stored at -20 degrees C. Explanted rabbit adrenocortical cells in 96-well plates were exposed to 30 microliters of PEM supernatant or control medium and ACTH (10 or 100 mU/ml) in a final volume of 120 microliters for 3 consecutive days. The adrenocortical cell supernatants were harvested each day, followed by replenishment of medium, PEM supernatant, and ACTH. Fluorogenic steroid production in wells that received control medium or supernatants from PEM not treated with LPS was normal (0.22 microgram +/- 0.010 (SD) per 5 X 10(4) cells). However, as much as 75 to 95% suppression of steroidogenesis was observed in wells that received supernatants from PEM treated with LK and LPS, compared to 40% suppression in wells that received supernatant from PEM treated with LPS alone. Continued exposure (over 3 days) of adrenocortical cells to supernatants from LPS-treated PEM resulted in progressively decreasing response to ACTH. Comparable suppressive activity was observed in supernatants from LPS-treated bone marrow-derived macrophages. In further experiments, suppression was observed in wells that were pretreated (22 hr) with the appropriate PEM supernatant, and evidence was obtained that the suppressive activity was not due to carry-over LPS. Finally, results from control experiments demonstrated that suppressive PEM supernatants neither inactivate ACTH nor interfere with the assay of fluorogenic steroids. Thus, these results suggest that during endotoxemia, products from LPS-stimulated macrophages may suppress adrenocortical function.  相似文献   

10.
The effect of ACTH on nuclear volume of adrenocortical cells in the zona fasciculata of rat adrenal cortex was examined in vitro. Sections of adrenal gland were incubated for 60 or 90 min in Krebs-Ringer's solution with 1% glucose in the presence of ACTH, actinomycin D, cycloheximide and aminoglutethimide. ACTH, despite its clear effect in stimulating steroidogenesis, did not exert a direct effect on the nuclear volume of cells studied. This phenomenon is not dependent upon the stimulation of steroidogenesis, since aminoglutethimide does not influence the nuclear volume of adrenocortical cells studied; rather, ACTH in the presence of aminoglutethimide leads to a decrease in their volume. Actinomycin D does not influence nuclear volume while after incubation with cycloheximide nuclei were larger than the control. The presence of ACTH did not alter this effect. These results indicate no relationship between the degree of corticosterone output and nuclear volume in rat adrenocortical cells of the zona fasciculata in vitro.  相似文献   

11.
The present study examines the effect of chronic treatment with glucocorticoids on the steroidogenic activity of ovine adrenocortical cells in vitro. Cells cultured in the presence of 10(-9) to 10(-5) M dexamethasone produced more glucocorticosteroids in response to ACTH1-24, forskolin or 8 BrcAMP than did control cells. Such an enhancing effect required more than 5 h of treatment and was maximal at 30 h; it was both concentration-dependent and steroid-specific. The maximal secretion of corticosteroids was observed when cells were exposed to 10(-7) M dexamethasone; with higher concentrations the response to ACTH1-24 decreased steadily; the ED50 was 2.8 +/- 0.8 nM. Cortisol and corticosterone enhanced ACTH1-24-induced steroidogenesis to the same extent as dexamethasone, but at concentrations roughly 100-fold higher than for dexamethasone. Testosterone and 17 beta-oestradiol had no enhancing effect. Dexamethasone not only enhanced the maximal steroidogenic response to ACTH1-24 but also decreased its ED50 3-fold. Treatment of cultures with the antiglucocorticoid RU 38486 resulted in a dose-dependent, time-dependent, decrease in ACTH1-24-induced corticosteroid output. Moreover, RU 38486 antagonized the enhancing effect of dexamethasone. The production of corticosteroids by dexamethasone-treated cells incubated in the presence of 22(R)-hydroxycholesterol or of exogenous pregnenolone was similar to that of control cells. The enhancing effect of dexamethasone was also observed when cultures were performed in the absence of insulin and/or in serum-free media. These data suggest that chronic exposure to glucocorticoids is necessary for the full steroidogenic activity of ovine adrenocortical cells. Moreover, they indicate that glucocorticoids exert their effect at least at two different levels in the cell: (i) on the adenylate cyclase system and (ii) at step(s) beyond cAMP but before pregnenolone formation.  相似文献   

12.
We have reported previously that expression of the human apolipoprotein E (apoE) gene in mouse Y1 adrenocortical cells suppresses basal and adrenocorticotropin (ACTH)-stimulated steroidogenesis. To understand the mechanism of this suppression, we have examined the integrity of cAMP regulated events required for adrenal steroidogenesis. Both acute and chronic responses to ACTH or cAMP are suppressed in Y1 cells which express apoE (Y1-E cells) as compared with parental Y1 cells. Acute morphologic changes in response to cAMP and acute induction of steroidogenesis by cAMP are suppressed in the Y1-E cell lines. Constitutive expression of P450-cholesterol side chain cleavage enzyme mRNA, the rate-limiting enzyme in steroid hormone synthesis, is reduced up to 11-fold in the Y1-E cell lines. The level of mRNA encoding P450-cholesterol side chain cleavage correlates directly with the reduction in basal steroid production observed in the individual Y1-E cell lines. Expression of P450-11 beta-hydroxylase mRNA, although readily detectable in Y1 parent cells, is absent or reduced in the Y1-E cell lines. Inhibition of cAMP-regulated gene expression is not restricted to genes required for steroid synthesis, since cAMP induction of ornithine decarboxylase mRNA is also inhibited in the Y1-E cell lines. These data indicate that suppression of steroidogenesis in Y1-E cells is due, at least in part, to inhibition of cAMP-regulated gene expression. These effects are not due to a defective cAMP-dependent protein kinase, since kinase activity in vitro and activation in vivo are unaltered in the Y1-E cell lines. These results suggest that expression of apoE in Y1 cells blocks cAMP-mediated signal transduction at a point distal to activation of cAMP-dependent protein kinase.  相似文献   

13.
Effects of septic shock plasma on adrenocortical cell function   总被引:4,自引:0,他引:4  
The effects of septic shock plasma on adrenocortical cell function have been studied using primary cultures of rat adrenocortical cells. Whereas control plasma had no adverse effect on the stimulation of corticosterone production by corticotropin (ACTH), shock plasma caused a 40%, noncompetitive inhibition of ACTH-induced steroidogenesis. The inhibitory effect was maximal at 24 h and appeared to be due to the action of shock plasma on the cells rather than the hormone. E. coli endotoxins did not have any effect on the responsiveness of the cells. These results suggest that septic shock plasma contains factor(s) which attenuate the responsiveness of adrenocortical cells to ACTH, thereby affecting the ability of the shocked animal to cope with sepsis.  相似文献   

14.
Isolated fasciculata cells of rat adrenal cortex, when incubated with atrial natriuretic factor (ANF), stimulated the levels of cyclic GMP and corticosterone production in a concentration-dependent manner without a rise in the levels of cyclic AMP. The ANF-dependent elevation of cyclic GMP was rapid, with a detectable increment in 30 s. ANF also stimulated the particulate guanylate cyclase. These results not only indicate the coupling of cyclic GMP and corticosterone production with ANF signal, but also demonstrate that, like the ACTH signal, cyclic AMP is not the mediator of ANF-induced adrenocortical steroidogenesis.  相似文献   

15.
Maturation of domestic fowl corticosteroidogenesis was evaluated using purified adrenocortical cells. Basal corticosterone production decreased steadily from 2 days to 26 weeks after hatching. However, maximally stimulated corticosterone production was not changed. In contrast, the half-maximal steroidogenic concentrations (ED50 values or effective doses for 50% maximal effect) of ACTH analogs increased approximately 40 times by 26 weeks, but the ED50 values of 8-bromo-cyclic AMP and pregnenolone were not changed. This suggests that adrenocortical cell sensitivity to ACTH decreases with maturation of the domestic fowl.  相似文献   

16.
The effect of endotoxin (lipopolysaccharide from E. coli) on isolated adrenocortical cells was examined. Lipopolysaccharide decreased the ACTH-induced steroidogenesis. This effect was shown by all corticotropin concentrations studied, and the longer the incubation time, the higher the effect produced. The rate of decrease of ACTH-induced steroidogenesis was dependent on the concentration of lipopolysaccharide in the medium. Binding of [125I]ACTH to adrenocortical cells was modified by lipopolysaccharide; this modification was related to a decrease of the ACTH-induced steroidogenesis. This effect supports the hypothesis of a direct interaction between lipopolysaccharide and the cell membrane with a concomitant distortion of the cell surface affecting the ACTH receptor sites of their environment. [14C]Lipopolysaccharide binds to isolated adrenocortical cells. Binding specificity was investigated by competitive experiments in the presence of various types of endotoxins, polypeptide hormones and proteins. Unlabelled lipopolysaccharide from the same bacterial strain and isolated under identical conditions than the labelled lipopolysaccharide exerted the strongest inhibitory activity. Unlabelled lipopolysaccharide of various strains different from that originating the labelled lipopolysaccharide exerted the less displacement. It would imply a certain kind of specificity but the decrease in the binding of lipopolysaccharide produced by ACTH and glucagon suggests the existence of non-specific interactions between lipopolysaccharide and cell membrane.  相似文献   

17.
18.
Isolated adrenocortical cells from White Leghorn chickens (Gallus domesticus) were compared to those from rats (Rattus norvegicus). Cells were prepared from collagenase-dispersed adrenal glands of sexually mature male animals. Corticosterone was measured by radioimmunoassay after incubation for 2 h with steroidogenic agents. Of the four ACTH analogues used, three were 6-17 times more potent with rat cells than with fowl cells (potencies were indicated by half-maximal steroidogenic concentrations). However, 9-tryptophan (O-nitrophenylsulfenyl) ACTH was 8 times more potent with fowl cells than with rat cells, thus suggesting that ACTH receptor differences exist between the two cell types. In addition, cAMP analogues were 10 times more potent with rat cells than with fowl cells suggesting that fowl corticosteroidogenesis is less dependent on cAMP than is rat corticosteroidogenesis. At equal cell concentrations, rat cells secreted 20-40 times more corticosterone than did chicken cells when they were maximally stimulated. Although rat cells converted 8 times more pregnenolone to corticosterone than did fowl cells, the half-maximal steroidogenic concentration for pregnenolone-supported corticosterone synthesis was the same for both cell types (about 5 microM). This suggests that fowl cells have lower steroidogenic enzyme content rather than lower steroidogenic enzyme activity. An unusual feature seen in the isolated fowl adrenocortical cells was an abundance of intracellular filaments.  相似文献   

19.
16- and 4-week-old intact and adrenalectomized rats have been treated with different doses of the three glucocorticoids hydrocortisone, prednisolone and dexamethasone by gavage. The delayed feedback effect on plasma ACTH and corticosterone response to an ether stress have been assessed. Almost complete suppression of corticosterone response 20 min after an ether stress and an ACTH suppression to 20% of control values 5 min after an ether stress were observed with 25 micrograms of dexamethasone, 10 mg of prednisolone and 20 mg of hydrocortisone. Although the percent inhibition of corticosterone and ACTH response to stress was comparable, a striking dissociation of the ACTH and corticosterone release was observed in terms of absolute concentrations. A mean ACTH concentration of 462 ng/l after 25 micrograms of dexamethasone was measured together with a barely measurable corticosterone concentration of 3 micrograms%. Similarly, after 10 mg of prednisolone, the mean ACTH concentration was 404 ng/l, whilst the mean corticosterone concentration was 3 micrograms%. This dissociation demonstrates that the corticosterone concentration on its own does not necessarily reflect the ACTH release. At 4 weeks of age, the ACTH response to stress is more difficult to suppress than in adult animals. This is more obvious after adrenalectomy, where the excessive ACTH secretion was less inhibited by all glucocorticoids used. The time between the last steroid gavage and stress must be considered. In 4-week-old animals the ACTH response 16 h after 12.5 micrograms of dexamethasone was inhibited by 22%, whereas 4 h after the same dexamethasone dose the inhibition was 85%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Acetylcholine was found t acutely stimulate cortisol production by bovine fasciculata adrenocortical cell suspensions. This effect was maximal at 10?4 M acetylcholine concentration, resulted in a 5-fold increase in cortisol production over the control after 1 h incubation, and represented about one fifth of the ACTH maximal stimulation under the same conditions. Acetylcholine-stimulated steroidogenesis was concentration-dependent (10?8–10?5 M), propotional to the cell numbe (5 · 105–2 · 106) and reached a plateau after 30 min incubation. Use of various cholinergic specific agonists and antagonists showed that thet steroidogenic action of acetylcholine was a typical muscarinic effect. This character is in agreement with the previously demonstrated presence of muscarinic receptors in bovine adrenocortical tissue. The steroidogenic effect of acetylcholine required the presence of extracellular calcium in the medium and was impaired upon addition of tetracaine and procaine. No change in cyclic AMP nor cyclic GMP levels could be detected in the system under acetylcholine stimulation. Acetylcholine appeared to exhibit a synergistic in combination with ACTH, and exogenous cyclic AMP; these observations suggest a different mechanism of action for acetylcholine and ACTH and point to a possible cholinergic participation in the regulation of adrenocortical differentiated functions in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号