首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ter (teratoma, chromosome 18) mutation causes a deficiency of primordial germ cells (PGCs) in ter/ter embryos from the ter congenic mouse strain at 8.0 days post coitum (dpc). In order to analyse the function of the ter gene, here we examined effects of conditioned medium (CM) from 14.5 dpc testicular and ovarian somatic cells of +/+, +/ter, or ter/ter genotype on mouse PGCs "mixed-cultured" with own somatic cells on feeder cells. The results showed that +/+ and +/ter CM supported survival in 9.5 and 11.5 dpc ICR PGCs but ter/ter CM did not rescue TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling)-positive apoptosis in the PGCs though it did not affect 5-bromo-2-deoxyuridine incorporation in PGCs. This supportive substance in +/+ CM, not ter/ter CM, was characterized as soluble, heat labile, and larger than 30 kDa. We also found that several known growth factors for PGCs and their receptors were expressed in ter/ter testes as well as +/+ testes, suggesting the ter function is independent. Thus, it was concluded that fetal gonadal somatic cells express a novel PGC growth factor (designated as TER Factor) supporting survival of PGCs not somatic cells and that the PGC deficiency in ter/ter testes is caused by a loss of this factor.  相似文献   

2.
3.
4.
Cell cycle progression is prevented by signal transduction pathways known as checkpoints which are activated in response to replication interference and DNA damage. We cloned a G2/M cell cycle phase-related checkpoint gene from a neonatal mouse testis cDNA library which was identified as mouse claspin, a proposed adaptor protein for Chk1. As part of a study on germ cell differentiation we examined the expression of the checkpoint gene, Chk1, and claspin at 12.5 and 14.5 days post coitum (dpc) and in the post-natal phase. Chk1 mRNA expression increased from 12.5 to 14.5 dpc in female gonads and was strong in males at both time points. Claspin however, was not detected until 14.5 dpc. This suggests there may be some dissociation of claspin expression from Chk1 in fetal germ cell development. Chk1 and claspin expression was also studied in testis over the first 3 days following birth, when apoptosis regulates germ stem cell number. We modulated checkpoint-related gene expression in testis using the anti-metabolite, 5-fluorouracil, resulting in increased apoptosis and upregulation of Chk1 (P<0.0001) and Cdc2 (P<0.02) mRNA. Although we do not fully understand the role checkpoint gene expression has during mammalian germ cell development this report is the first to show the expression of checkpoint-related genes in early mammalian germ cells.  相似文献   

5.
Germ cells possess the unique ability to acquire totipotency during development in vivo as well as give rise to pluripotent stem cells under the appropriate conditions in vitro. Recent studies in which somatic cells were experimentally converted into pluripotent stem cells revealed that genes expressed in primordial germ cells (PGCs), such as Oct3/4, Sox2, and Lin28, are involved in this reprogramming. These findings suggest that PGCs may be useful for identifying factors that successfully and efficiently reprogram somatic cells into toti- and/or pluripotent stem cells. Here, we show that Blimp-1, Prdm14, and Prmt5, each of which is crucial for PGC development, have the potential to reprogram somatic cells into pluripotent stem cells. Among them, Prmt5 exhibited remarkable reprogramming of mouse embryonic fibroblasts into which Prmt5, Klf4, and Oct3/4 were introduced. The resulting cells exhibited pluripotent gene expression, teratoma formation, and germline transmission in chimeric mice, all of which were indistinguishable from those induced with embryonic stem cells. These data indicate that some of the factors that play essential roles in germ cell development are also active in somatic cell reprogramming.  相似文献   

6.
7.
Although regeneration studies are useful for understanding how organs renew, little information is available about regeneration of reproductive organs and germ cells. We here describe the behavior of germ-cell precursors during regeneration of the oligochaete annelid worm Enchytraeus japonensis, which has the remarkable feature of undergoing asexual (by fission) and sexual reproduction . We first found that the gonad can regenerate from any body fragment yielded by fission during asexual reproduction. We then examined behavior of germ-cell lineage during this regenerative process, by using a homolog of the Piwi gene (Ej-piwi) as a marker. We found that in asexually growing animals, specialized cells expressing Ej-piwi are distributed widely in the body as single cells. These cells seem to serve as a reservoir of germ-cell precursors because during asexual propagation these cells migrate into the regenerating tissue, where they ultimately settle in the prospective gonads, and give rise to germ cells upon sexualization. These cells are distinct from the neoblasts, thought to be stem cells in other animals. This is the first report to directly show that the germ and somatic lineages are segregated in asexually growing animals and behave differently during regeneration.  相似文献   

8.
9.
10.
Summary ZnSO4 treatment of early frog tadpoles resulted, initially, in a mitotic stimulation of primordial germ cells. In later larval stages, ZnSO4 was responsible for the atresy of gonads in which germ cell and medullary cell numbers sharply decreased. At the same time, very few germ cells entered the meiotic prophase, while the degeneration of some of them was observed. Our results are discussed in connection with previous findings about the influence of Zn on cellular proliferation.  相似文献   

11.
We have isolated a novel serine/threonine kinase gene designated Gek1 from mouse primordial germ cell-derived embryonic germ cell. Gek1 is preferentially expressed in meiotic testicular germ cells and primordial germ cells. Gek1 mRNA is also detected in several other tissues, including hematopoietic organs in adult mice and central nervous system in embryos. The Gek1 cDNA encodes a protein with the consensus sequence of the catalytic domain of protein kinases in its N-terminal region. The deduced amino acid sequence of Gek1 in the kinase domain is related to those encoded by the Saccharomyces cerevisiae STE20, CDC15, and Drosophila melanogaster ninaC. The patterns of expression and the structural features of Gek1 suggest that the gene product is involved in signal transduction or nuclear division of germ cells and other proliferating cells. We also show that Gek1 locates on chromosome 11, near the wr locus, showing neuronal and reproductive defects. © 1996 Wiley-Liss, Inc.  相似文献   

12.
To evaluate the possible role of germ cells on sex differentiation of the gonads in vertebrates, the teleost fish, medaka ( Oryzias latipes ), was used to generate a gonad without germ cells. The germ cell-deficient medaka reveals multiple effects of germ cells on the process of sex differentiation. The previously isolated mutant medaka, hotei , with the excessive number of germ cells may support the contention that the proliferation of germ cells is related to feminization of the gonad. Futhermore, we show that two modes of proliferation for either maintenance of germ cells or commitment to gametogenesis are important components of the sex differentiation of medaka developing gonads. An intimate cross talk between germ cells and gonadal somatic cells during the sex differentiation will be discussed.  相似文献   

13.
Methylation of CpG islands spanning promoter regions is associated with control of gene expression. However, it is considered that methylation of exonic CpG islands without promoter is not related to gene expression, because such exonic CpG islands are usually distant from the promoter. Whether methylation of exonic CpG islands near the promoter, as in the case of a CpG-rich intronless gene, causes repression of the promoter remains unknown. To gain insight into this issue, we investigated the distribution and methylation status of CpG dinucleotides in the mouse Tact1/Actl7b gene, which is intronless and expressed exclusively in testicular germ cells. The region upstream to the gene was poor in CpG, with CpG dinucleotides absent from the core promoter. However, a CpG island was found inside the open reading frame (ORF). Analysis of the methylation status of the Tact1/Actl7b gene including the 5′-flanking area demonstrated that all CpG sites were methylated in somatic cells, whereas these sites were unmethylated in the Tact1/Actl7b-positive testis. Trans fection experiments with in vitro-methylated constructs indicated that methylation of the ORF but not 5′ upstream repressed Tact1/Actl7b promoter activity in somatic cells. Similar effects of ORF methylation on the promoter activity were observed in testicular germ cells. These are the first results indicating that methylation of the CpG island in the ORF represses its promoter in somatic cells and demethylation is necessary for gene expression in spermatogenic cells.  相似文献   

14.
The proliferation of germ cells becomes sexually dimorphic during gonadal sex differentiation, although the underlying dynamics of this are not well understood in vertebrates. By tracing GFP-labeled germ cells in vivo and analyzing the germ cell-depleted mutant, zenzai, we show that the proliferation and differentiation of germ cells are regulated in a sexually dimorphic manner in the teleost fish medaka. In the undifferentiated gonads, germ cells resume proliferation by slow intermittent division (type I), producing isolated daughter cells. While germ cells in the male gonads continue this mode of proliferation, some germ cell fractions in the female gonads initiate two to four rounds of continuous division (type II), forming cysts of four, eight, or sixteen cells, which subsequently enter meiosis synchronously. Thus, female germ cells become differentiated much earlier than do male germ cells. In the zenzai mutant, a defect in slow intermittent division eventually leads to the depletion of germ cells in the adult gonads in both sexes, despite the fact that cyst-forming division is unaffected. This argues that slow intermittent division is essential for the maintenance of germ cells. The proliferation and differentiation of germ cells are thus important components of gonadal sex differentiation in vertebrates.  相似文献   

15.
16.
Interactions between the somatic gonad and the germ line influence the amplification, maintenance, and differentiation of germ cells. In Caenorhabditis elegans, the distal tip cell/germline interaction promotes a mitotic fate and/or inhibits meiosis through GLP-1/Notch signaling. However, GLP-1-mediated signaling alone is not sufficient for a wild-type level of germline proliferation. Here, we provide evidence that specific cells of the somatic gonadal sheath lineage influence amplification, differentiation, and the potential for tumorigenesis of the germ line. First, an interaction between the distal-most pair of sheath cells and the proliferation zone of the germ line is required for larval germline amplification. Second, we show that insufficient larval germline amplification retards gonad elongation and thus delays meiotic entry. Third, a more severe delay in meiotic entry, as is exhibited in certain mutant backgrounds, inappropriately juxtaposes undifferentiated germ cells with cells of the proximal sheath lineage, leading to the formation of a proximal germline tumor derived from undifferentiated germ cells. Tumors derived from dedifferentiated germ cells, however, respond to the proximal interaction differently depending on the mutant background. Our study underscores the importance of strict developmental coordination between neighboring tissues. We discuss these results in the context of mechanisms that may underlie tumorigenesis.  相似文献   

17.
In vitro transfection of cultured cells combined with nuclear transfer currently is the most effective procedure to produce transgenic livestock. In the present study, bovine primary fetal fibroblasts were transfected with a green fluorescent protein (GFP)-reporter transgene and used as nuclear donor cells in oocyte reconstructions. Because cell synchronization protocols are less effective after transfection, activated oocytes may be more suitable as hosts for nuclear transfer. To examine the role of host cytoplasm on transgene expression and developmental outcome, GFP-expressing fibroblasts were fused to oocytes reconstructed either before (metaphase) or after (telophase) activation. Expression of GFP was examined during early embryogenesis, in tissues of cloned calves, and again during embryogenesis, after passage through germ line using semen from the transgenic cloned offspring. Regardless of the kind of host cytoplasm used, GFP became detectable at the 8- to 16-cell stage, approximately 80 h after reconstruction, and remained positive at all later stages. After birth, although cloned calves obtained through both procedures expressed GFP in all tissues examined, expression levels varied both between tissues and between cells within the same tissue, indicating a partial shutdown of GFP expression during cellular differentiation. Moreover, nonexpressing fibroblasts derived from transgenic offspring were unable to direct GFP expression after nuclear transfer and development to the blastocyst stage, suggesting an irreversible silencing of transgenes. Nonetheless, GFP was expressed in approximately half the blastocysts obtained with sperm from a transgenic clone, confirming transmission of the transgene through the germ line.  相似文献   

18.
19.
A new method for the separation of germ cells from somatic cells in the mouse testis was accomplished by making use of the differences in cell surface affinity for a lectin, peanut agglutinin (PNA). The separation procedure was based on the specific presence of PNA receptor on testicular germ cells and its absence on somatic cells, such as Leydig, Sertoli and peritubular cells. As a result, more than 99% of cells in PNA receptor-positive (PNA+) fractions were identified as germ cells by immunoperoxidase reaction with specific antiserum to mouse testicular germ cells. In contrast, Leydig cells were enriched in PNA receptor-negative (PNA-) fractions, i.e., 65% of cells in these fractions were cytochemically stained for 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) activity.  相似文献   

20.
Bisphenol A (BPA) is a synthetic monomer widely used to polymerize polycarbonate plastics and resins. It is shown in vitro to interfere with microtubules, producing aberations in mitotic and meiotic spindles. An increase of meiotic abnormalities in untreated female mice from an experimental colony was temporally correlated with the accidental release of BPA from polycarbonate cages and bottles damaged by inadvertent treatment with harsh alkaline detergents [P.A. Hunt, K.E. Koehler, M. Susiarjo, C.A. Hodges, A. Ilagan, R.C. Voigt, S. Thomas, B.F. Thomas, T.J. Hassold, Bisphenol A exposure causes meiotic aneuploidy in the female mouse, Curr. Biol. 13 (2003) 546-553]. In the present study, potential aneugenic effects of BPA on mouse male and female germ cells and bone marrow cells have been evaluated after acute, sub-chronic or chronic in vivo exposure. Female mice were orally treated with a single BPA dose, with 7 daily administrations or exposed for 7 weeks to BPA in drinking water. No significant induction of hyperploidy or polyploidy was observed in oocytes and zygotes at any treatment condition. The only detectable effect was a significant increase of metaphase II oocytes with prematurely separated chromatids after chronic exposure; this effect, however, had no irreversible consequence upon the fidelity of chromosome segregation during the second meiotic division, as demonstrated by the normal chromosome constitution of zygotes under the same exposure condition. With male mice, no delay of meiotic divisions was found after six daily oral doses of BPA with the BrdU assay. Similarly, no induction of hyperploidy and polyploidy was shown in epydidimal sperm hybrized with probes for chromosomes 8, X and Y, 22 days after six daily oral BPA doses. Finally, two daily oral BPA doses did not induce any increase of micronucleus frequencies in polychromatic erythrocytes of mouse bone marrow. In conclusion, our results do not add evidence to the suspected aneugenic activity of BPA and suggest that other factors or co-factors should be considered to explain the unexpected burst of meiotic abnormalities previously attributed to accidental BPA exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号