首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary When multiple types of cells from normal and diseased human skin are required, techniques to isolate cells from small skin biopsies would facilitate experimental studies. The purpose of this investigation was to develop a method for the isolation and propagation of three major cell types (keratinocytes, microvascular endothelial cells, and fibroblasts) from a 4-mm punch biopsy of human skin. To isolate and propagate keratinocytes from a punch biopsy, the epidermis was separated from the dermis by treatment with dispase. Keratinocytes were dissociated from the epidermis by trypsin and plated on a collagen-coated tissue culture petri dish. A combination of two commercial media (Serum-Free Medium and Medium 154) provided optimal growth conditions. To isolate and propagate microvascular endothelial cells from the dermis, cells were released following dispase incubation and plated on a gelatin-coated tissue culture dish. Supplementation of a standard growth medium with a medium conditioned by mouse 3T3 cells was required for the establishment and growth of these cells. Epithelioid endothelial cells were separated from spindle-shaped endothelial cells and from dendritic cells by selective attachment toUlex europeus agglutinin I-coated paramagnetic beads. To establish fibroblasts, dermal explants depleted of keratinocytes and endothelial cells were attached to plastic by centrifugation, and fibroblasts were obtained by explant culture and grown in Dulbecco’s modified Eagle’s medium (DMEM) containing fetal bovine serum (FBS). Using these isolation methods and growth conditions, two confluent T-75 flasks of keratinocytes, one confluent T-25 flask of purified endothelial cells, and one confluent T-25 flask of fibroblasts could be routinely obtained from a 4-mm punch biopsy of human skin. This method should prove useful in studies of human skin where three cell types must be grown in sufficient quantities for molecular and biochemical analysis.  相似文献   

2.
Treatment of skins of newborn mice with the neutral protease Dispase in order to separate dermis and epidermis causes pronounced changes in the levels of transglutaminase activity in the epidermis. Two soluble transglutaminases, one anionic enzyme and one cationic enzyme, of Mr approximately 90,000 and approximately 50,000, respectively, are extracted from epidermis; and the activities of both enzymes increase as a function of the time of Dispase treatment of skin. When the anionic Mr approximately 90,000 enzyme is incubated with Dispase after its chromatographic isolation from epidermal extracts, it is converted to a lower molecular weight enzyme. Hair follicles isolated from dermis prepared by a 12-h Dispase treatment of the skin of newborn mice contain two soluble cationic transglutaminases, one of which is indistinguishable from that of epidermis and the other which is not seen in epidermis. Both of these hair follicle enzymes are of Mr approximately 50,000 and appear to exist in monomeric form. They have been partially purified. Based upon these findings, we suggest that transglutaminase processing and control occur during normal differentiation of keratinocytes in epidermis and of hair follicle epidermal cells in dermis and that production of the proper forms of the enzyme may be essential to the formation of mature cornified envelopes and hair shafts, respectively.  相似文献   

3.
Reconstituted skin in culture:a simple method with optimal differentiation   总被引:7,自引:0,他引:7  
Human skin is a unique organ, which can be reconstituted in vitro and represents an interesting system for studying cell proliferation and differentiation. A simple technique for producing reconstituted skin with optimal epidermal differentiation is described and characterized. A 4-mm punch biopsy of normal human skin is deposited on the epidermal side of mortified de-epidermized human dermis maintained at the air-liquid interface with a metallic support. The culture medium contains insulin, epidermal growth factor (EGF), cholera toxin, hydrocortisone, penicillin/streptomycin and fungizone. A well-differentiated epidermis develops within 15 days. Morphological and ultrastructural studies show a neoepidermis resembling normal skin. Differentiation markers such as involucrin, filaggrin, and various cytokeratins detected with pancytokeratin antibody are present and confirm this resemblance. The keratin profile is comparable to that observed in other skin culture models. A basement-membrane-like structure is reconstituted with hemidesmosomes and anchoring-filament formation. Bullous pemphigoid (BP) antigen is observed at the dermo-epidermal junction after 21 days of culture. Moreover, both dermal substrates and punch biopsies can be kept frozen for long-term storage, with little or no loss of epidermal growth kinetics and morphology. This skin culture technique is rapid, simple, economical and reproducible. Characterization has here shown high-quality epidermal differentiation. Scientists interested in epidermal in vitro studies should take interest in all these advantages.  相似文献   

4.
In the premetamorphic larval green toad, B. viridis viridis, as in other anurans, the skin is made up of a fibrous dermis and an epidermis of stratified epithelium. The effects of bromocriptine, an antiprolactin drug, on the premetamorphic skin of B. viridis viridis was examined. Bromocriptine, dissolved in rearing water at four different concentrations, induced a number of changes in the skin of treated tadpoles. In rough sequence of appearance, these changes include: retraction ofthe melanocyte dendrites, synchronous burst ofthe apical vesicles of the superficial epithelial cells, gradual disappearance of the melanosomes from the epithelial cells and widening of the intercellular spaces. In addition, macrophages appeared in the superficial dermis amongst the retracted melanocytes. White crystals were observed on the skin surface and similar crystals were ingested by the macrophages. Prolonged treatment with bromocriptine resulted in hypertrophy and extraction of some epidermal cells. Deep melanocytes of the mesenteries were not affected by bromocriptine-treatment indicating that the drug did not penetrate deep into the tadpole tissue. Whether the macrophages observed in the dermis were recruited from deeper tissues or were converted melanocytes is another issue in need of study.  相似文献   

5.
Melanocytes account for approximately 5–10% percent of the cells in adult epidermis. Unlike the ectodermally derived keratinocytes, they originate in the neural crest and migrate into the epidermis early in development. There has been an interest in melanocytes in developing human skin since the late 1800s, when concentrated pigmented cells were identified in the sacro-coccygeal skin of Japanese fetuses. This observation led to speculation and subsequent investigation about the racial nature of the melanocytes in this site (the Mongolian spot), the presence of melanocytes in fetuses of other races, the timing of appearance of these cells in both the dermis and epidermis, and their origin. The early investigators relied primarily on histochemical methods that stained either the premelanosome or the pigmented melanosome, or relied upon the activity of tyrosinase within the melanosome to effect the DOPA reaction. Studies by electron microscopy added further documentation to the presence of melanocytes in the skin by resolving the structure of the melanosome regardless of its state of pigmentation. All of these methods recognized, however, only differentiated melanocytes. The thorough investigations of melanocytes in the skin from a large number of black embryos and fetuses by Zimmerman and colleagues between 1948 and 1955 provided insight into the time of appearance of melanocytes in the dermis (10–11 weeks' menstrual age) and the epidermis (11–12 weeks) and revealed the density of these cells in both zones of the skin of several regions of the body. The precise localization of the melanocytes in the developing hair follicles was contributed by the studies of Mishima and Widlan (J Invest Dermatol 1966; 46:263–277). More recently, monoclonal antibodies have been developed that recognize common oncofetal or oncodifferentiation antigens on the surface or in the cytoplasm of melanoma cells and developing melanocytes (but not normal adult melanocytes). These antibodies recognize the cells irrespective of the presence or absence of melanosomes or their activity in the synthesis of pigment and therefore are valuable tools for re-examining the presence, density, and distribution patterns of melanocytes in developing human skin. Using one of these antibodies (HMB-45), it was found that dendritic melanocytes are present in the epidermis between 40 and 50 days estimated gestational age in a density comparable with that of newborn epidermis and are distributed in relatively non-random patterns. A number of questions about the influx of cells into the epidermis, potential reservoirs of melanoblasts retained within the dermis, division of epidermal melanocytes, and the interaction of melanocytes and keratinocytes during development remain unresolved. The tools now appear to be available, however, to begin to explore many of these questions.  相似文献   

6.
As a protective interface between internal organs and the environment, the skin encounters a host of toxins, pathogenic organisms, and physical stresses. To combat these attacks on the cutaneous microenvironment, the skin functions as more than a physical barrier: it is an active immune organ. Immune responses in the skin involve an armamentarium of immune-competent cells and soluble biologic response modifiers including cytokines. Traversed by a network of lymphatic and blood vessels, the dermis contains most of the lymphocytes in the skin, other migrant leukocytes, mast cells, and tissue macrophages. Although the epidermis has no direct access to the blood or lymphatic circulation, it is equipped with immune-competent cells: Langerhans cells, the macrophage-like antigen-presenting cells of the epidermis; keratinocytes, epithelial cells with immune properties; dendritic epidermal T lymphocytes, resident cells that may serve as a primitive T-cell immune surveillance system; epidermotropic lymphocytes, migrants from vessels in the dermis; and melanocytes, epidermal pigment cells with immune properties. Although the components of the epidermis and dermis work in concert to execute immune responses in the skin, for purposes of this review, we focus on the cells and cytokines of the epidermal immunologic unit, the frontline of immune protection against environmental toxins and microbes.  相似文献   

7.
The microenvironment is thought to play a key role in the control of neural crest cell diversification. To investigate its role in melanocyte differentiation we mapped the temporal and spatial distribution of pigmented melanocytes in embryonic chick skin and determined, by experimental means, the route taken by migrating melanocytes in the skin. We show that the New Hampshire Red/Black Australorp crossbreed exhibits melanization from 5 days of incubation (2 1/2 days earlier than is reported in other breeds). Contrary to previous reports our findings show that melanization is at first predominantly dermal. Both dermal and epidermal melanocyte numbers increase until Day 8, whereafter there is a dramatic decline in dermal melanocytes and by Day 10, melanocytes are almost exclusively located in the epidermis. Using homeotypic and heterotypic combinations of white and red/black dermis and epidermis we have demonstrated that premelanocytes arrive in the dermis of the trunk by Day 3 and begin to move into the epidermis from Day 4 onward. Results from these grafts and from tritium labeling studies strongly suggest that there is little or no reverse migration of premelanocytes from epidermis to dermis. Our findings indicate that overt melanocyte differentiation is not dependent on location in an epidermal environment, and that melanogenesis does not signify the end-stage in the migration process. Further, they suggest that the early dermal mesenchyme plays a key role in controlling melanogenesis.  相似文献   

8.
The usual pigmentation pattern in mammalian skin consists of fixed melanocytes in the basal layer of the epidermis, supplying keratinocytes with melanosomes. We observed that the glabrous skin (rhinaria and footpads) of dogs deviates from this pattern. In dogs, melanocytes are found in both the dermis and epidermis. The epidermal melanocytes are situated in the intercellular spaces of the basal and spinous layers. They are characterized by a quantity of cytoplasm containing a centriole, also developing melanosomes, and in some cases annulate lamellae. There is a high frequency of closely apposed melanocytes in the epidermis. Melanosomes in different stages of formation are also abundant. The morphology of the glabrous skin of dogs suggests transport of melanocytes from the dermis into the epidermis and formation of melanosomes in the epidermis. A distributed and intense pigment formation may be necessary to achieve the black noses of many dog breeds and wild canids, as well as dark footpads despite heavy abrasion and rapid skin renewal.  相似文献   

9.
An ex vivo model system was developed to investigate melanocyte migration. Within this model system, melanocytes migrate among other epidermal cells in the epibolic outgrowth of skin explants. This process is initiated by loss of contact inhibition of epidermal cells at the rim of the explants and by locally produced chemotactic factors. Punch biopsies provided explants of reproducible diameter. Optimal culture conditions include medium consisting of Dulbecco's Minimal Essential Medium containing 10% inactivated normal human serum and placement of explants epidermal side up at the air-liquid interphase. Within 7 days, epidermal cells completely surround the explant. Approximately 3 days after the onset of keratinocyte migration, melanocytes distribute themselves within the newly formed epidermis. Throughout the 7-day culture period, melanocytes and keratinocytes show maintenance of subcellular morphology, and the dermo-epidermal junction remains intact. Melanocyte migration was quantified using immunoperoxidase staining in combination with light microscopy and computer-aided image analysis. Preliminary results using the model system to compare migration in control and nonlesional vitiligo skin indicate that no inherent migration defect is responsible for impaired repigmentation of vitiligo lesions. The organotypic culture model system allows for investigations on melanocytes within their environment of autologous epidermal and dermal components, closely resembling in vivo circumstances in human skin.  相似文献   

10.
Most in vitro studies in experimental skin biology have been done in 2-dimensional (2D) monocultures, while accumulating evidence suggests that cells behave differently when they are grown within a 3D extra-cellular matrix and also interact with other cells (1-5). Mouse models have been broadly utilized to study tissue morphogenesis in vivo. However mouse and human skin have significant differences in cellular architecture and physiology, which makes it difficult to extrapolate mouse studies to humans. Since melanocytes in mouse skin are mostly localized in hair follicles, they have distinct biological properties from those of humans, which locate primarily at the basal layer of the epidermis. The recent development of 3D human skin reconstruct models has enabled the field to investigate cell-matrix and cell-cell interactions between different cell types. The reconstructs consist of a "dermis" with fibroblasts embedded in a collagen I matrix, an "epidermis", which is comprised of stratified, differentiated keratinocytes and a functional basement membrane, which separates epidermis from dermis. Collagen provides scaffolding, nutrient delivery, and potential for cell-to-cell interaction. The 3D skin models incorporating melanocytic cells recapitulate natural features of melanocyte homeostasis and melanoma progression in human skin. As in vivo, melanocytes in reconstructed skin are localized at the basement membrane interspersed with basal layer keratinocytes. Melanoma cells exhibit the same characteristics reflecting the original tumor stage (RGP, VGP and metastatic melanoma cells) in vivo. Recently, dermal stem cells have been identified in the human dermis (6). These multi-potent stem cells can migrate to the epidermis and differentiate to melanocytes.  相似文献   

11.
Alibardi, L. 2011. Observations on the ultrastructure and distribution of chromatophores in the skin of chelonians. —Acta Zoologica (Stockholm) 00 :1–11. The cytology and distribution of chromatophores responsible for skin pigmentation in chelonians is analyzed. Epidermal melanocytes are involved in the formation of dark spots or stripes in growing shelled and non‐shelled skin. Melanocytes rest in the basal layer of the epidermis and transfer melanosomes into keratinocytes during epidermal growth. Dermal melanophores and other chromatophores instead remain in the dermis and form the gray background of the skin. When dermal melanophores condense, they give origin to the dense spots or stripes in areas where no epidermal melanocytes are present. In the latter case, the epidermis and the corneous layer are transparent and reveal the dermal distribution of melanophores and other chromatophores underneath. As a result of this basic process of distribution of pigment cells, the dark areas visible in scales can have a double origin (epidermal and dermal) or a single origin (epidermal or dermal). Xanthophores, lipophores, and a cell containing both pterinosomes and lipid droplets are sparse in the loose dermis while iridophores are rarely seen in the skin of chelonians analyzed in the present study. Xanthophores and lipophores contribute to form the pale, yellow or oranges hues present among the dark areas of the skin in turtles.  相似文献   

12.
The prenatal development of epidermis, dermis, and hypodermis was studied in embryos of different ago of two delphinid species (Stenella attenuata, Delphinus delphis), using light and transmission electron microscopical methods. The delphinid embryo is covered by a multilayered tissue formed by four different epidermal generations (periderm, stratum intermedium-I, str. intermedium-II, str. spinosum) produced by the str. basale. The first layer appears at about 40–50 mm of body length, the second type (s.i.-I) about 60–160 mm, and the third type (s.i.-II) is present at 160–500 mm. The first spinosal cells are produced at 225–260 mm body length; thenceforth, the epidermis increases continuously in thickness. Epidermal ridge formation begins about 400–mm body length. The development of the dermis is characterized by the early production of thin connective tissue fibers (40- 70-mm body length) and simultaneously the cutaneuous muscle matures in structure. Vascular development intensifies between embryos of 150–225 mm, and collagen production increases markedly in fetuses of 225–260-mm length. These events are paralledled by an increase in dermal thickness. The first elastic fibers can be recognized in the skin from the abdomen at about 600-mm body length. The development of the hypodermis is marked by very rapid and constantly progressing growth, beginning about 60-mm body length. The first typical fat cells appear in animals of 360–400 mm. Regional differences are obvious for all skin layers with regard to the flippers, where structural maturation proceeds more rapidly than in dorsal or abdominal regions. © 1995 Wiley-Liss, Inc.  相似文献   

13.
The melanocortin 1 receptor (Mc1r) plays a central role in cutaneous biology, but is expressed at very low levels by a small fraction of cells in the skin. In humans, loss-of-function MC1R mutations cause fair skin, freckling, red hair, and increased predisposition to melanoma; in mice, Mc1r loss-of-function is responsible for the recessive yellow mutation, associated with pheomelanic hair and a decreased number of epidermal melanocytes. To better understand how Mc1r signaling affects different cutaneous phenotypes, we examined large-scale patterns of gene expression in different skin components (whole epidermal sheets, basal epidermal cells and whole skins) of neonatal (P2.5) normal and recessive yellow mice, starting with a 26K mouse cDNA microarray. From c. 17 000 genes whose levels could be accurately measured in neonatal skin, we identified 883, 2097 and 552 genes that were uniquely expressed in the suprabasal epidermis, basal epidermis and dermis, respectively; specific biologic roles could be assigned for each class. Comparison of normal and recessive yellow mice revealed 69 differentially expressed genes, of which the majority had not been previously implicated in Mc1r signaling. Surprisingly, many of the Mc1r-dependent genes are expressed in cells other than melanocytes, even though Mc1r expression in the skin is confined almost exclusively to epidermal melanocytes. These results reveal new targets for Mc1r signaling, and point to a previously unappreciated role for a Mc1r-dependent paracrine effect of melanocytes on other components of the skin.  相似文献   

14.
Melanocytes and melanin granules have been studied by electron microscopy in normal human and cat skin, and in hyperplastic human skin lesions. The melanocytes have always been found as free cells within the epidermis,i.e., on the epidermal side of the dermal membrane. Melanocytes frequently rest on the dermal membrane or bulge towards the dermis. In such cases the uninterrupted dermal membrane is uniformly thin and smooth in appearance, in contrast with the regions alongside Malpighian cells, where it appears appreciably thicker and seemingly anchored to the basal cell layer. Two types of melanin granules have been distinguished according to their location in the melanocytes and to morphological characteristics which may only express different stages in the maturation of the granules: (a) light melanin granules in which a structure resembling a fine network is apparent; (b) dense melanin granules which, in osmium-fixed preparations, appear as uniformly dense masses surrounded by a coarsely granular, intensely osmiophilic shell. Treatment of sections of osmium-fixed tissues with potassium permanganate has revealed within the dense granules the existence of an organized framework in the form of a regular, crystalline-like lattice. It is suggested that this basic structure is protein in nature and may include the enzymatic system capable of producing melanin. The existence is reported of fine filaments located in the cytoplasm of melanocytes and morphologically distinct from the tonofilaments found in Malpighian cells.  相似文献   

15.
Alibardi L. 2011. Histology, ultrastructure, and pigmentation in the horny scales of growing crocodilians. —Acta Zoologica (Stockholm) 92 : 187–200. The present morphological study describes the color of hatchling, juvenile, and adult crocodilian skin and the origin of its pigmentation. In situ hybridization and immunostaining indicate that crocodilian scales grow as an expansion of the proliferating epidermis of the hinge region that form thin lateral rings. In more central areas of growing scales, new epidermal layers contribute to increase the thickness of the stratum corneum. The dark pigmentation and color pattern derive from the different distribution of epidermal and dermal chromatophores. The more intensely pigmented stripes, irregular patches and dot‐like spots, especially numerous in dorsal scales, derive from the incorporation of the eumelanosomes of epidermal melanocytes in differentiating beta cells of the epidermis. Dermal melanophores, mainly localized in the loose upper part of the dermis, also contribute to the formation of the dark or gray background of crocodilian scales. The eumelanosomes of dermal melanophores determine the darkening of the skin pattern in association with the epidermal melanocytes. Iridophores are infrequent, while xantophores are present in the species analyzed with a sparse distribution in the superficial dermis among melanophores. The presence of xantophores and of the few iridophores in areas where epidermal melanocytes are absent appear to determine the brown or the light yellow‐orange background observed among the darker regions of crocodilian scales.  相似文献   

16.
S F Amakiri 《Acta anatomica》1979,103(4):434-444
Various histochemical and histological techniques were used to study the melanin and dopa-positive cell distribution in the skin of some tropical and temperate breeds of cattle in Nigeria. Melanin pigments were concentrated in the basal and lower spinous layers of the epidermis and in the hair cortex, follicle sheaths and papillae of the various breeds. In the White Fulani and N'Dama breeds, melanin pigments were however found in all layers of the epidermis. Dopa-positive cells (melanocytes) were observed in the epidermis, dermis and hair follicles; the distribution pattern varied among breeds, being copiously disposed in the basal epidermis and papillary dermis in the White Fulani and Muturu and, except in areas of thick epidermal ridges, scanty in the epidermis and dermis of the Friesian and N'Dama. Mast cell distribution pattern in the various breeds was similar to that of the dopa-positive cells. Peroxidase-positive cells were present in the basal epidermis and upper dermis of the Muturu, widespread in the subepidermal layer of the N'Dama and very scanty in the dermis of the White Fulani and Friesian. Acid phosphatase activity was intense in the granular layer of the Muturu and N'Dama breeds and also in the papillary dermis and hair follicles, whereas alkaline phosphatase-positive dendritic cells, and 'clear' cells were also observed in the basal and upper epidermis.  相似文献   

17.
Notch signalling regulates epidermal differentiation and tumour formation via non-cell autonomous mechanisms that are incompletely understood. This study shows that epidermal Notch activation via a 4-hydroxy-tamoxifen-inducible transgene caused epidermal thickening, focal detachment from the underlying dermis and hair clumping. In addition, there was dermal accumulation of T lymphocytes and stromal cells, some of which localised to the blisters at the epidermal-dermal boundary. The T cell infiltrate was responsible for hair clumping but not for other Notch phenotypes. Notch-induced stromal cells were heterogeneous, expressing markers of neural crest, melanocytes, smooth muscle and peripheral nerve. Although Slug1 expression was expanded in the epidermis, the stromal cells did not arise through epithelial-mesenchymal transition. Epidermal Notch activation resulted in upregulation of jagged 1 in both epidermis and dermis. When Notch was activated in the absence of epidermal jagged 1, jagged 1 was not upregulated in the dermis, and epidermal thickening, blister formation, accumulation of T cells and stromal cells were inhibited. Gene expression profiling revealed that epidermal Notch activation resulted in upregulation of several growth factors and cytokines, including TNFα, the expression of which was dependent on epidermal jagged 1. We conclude that jagged 1 is a key mediator of non-cell autonomous Notch signalling in skin.  相似文献   

18.
Melanocytes in human skin reside both in the epidermis and in the matrix and outer root sheath of anagen hair follicles. Comparative study of melanocytes in these different locations has been difficult as hair follicle melanocytes could not be cultured. In this study we used a recently described method of growing hair follicle melanocytes to characterize and compare hair follicle and epidermal melanocytes in the scalp of the same individual. Three morphologically and antigenically distinct types of melanocytes were observed in primary culture. These included (1) moderately pigmented and polydendritic melanocytes derived from epidermis; (2) small, bipolar, amelanotic melanocytes; and (3) large, intensely pigmented melanocytes; the latter two were derived from hair follicles. The three sub-populations of cells all reacted with melanocyte-specific monoclonal antibody. Epidermal and amelanotic hair follicle melanocytes proliferated well in culture, whereas the intensely pigmented hair follicle melanocytes did not. Amelanotic hair follicle melanocytes differed from epidermal melanocytes in being less differentiated, and they expressed less mature melanosome antigens. In addition, hair follicle melanocytes expressed some antigens associated with alopecia areata, but not antigens associated with vitiligo, whereas the reverse was true for epidermal melanocytes. Thus, antigenically different populations of melanocytes are present in epidermis and hair follicle. This could account for the preferential destruction of hair follicle melanocytes in alopecia areata and of epidermal melanocytes in vitiligo.  相似文献   

19.
Cell identification in primary cell cultures from skin   总被引:2,自引:0,他引:2  
Summary Primary cell cultures can readily be obtained from human skin using the explant method. With special care it is possible to obtain primary cultures consisting of epidermal keratinocytes without fibroblast contamination. By means of differences in their growth patterns and retention of specific differentiative functions in vitro, keratinocytes and fibroblasts can easily be distinguished. The high degree of confidence in establishing cell identity permits meaningful experimental use of this system. The method of enzymatic separation of epidermis from dermis, followed by culture of cells from the dissociated epidermal tissue, provides both epithelial and dendritic cells. The former are probably keratinocytes, whereas the latter are definitely melanocytes. The possibility of eventual fibroblast overgrowth, using this latter method, has not yet been ruled out with certainty. Presented at the Workshop on Primary Cell Culture, November 1–3, 1973, Convenor Dr. Warren I. Schaeffer, University of Vermont, at the W. Alton Jones Cell Science Center, Lake Placid, N. Y. The editorial assistance of Dr. and Mrs. Joseph Leighton in preparing for press the five papers from that workshop is gratefully acknowledged. This work was supported by grants from the National Cancer Institute, 1 PO 1 CA 11536, and the National Institute of Arthritis and Metabolic Diseases, 1 PO 1 AM 15515.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号