首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult hippocampal neurogenesis plays a pivotal role in learning and memory. The suppression of hippocampal neurogenesis induced by an increase of oxidative stress is closely related to cognitive impairment. Neural stem cells which persist in the adult vertebrate brain keep up the production of neurons over the lifespan. The balance between pro-oxidants and anti-oxidants is important for function and surviving of neural stem cells. Ginsenoside Rg1 is one of the most active components of Panax ginseng, and many studies suggest that ginsenosides have antioxidant properties. This research explored the effects and underlying mechanisms of ginsenoside Rg1 on protecting neural stem cells (NSCs) from oxidative stress. The sub-acute ageing of C57BL/6 mice was induced by subcutaneous injection of d-gal (120 mg kg?1 day?1) for 42 day. On the 14th day of d-gal injection, the mice were treated with ginsenoside Rg1 (20 mg kg?1 day?1, intraperitoneally) or normal saline for 28 days. The study monitored the effects of Rg1 on proliferation, senescence-associated and oxidative stress biomarkers, and Akt/mTOR signalling pathway in NSCs. Compared with the d-gal group, Rg1 improved cognitive impairment induced by d-galactose in mice by attenuating senescence of neural stem cells. Rg1 also decreased the level of oxidative stress, with increased the activity of superoxide dismutase and glutathione peroxidase in vivo and in vitro. Rg1 furthermore reduced the phosphorylation levels of protein kinase B (Akt) and the mechanistic target of rapamycin (mTOR) and down-regulated the levels of downstream p53, p16, p21 and Rb in d-gal treated NSCs. The results suggested that the protective effect of ginsenoside Rg1 on attenuating cognitive impairment in mice and senescence of NSCs induced by d-gal might be related to the reduction of oxidative stress and the down-regulation of Akt/mTOR signaling pathway.  相似文献   

2.
Some anticonvulsant drugs are associated with cognitive ability in patients; Topiramate (TPM) is well known as an effective anticonvulsant agent applied in clinical settings. However, the effect of TPM on the cognitive function is rarely studied. In this study, we aimed to observe the effects of TPM on cell proliferation and neuronal differentiation in the dentate gyrus (DG) of the d-galactose-induced aging mice by Ki-67 and doublecortin (DCX) immunohistochemistry. The study is divided into four groups including control, d-galactose-treated group, 25 and 50 mg/kg TPM-treated plus d-galactose-treated groups. We found, 50 mg/kg (not 25 mg/kg) TPM treatment significantly increased the numbers of Ki-67+ cells and DCX immunoreactivity, and improved neuroblast injury induced by d-galactose treatment. In addition, we also found that decreased immunoreactivities and protein levels of antioxidants including superoxide dismutase and catalase induced by d-galactose treatment were significantly recovered by 50 mg/kg TPM treatment in the mice hippocampal DG (P < 0.05). In conclusion, our present results indicate that TPM can ameliorate neuroblast damage and promote cell proliferation and neuroblast differentiation in the hippocampal DG via increasing SODs and catalase levels in the d-galactose mice.  相似文献   

3.
Cerebralcare granule® (CG) is a preparation of Traditional Chinese Medicine that widely used in China. It was approved by the China State Food and Drug Administration for treatment of headache and dizziness associated with cerebrovascular diseases. In the present study, we aimed to investigate whether CG had protective effect against d-galactose (gal)-induced memory impairment and to explore the mechanism of its action. d-gal was administered (100 mg/kg, subcutaneously) once daily for 8 weeks to induced memory deficit and neurotoxicity in the brain of aging mouse and CG (7.5, 15, and 30 g/kg) were simultaneously administered orally. The present study demonstrates that CG can alleviate aging in the mouse brain induced by d-gal through improving behavioral performance and reducing brain cell damage in the hippocampus. CG prevents aging mainly via suppression of oxidative stress response, such as decreasing NO and MDA levels, renewing activities of SOD, CAT, and GPx, as well as decreasing AChE activity in the brain of d-gal-treated mice. In addition, CG prevents aging through inhibiting NF-κB-mediated inflammatory response and caspase-3-medicated neurodegeneration in the brain of d-gal treated mice. Taken together, these data clearly demonstrates that subcutaneous injection of d-gal produced memory deficit, meanwhile CG can protect neuron from d-gal insults and improve memory ability.  相似文献   

4.
Memory decline is characteristic of aging and age-related neurodegenerative disorders. This study was designed to investigate the protective effect of hyperbaric oxygen (HBO) against cognitive impairment induced by d-galactose (d-gal) in mice. d-gal was intraperitoneally injected into mice daily for 8 weeks to establish the aging model. HBO was simultaneously administered once daily. The results indicate that HBO significantly reversed D-gal-induced learning and memory impairments. Studies on the potential mechanisms of this action showed that HBO significantly reduced oxidative stress by increasing superoxide dismutase, glutathione peroxidase, and catalase levels, as well as the total anti-oxidation capability, while decreasing the content of malondialdehyde, nitric oxide, and nitric oxide synthase in the hippocampal CA1 region. HBO also inhibited advanced glycation end-product formation and decreased levels of tumor necrosis factor-α and interleukin-6. Moreover, HBO significantly attenuated d-gal-induced pathological injury in the hippocampus, as well as β-amyloid protein1?42 expression and retained BDNF expression. Furthermore, HBO decreased p16, p21 and p53 gene and protein expression in the hippocampus of d-gal-treated mice. In conclusion, the protective effect of HBO against d-gal-induced cognitive impairment was mainly due to its ability to reduce oxidative damage, suppress inflammatory responses, and regulate aging-related gene expression.  相似文献   

5.
ABSTRACT

Acerola fruits contain abundant ascorbic acid (AsA). The gene expression levels of three upstream enzymes in the primary AsA biosynthesis pathway were correlated with AsA contents in the fruits of two acerola cultivars. Multiple overexpression of the enzymes increased AsA contents, suggesting their high expression is important for high AsA accumulation in acerola fruits and the breeding of AsA-rich plants.

Abbreviations: AsA: ascorbic acid; PMI: phosphomannose isomerase; PMM: phosphomannomutase; GMP: GDP-d-mannose pyrophosphorylase; GME: GDP-d-mannose 3?,5?-epimerase; GGP: GDP-l-galactose phosphorylase; GPP: l-galactose-1-phosphate phosphatase; GDH: l-galactose dehydrogenase; GLDH: l-galactono-1,4-lactone dehydrogenase  相似文献   

6.
Dysfunction of learning and memory is widely found in many neurological diseases. Understanding how to preserve the normal function of learning and memory will be extremely beneficial for the treatment of these diseases. However, the possible protective effect of minocycline in memory impairment is unknown. We used the well-established d-galactose rat amnesia model and two behavioral tasks, the Morris water maze and the step-down task, for memory evaluation. Western blot and PCR were used to examine the protein and mRNA levels of Arc/Arg3.1. We report that minocycline supplementation ameliorates both the spatial and fear memory deficits caused by d-galactose. We also found that Arc/Arg3.1, c-fos, and brain-derived neurotrophic factor levels are decreased in the d-galactose animal model, and that minocycline reverses the protein and mRNA levels of Arc in the hippocampus, suggesting the potential role of Arc/Arg3.1 in minocycline’s neuroprotective mechanism. Our study strongly suggests that minocycline can be used as a novel treatment for memory impairment in neurological diseases.  相似文献   

7.
l-Theanine (=γ-glutamylethylamide) is an amino acid ingredient in green tea with a structural analogy to l-glutamine (l-GLN) rather than l-glutamic acid (l-GLU), with regards to the absence of a free carboxylic acid moiety from the gamma carbon position. l-theanine markedly inhibits [3H]l-GLN uptake without affecting [3H]l-GLU uptake in cultured neurons and astroglia. In neural progenitor cells with sustained exposure to l-theanine, upregulation of the l-GLN transporter isoform Slc38a1 expression and promotion of both proliferation and neuronal commitment are seen along with marked acceleration of the phosphorylation of mammalian target of rapamycin (mTOR) and relevant downstream proteins. Stable overexpression of Slc38a1 leads to promotion of cellular growth with facilitated neuronal commitment in pluripotent embryonic carcinoma P19 cells. In P19 cells stably overexpressing Slc38a1, marked phosphorylation is seen with mTOR and downstream proteins in a fashion insensitive to the additional stimulation by l-theanine. The green tea amino acid l-theanine could thus elicit pharmacological actions to up-regulate Slc38a1 expression for activation of the mTOR signaling pathway required for cell growth together with accelerated neurogenesis after sustained exposure in undifferentiated neural progenitor cells. In this review, I summarize a novel pharmacological property of the green tea amino acid l-theanine for embryonic and adult neurogenesis with a focus on the endogenous amino acid analog l-GLN. A possible translational strategy is also discussed on the development of dietary supplements and nutraceuticals enriched of l-theanine for the prophylaxis of a variety of untoward impairments and malfunctions seen in patients with different neurodegenerative and/or neuropsychiatric disorders.  相似文献   

8.
We successfully engineered a new enzyme that catalyzes the formation of d-Ala amide (d-AlaNH2) from d-Ala by modifying ATP-dependent d-Ala:d-Ala ligase (EC 6.3.2.4) from Thermus thermophilus, which catalyzes the formation of d-Ala-d-Ala from two molecules of d-Ala. The new enzyme was created by the replacement of the Ser293 residue with acidic amino acids, as it was speculated to bind to the second d-Ala of d-Ala-d-Ala. In addition, a replacement of the position with Glu performed better than that with Asp with regards to specificity for d-AlaNH2 production. The S293E variant, which was selected as the best enzyme for d-AlaNH2 production, exhibited an optimal activity at pH 9.0 and 40 °C for d-AlaNH2 production. The apparent K m values of this variant for d-Ala and NH3 were 7.35 mM and 1.58 M, respectively. The S293E variant could catalyze the synthesis of 9.3 and 35.7 mM of d-AlaNH2 from 10 and 50 mM d-Ala and 3 M NH4Cl with conversion yields of 93 and 71.4 %, respectively. This is the first report showing the enzymatic formation of amino acid amides from amino acids.  相似文献   

9.
Inulin is a readily available feedstock for cost-effective production of biochemicals. To date, several studies have explored the production of bioethanol, high-fructose syrup and fructooligosaccharide, but there are no studies regarding the production of d-lactic acid using inulin as a carbon source. In the present study, chicory-derived inulin was used for d-lactic acid biosynthesis by Lactobacillus bulgaricus CGMCC 1.6970. Compared with separate hydrolysis and fermentation processes, simultaneous saccharification and fermentation (SSF) has demonstrated the best performance of d-lactic acid production. Because it prevents fructose inhibition and promotes the complete hydrolysis of inulin, the highest d-lactic acid concentration (123.6 ± 0.9 g/L) with a yield of 97.9 % was obtained from 120 g/L inulin by SSF. Moreover, SSF by L. bulgaricus CGMCC 1.6970 offered another distinct advantage with respect to the higher optical purity of d-lactic acid (>99.9 %) and reduced number of residual sugars. The excellent performance of d-lactic acid production from inulin by SSF represents a high-yield method for d-lactic acid production from non-food grains.  相似文献   

10.
Simple and convergent synthesis of a tetra- and a trisaccharide portions of an antitumor compound Julibroside J28, isolated from Albizia julibrissin, that showed significant in vitro antitumor activity against HeLa, Bel-7402 and PC-3M-1E8 cancer cell lines is reported. The tetrasaccharide has been synthesized as its p-methoxyphenyl glycoside starting from commercially available d-glucose, l-rhamnose and l-arabinose. The trisaccharide part has been synthesized from commercially available N-acetyl d-glucosamine, d-fucose and d-xylose using simple protecting group manipulations. Sulfuric acid immobilized on silica has been used successfully as a Brönsted acid catalyst for the crucial glycosylation steps.  相似文献   

11.
d-Valine is an important organic chiral source and has extensive industrial application, which is used as intermediate for the synthesis of agricultural pesticides, semi-synthetic veterinary antibiotics and pharmaceutical drugs. Its derivatives have shown great activity in clinical use, such as penicillamine for the treatment of immune-deficiency diseases, and actinomycin D for antitumor therapy. Fluvalinate, a pyrethroid pesticide made from d-valine, is a broad-spectrum insecticide with low mammalian toxicity. Valnemulin, a semi-synthetic pleuromutilin derivative synthesized from d-valine, is an antibiotic for animals. Moreover, d-valine is also used in cell culture for selectively inhibiting fibroblasts proliferation. Due to its widespread application, d-valine is gaining more and more attention and some approaches for d-valine preparation have been investigated. In comparison with other approaches, microbial preparation of d-valine is more competitive and promising because of its high stereo selectivity, mild reaction conditions and environmental friendly process. So far, microbial preparation of d-valine can be mainly classified into three categories: microbial asymmetric degradation of dl-valine, microbial stereoselective hydrolysis of N-acyl-dl-valine by d-aminoacylase, and microbial specific hydrolysis of dl-5-isopropylhydantoin by d-hydantoinase coupled with d-carbamoylase. In this paper, the industrial application of d-valine and its microbial preparation are reviewed.  相似文献   

12.
d-lactic acid is a versatile and important industrial chemical that can be applied in the synthesis of thermal-resistant poly-lactic acid. Biosynthesis of d-lactic acid can be achieved by a variety of microorganisms, including lactic acid bacteria, yeast, and fungi; however, the final product yield, optical purity, and the utilization of both glucose and xylose are restricted. Consequently, engineered microbial systems are essential to attain high titer, productivity, and complete utilization of sugars. Herein, we critically evaluate the promising wild-type microorganisms, as well as genetically modified microorganisms to produce enantiomerically pure d-lactic acid, particularly from renewable lignocellulosic biomass. In addition, innovative bioreactor operation, metabolic flux analysis, and recent genetic engineering methods for targeted microbial d-lactic acid synthesis will be discussed.  相似文献   

13.
d-Stereospecific amidohydrolase (DAH) from Streptomyces sp. 82F2 has potential utility for the synthesis of d/l configuration dipeptides by an aminolysis reaction. Structural comparison of DAH with substrate-bound d-amino acid amidase revealed that three residues located in the active site pocket of DAH (Thr145, Ala267, and Gly271) might be involved in interactions with d-phenylalanine substrate. We substituted Ala267 and Gly271, which are located at the bottom of the hydrophobic pocket of DAH, with Phe and observed changes in the stereoselectivity and specific activity toward the free and acetylated forms of d/l-Phe-methyl esters. In contrast, the mutation of Thr145, which likely supplies negative charge for recognition of the amino group of the substrate, hardly affected the stereoselectivity of the enzyme. A similar effect was observed in an investigation of hydrolysis and aminolysis reactions using the acetylated forms of d/l-Phe-methyl esters and 1,8-diaminooctane as an acyl-donor and acyl-acceptor, respectively. Substrate binding by DAH was disrupted by the mutation of Ala267 to Val or Trp and kinetic analysis showed that the hydrophobicity of the bottom of the active site pocket (Ala267 and Gly271) is important for both stereoselectivity and recognition of hydrophobic substrates.  相似文献   

14.
The structure of an acidic polysaccharide elaborated by Bacillus polymyxa S-4 was investigated in relation to its physiological activity, particularly, its hypocholesterolemic effect on experimental animals. The polysaccharide is composed of d-glucose, d-mannose, d-galactose, d-glucuronic acid, and d-mannuronic acid (molar ratio 3:3:1: 2:1). Methylation and fragmentation analyses, such as Smith degradation and partial acid hydrolysis showed that the polysaccharide has a complicated, highly branched structure, consisting mainly of (1 → 3)- and (1 → 4)-d-glycosidic linkages. The backbone chain containing d-glucuronic acid, d-mannose, and d-galactose residues is attached at the C-3, C-4, and C-4 positions, respectively, with side chains of single or a few carbohydrate units, which are terminated with d-glucose or d-mannose residues.  相似文献   

15.
A pectin isolated from tobacco midrib contained residues of d-galacturonic acid (83.7%), L-rhamnose (2.2%), l-arabinose (2.4%) and d-galactose (11.2%) and small amounts of d-xylose and d-glucose. Methylation analysis of the pectin gave 2, 3, 5-tri- and 2, 3-di-O-methyl-l-arabinose, 3, 4-di- and 3-O-methyl-l-rhamnose and 2, 3, 6-tri-O-methyl-d-galactose. Reduction with lithium aluminum hydride of the permethylated pectin gave mainly 2, 3-di-O-methyl-d-galactose and the above methylated sugars. Partial acid hydrolysis gave homologous series of β-(1 → 4)-linked oligosaccharides up to pentaose of d-galactopyranosyl residues, and 2-O-(α-d-galactopyranosyluronic acid)-l-rhamnose, and di- and tri-saccharides of α-(1 → 4)-linked d-galactopyranosyluronic acid residues.

These results suggest that the tobacco pectin has a backbone consisting of α-(1 → 4)-linked d-galactopyranosyluronic acid residues which is interspersed with 2-linked l-rhamnopyranosyl residues. Some of the l-rhamnopyranosyl residues carry substituents on C-4. The pectin has long chain moieties of β-(1 → 4)-linked d-galactopyranosy] residues.  相似文献   

16.
Various metabolites were analyzed in groundnut genotypes grown under varying temperature regimes (based on date of sowing). Four contrasting groundnut genotypes viz. ICGS44 (high-temperature tolerant), AK159 and GG7 (moderately-high-temperature tolerant), and DRG1 (high-temperature sensitive) were grown at three different temperature regimes i.e., low (early date of sowing), normal (normal date of sowing) and high temperature (late date of sowing) under field conditions. Untargeted metabolomic analysis of leaf tissue was performed by GC–MS, while targeted metabolite profiling was carried out by HPLC (polyamines) and UPLC-MS/MS (phenolics) at both the pegging and pod filling stages. Untargeted metabolomic profiling revealed exclusive expression/induction of beta-d-galactofuranoside, l-threonine, hexopyranose, d-glucopyranose, stearic acid, 4-ketoglucose, d-gulose, 2-o-glycerol-alpha-d-galactopyranoside and serine in ICGS44 during the pegging stage under high-temperature conditions. During the pod filling stage at higher temperature, alpha-d-galactoside, dodecanedioic acid, 1-nonadecene, 1-tetradecene and beta-d-galactofuranose were found to be higher in both ICGS44 and GG7. Moreover, almost all the metabolites detected by GC–MS were found to be higher in GG7, except beta-d-galactopyranoside, beta-d-glucopyranose, inositol and palmitic acid. Accumulation of putrescine was observed to be higher during low-temperature stress, while agmatine showed constitutive expression in all the genotypes, irrespective of temperature regime and crop growth stage. Interestingly, spermidine was observed only in the high-temperature tolerant genotype ICGS44. In our study, we found a higher accumulation of cinnamic acid, caffeic acid, salicylic acid and vanillic acid in ICGS44 compared to that of other genotypes at the pegging stage, whereas catechin and epicatechin were found during the pod filling stage in response to high-temperature stress, suggesting their probable roles in heat-stress tolerance in groundnut.  相似文献   

17.
d-galactose was incompletely methylated with methyl sulphate and sodium hydroxide, and two trimethylgalactoses were chromatographically separated from the products. Gas-liquid chromatographic examination, periodate oxidation and melting points of them or their suitable derivatives showed that one of them was 2,3,6-tri-O-methyl d-galactose, and the other was presumed to be 2,4,6-tri-O-methyl d-galactose, For confirmation of 2,3,6- tri-O-methyl d-galactose, 2,3-di-O-methyl l-threose and its aldonophenylhydrazide were prepared from 2,3-di-O-methyl l-arabinose as authentic sample.  相似文献   

18.
Uptake of monosaccharides by guinea-pig cerebral-cortex slices   总被引:1,自引:1,他引:0       下载免费PDF全文
By the use of 1mm-iodoacetate to inhibit glycolysis in guinea-pig cerebral tissue slices, the kinetics of the uptake of monosaccharides on transfer of tissue from 0° to 37° were studied. d-Ribose, d-galactose, d-mannose, l-sorbose, and d-fructose showed diffusion kinetics, whereas 2-deoxy-d-glucose, d-glucose, d-arabinose and d-xylose showed saturation kinetics.  相似文献   

19.
As an important feedstock monomer for the production of biodegradable stereo-complex poly-lactic acid polymer, d-lactate has attracted much attention. To improve d-lactate production by microorganisms such as Lactobacillus delbrueckii, various fermentation conditions were performed, such as the employment of anaerobic fermentation, the utilization of more suitable neutralizing agents, and exploitation of alternative nitrogen sources. The highest d-lactate titer could reach 133 g/L under the optimally combined fermentation condition, increased by 70.5% compared with the control. To decipher the potential mechanisms of d-lactate overproduction, the time-series response of intracellular metabolism to different fermentation conditions was investigated by GC–MS and LC–MS/MS-based metabolomic analysis. Then the metabolomic datasets were subjected to weighted correlation network analysis (WGCNA), and nine distinct metabolic modules and eight hub metabolites were identified to be specifically associated with d-lactate production. Moreover, a quantitative iTRAQ–LC–MS/MS proteomic approach was employed to further analyze the change of intracellular metabolism under the combined fermentation condition, identifying 97 up-regulated and 42 down-regulated proteins compared with the control. The in-depth analysis elucidated how the key factors exerted influence on d-lactate biosynthesis. The results revealed that glycolysis and pentose phosphate pathways, transport of glucose, amino acids and peptides, amino acid metabolism, peptide hydrolysis, synthesis of nucleotides and proteins, and cell division were all strengthened, while ATP consumption for exporting proton, cell damage, metabolic burden caused by stress response, and bypass of pyruvate were decreased under the combined condition. These might be the main reasons for significantly improved d-lactate production. These findings provide the first omics view of cell growth and d-lactate overproduction in L. delbrueckii, which can be a theoretical basis for further improving the production of d-lactate.  相似文献   

20.
In order to investigate chemical evolution in interstellar molecular clouds, enantiomer-selective photo-induced chemical reactions between an amino acid and disaccharides in the gas phase were examined using a tandem mass spectrometer containing an electrospray ionization source and a cold ion trap. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of protonated tryptophan (Trp) enantiomers with disaccharides consisting of two d-glucose units, such as d-maltose or d-cellobiose, were obtained by photoexcitation of the indole ring of Trp. NH2CHCOOH loss via cleavage of the Cα–Cβ bond in Trp induced by hydrogen atom transfer from the NH3 + group of a protonated Trp was observed in a noncovalent heterochiral H+(l-Trp)(d-maltose) complex. In contrast, a photo-induced chemical reaction forming the product ion with m/z 282 occurs in homochiral H+(d-Trp)(d-maltose). For d-cellobiose, both NH2CHCOOH elimination and the m/z 282 product ion were observed, and no enantiomer-selective phenomena occurred. The m/z 282 product ion indicates that the photo-induced C-glycosylation, which links d-glucose residues to the indole moiety of Trp via a C–C bond, can occur in cold gas-phase noncovalent complexes, and its enantiomer-selectivity depends on the structure of the disaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号