首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adipose-derived stem cells are an attractive alternative as a source of stem cells that can easily be extracted from adipose tissue. Isolation, characterization, and multi-lineage differentiation of adipose-derived stem cells have been described for human and a number of other species. Here we aimed to isolate and characterize camel adipose-derived stromal cell frequency and growth characteristics and assess their adipogenic, osteogenic, and chondrogenic differentiation potential. Samples were obtained from five adult dromedary camels. Fat from abdominal deposits were obtained from each camel and adipose-derived stem cells were isolated by enzymatic digestion as previously reported elsewhere for adipose tissue. Cultures were kept until confluency and subsequently were subjected to differentiation protocols to evaluate adipogenic, osteogenic, and chondrogenic potential. The morphology of resultant camel adipose-derived stem cells appeared to be spindle-shaped fibroblastic morphology, and these cells retained their biological properties during in vitro expansion with no sign of abnormality in karyotype. Under inductive conditions, primary adipose-derived stem cells maintained their lineage differentiation potential into adipogenic, osteogenic, and chondrogenic lineages during subsequent passages. Our observation showed that like human lipoaspirate, camel adipose tissue also contain multi-potent cells and may represent an important stem cell source both for veterinary cell therapy and preclinical studies as well.  相似文献   

2.
Adipose-derived stem cells are multipotent cells that can easily be extracted from adipose tissue, are capable of expansion in vitro, and have the capacity to differentiate into multiple cell lineages, which have the potential for use in regenerative medicine. However, several issues need to be studied to determine safe human use. For example, there are questions related to isolation and purification of adipose-derived stem cells, their effect on tumor growth, and the enforcement of U.S. Food and Drug Administration regulations. Numerous studies have been published, with the interest in the potential for regenerative medicine continually growing. Several clinical trials using human adipose stem cell therapy are currently being performed around the world, and there has been a rapid evolution and expansion of their number. The purpose of this article was to review the current published basic science evidence and ongoing clinical trials involving the use of adipose-derived stem cells in plastic surgery and in regenerative medicine in general. The results of the studies and clinical trials using adipose-derived stem cells reported in this review seem to be promising not only in plastic surgery but also in a wide variety of other specialties. Nevertheless, those reported showed disparity in the way adipose-derived stem cells were used. Further basic science experimental studies with standardized protocols and larger randomized trials need to be performed to ensure safety and efficacy of adipose-derived stem cells use in accordance with U.S. Food and Drug Administration guidelines.  相似文献   

3.
Adipose tissue contains some populations, adipose-derived stem cells (ADSCs) which can differentiate into adipogenic, chondrogenic, osteogenic, myogenic, and endothelial cells. Furthermore, adipose tissue can be easily obtained in large quantities through a simple liposuction. ADSCs are thought to be an alternate source of autologous adult stem cells for cell-based therapy. However, it is time-consuming and inefficient to harvest ADSCs by using a traditional collagenase-digestion method. To meet the demand of large quantities of ADSCs in the basic and applied research of regenerative medicine, we developed a rapid and efficient method for isolation and culture of primary ADSCs. The results indicated that the ADSCs obtained with our method possessed strong abilities of proliferation and colony formation in vitro, and could keep low level of cell senescence with stable population doubling during long-term culture in vitro. Furthermore, these harvested ADSCs were capable to differentiate into osteogenic and adipogenic lineages in the specific induction medium. In addition, the results of flow cytometry analysis indicated that these ADSCs could positively express multiple CD markers, such as CD44, CD105, CD29, CD90, and CD13, and hardly expressed CD31, CD34, CD45, and CD106, which was homologous to the mesenchymal stem cells. Therefore, the ADSCs isolated with our method are consistent with previously reported characteristics of the ADSCs. This new method that we established in this study is an efficient tool to isolate and culture the stem cells from adipose tissue.  相似文献   

4.
Tissue engineering (TE) of long tracheal segments is conceptually appealing for patients with inoperable tracheal pathology. In tracheal TE, stem cells isolated from bone marrow or adipose tissue have been employed, but the ideal cell source has yet to be determined. When considering the origin of stem cells, cells isolated from a source embryonically related to the trachea may be more similar. In this study, we investigated the feasibility of isolating progenitor cells from pleura and pericard as an alternative cells source for tracheal tissue engineering. Porcine progenitor cells were isolated from pleura, pericard, trachea and adipose tissue and expanded in culture. Isolated cells were characterized by PCR, RNA sequencing, differentiation assays and cell survival assays and were compared to trachea and adipose-derived progenitor cells. Progenitor-like cells were successfully isolated and expanded from pericard and pleura as indicated by gene expression and functional analyses. Gene expression analysis and RNA sequencing showed a stem cell signature indicating multipotency, albeit that subtle differences between different cell sources were visible. Functional analysis revealed that these cells were able to differentiate towards chondrogenic, osteogenic and adipogenic lineages. Isolation of progenitor cells from pericard and pleura with stem cell features is feasible. Although functional differences with adipose-derived stem cells were limited, based on their gene expression, pericard- and pleura-derived stem cells may represent a superior autologous cell source for cell seeding in tracheal tissue engineering.  相似文献   

5.
Recent evidence suggests that cells with the properties of human mesenchymal stem cells (hMSCs) can be derived from adult peripheral tissues, including adipose tissue, muscle and dermis. We isolated hMSCs from the stromal-vascular portion of subcutaneous adipose tissue from seven adult subjects. These cells could be readily differentiated into cells of the chondrocyte, osteocyte and adipocyte lineage demonstrating their multipotency. We studied the functional properties of hMSCs-derived adipocytes and compared them with adipocytes differentiated from hMSCs obtained from bone marrow (BM-hMSC). The two cell types displayed similar lipolytic capacity upon stimulation with catecholamines, including a pronounced antilipolytic effect mediated through alpha2A-adrenoceptors, a typical trait in human but not rodent fat cells. Furthermore, both cell types secreted the fat cell-specific factors leptin and adiponectin in comparable amounts per time unit. The fat tissue-derived hMSCs retained their differentiation capacity up to at least fifteen passages. We conclude that hMSCs derived from adult human adipose tissue can be differentiated into fully functional adipocytes with a similar, if not identical, phenotype as that observed in cells derived from BM-hMSCs. Human adipose-tissue-derived MSCs could therefore constitute an efficient and easily obtainable renewable cellular source for studies of adipocyte biology.  相似文献   

6.
We compared the two sources of adipose and bone marrow-derived mesenchymal stem cells (BMSCs and AMSCs ) in multiple differentiation capacity and biological characteristics to provide a theoretical basis for stem cells transplantation. We isolated bone marrow- and adipose-derived mesenchymal stem cells and compared their phenotype,cell doubling time, the secretion of factors and their ability of multi-differentiation. We also compared their differences in T lymphocyte activation, proliferation and suppression. BMSCs and AMSCs were similar in cell phenotype and the differences existed only in the expression of CD106. On the proliferation rate, AMSCs were faster than BMSCs (doubling time 28 vs. 39?h). In addition, both of these two sources of cells were able to differentiate into bone, fat and cartilage that proved their stem cells properties and the number of stem cell progenitors (CFU-F) from adipose tissue were 10 times larger than those from bone marrow. But AMSCs showed a diminished capacity for suppressing T lymphocyte proliferation and activation compared to BMSCs. Cell origin and abundance were decisive factors in stem cells applications and, in the same volume, with the same premise of AMSCs and BMSCs, adipose tissue is a more promising source of stem cells.  相似文献   

7.
Adipose-derived stem cells: isolation, expansion and differentiation   总被引:1,自引:0,他引:1  
The emerging field of regenerative medicine will require a reliable source of stem cells in addition to biomaterial scaffolds and cytokine growth factors. Adipose tissue has proven to serve as an abundant, accessible and rich source of adult stem cells with multipotent properties suitable for tissue engineering and regenerative medical applications. There has been increased interest in adipose-derived stem cells (ASCs) for tissue engineering applications. Here, methods for the isolation, expansion and differentiation of ASCs are presented and described in detail. While this article has focused on the isolation of ASCs from human adipose tissue, the procedure can be applied to adipose tissues from other species with minimal modifications.  相似文献   

8.
This is a review of the growing scientific interest in the developmental plasticity and therapeutic potential of stromal cells isolated from adipose tissue. Adipose-derived stem/stromal cells (ASCs) are multipotent somatic stem cells that are abundant in fat tissue. It has been shown that ASCs can differentiate into several lineages, including adipose cells, chondrocytes, osteoblasts, neuronal cells, endothelial cells, and cardiomyocytes. At the same time, adipose tissue can be harvested by a minimally invasive procedure, which makes it a promising source of adult stem cells. Therefore, it is believed that ASCs may become an alternative to the currently available adult stem cells (e.g. bone marrow stromal cells) for potential use in regenerative medicine. In this review, we present the basic information about the field of adipose-derived stem cells and their potential use in various applications.  相似文献   

9.

Background  

Multipotent stem cells exist within adipose tissue throughout life. An abnormal recruitment of these adipose precursor cells could participate to hyperplasia of adipose tissue observed in severe obesity or to hypoplasia of adipose tissue observed in lipodystrophy. Therefore, pharmacological molecules that control the pool of stem cells in adipose tissue are of great interest. Glycogen Synthase Kinase (GSK) 3 has been previously described as involved in differentiation of preadipose cells and might be a potential therapeutic target to modulate proliferation and differentiation of adipocyte precursors. However, the impact of GSK3 inhibition on human adipose-derived stem cells remained to be investigated. The aim of this study was to investigate GSK3 as a possible target for pharmacological inhibition of stem cell adipogenesis. To reach this goal, we studied the effects of pharmacological inhibitors of GSK3, i.e. lithium chloride (LiCl) and BIO on proliferation and adipocyte differentiation of multipotent stem cells derived from human adipose tissue.  相似文献   

10.

Background  

It is well established that adipose tissue plays a key role in energy storage and release but is also a secretory organ and a source of stem cells. Among different lineages, stem cells are able to differentiate into adipocytes and osteoblasts. As secreted proteins could regulate the balance between both lineages, we aimed at characterizing the secretome of human multipotent adipose-derived stem cell (hMADS) at an early step of commitment to adipocytes and osteoblasts.  相似文献   

11.
Background: Mesenchymal stem cells are able to undergo adipogenic differentiation and present a possible alternative cell source for regeneration and replacement of adipose tissue. The human infrapatellar fat pad is a promising source of mesenchymal stem cells with many source advantages over from bone marrow. It is important to determine whether a potential mesenchymal stem‐cell exhibits tri‐lineage differentiation potential and is able to maintain its proliferation potential and cell‐surface characterization on expansion in tissue culture. We have previously shown that mesenchymal stem cells derived from the fat pad can undergo chondrogenic and osteogenic differentiation, and we characterized these cells at early passage. In the study described here, proliferation potential and characterization of fat pad‐derived mesenchymal stem cells were assessed at higher passages, and cells were allowed to undergo adipogenic differentiation. Materials and methods: Infrapatellar fat pad tissue was obtained from six patients undergoing total knee replacement. Cells isolated were expanded to passage 18 and proliferation rates were measured. Passage 10 and 18 cells were characterized for cell‐surface epitopes using a range of markers. Passage 2 cells were allowed to undergo differentiation in adipogenic medium. Results: The cells maintained their population doubling rates up to passage 18. Cells at passage 10 and passage 18 had cell‐surface epitope expression similar to other mesenchymal stem cells previously described. By staining it was revealed that they highly expressed CD13, CD29, CD44, CD90 and CD105, and did not express CD34 or CD56, they were also negative for LNGFR and STRO1. 3G5 positive cells were noted in cells from both passages. These fat pad‐derived cells had adipogenic differentiation when assessed using gene expression for peroxisome proliferator‐activated receptor γ2 and lipoprotein lipase, and oil red O staining. Discussion: These results indicate that the cells maintained their proliferation rate, and continued expressing mesenchymal stem‐cell markers and pericyte marker 3G5 at late passages. These results also show that the cells were capable of adipogenic differentiation and thus could be a promising source for regeneration and replacement of adipose tissue in reconstructive surgery.  相似文献   

12.
The stromal-vascular cell fraction (SVF) of adipose tissue can be an abundant source of both multipotent and pluripotent stem cells, known as adipose-derived stem cells or adipose tissue-derived stromal cells (ADSCs). The SVF also contains vascular cells, targeted progenitor cells, and preadipocytes. Stromal cells isolated from adipose tissue express common surface antigens, show the ability to adhere to plastic, and produce forms that resemble fibroblasts. They are characterized by a high proliferation potential and the ability to differentiate into cells of meso-, ecto- and endodermal origin. Although stem cells obtained from an adult organism have smaller capabilities for differentiation in comparison to embryonic and induced pluripotent stem cells (iPSs), the cost of obtaining them is significantly lower. The 40 years of research that mainly focused on the potential of bone marrow stem cells (BMSCs) revealed a number of negative factors: the painful sampling procedure, frequent complications, and small cell yield. The number of stem cells in adipose tissue is relatively large, and obtaining them is less invasive. Sampling through simple procedures such as liposuction performed under local anesthesia is less painful, ensuring patient comfort. The isolated cells are easily grown in culture, and they retain their properties over many passages. That is why adipose tissue has recently been treated as an attractive alternative source of stem cells. Essential aspects of ADSC biology and their use in regenerative medicine will be analyzed in this article.  相似文献   

13.
Huang JI  Beanes SR  Zhu M  Lorenz HP  Hedrick MH  Benhaim P 《Plastic and reconstructive surgery》2002,109(3):1033-41; discussion 1042-3
Human liposuction aspirates contain pluripotent adipose-derived mesodermal stem cells that have previously been shown to differentiate into various mesodermal cell types, including osteoblasts and chondrocytes. To develop an autologous research model of bone and cartilage tissue engineering, the authors sought to determine whether rat inguinal fat pads contain a similar population of osteochondrogenic precursor cells. It was hypothesized that the rat inguinal fat pad contains adipose-derived multipotential cells that resemble human adipose-derived mesodermal stem cells in their osteochondrogenic capacity. To test this, the authors assessed the ability of cells isolated from the rat inguinal fat pad to differentiate into osteoblasts and chondrocytes by a variety of lineage-specific histologic stains.Rat inguinal fat pads were isolated and processed from Sprague-Dawley rats into a fibroblast-like cell population. Cell cultures were placed in pro-osteogenic media containing dexamethasone, ascorbic acid, and beta-glycerol phosphate. Osteogenic differentiation was assessed at 2, 4, and 6 weeks. Alkaline phosphatase activity and von Kossa staining were performed to assess osteoblastic differentiation and the production of a calcified extracellular matrix. Cell cultures were also placed in prochondrogenic conditions and media supplemented with transforming growth factor-beta1, insulin, transferrin, and ascorbic acid. Chondrogenic differentiation was assessed at 2, 7, and 14 days by the presence of positive Alcian blue staining and type II collagen immunohistochemistry. Cells placed in osteogenic conditions changed in structure to a more cuboidal shape, formed bone nodules, stained positively for alkaline phosphatase activity, and secreted calcified extracellular matrix by 2 weeks. Cells placed in chondrogenic conditions formed cartilaginous nodules within 48 hours that stained positively for Alcian blue and type II collagen. The authors identified the rat inguinal fat pad as a source of osteochondrogenic precursors and developed a straightforward technique to isolate osteochondrogenic precursors from a small animal source. This relatively easily obtained source of osteochondrogenic cells from the rat may be useful for study of tissue engineering strategies and the basic science of stem cell biology.  相似文献   

14.
Adipose tissue is an abundantly available source of proliferative and multipotent mesenchymal stem cells with promising potential for regenerative therapeutics. We previously demonstrated that both human and mouse adipose-derived stem cells (ASCs) can be reprogrammed into induced pluripotent stem cells (iPSCs) with efficiencies higher than those that have been reported for other cell types. The ASC-derived iPSCs can be generated in a feeder-independent manner, representing a unique model to study reprogramming and an important step toward establishing a safe, clinical grade of cells for therapeutic use. In this study, we provide a detailed protocol for isolation, preparation and transformation of ASCs from fat tissue into mouse iPSCs in feeder-free conditions and human iPSCs using feeder-dependent or feeder/xenobiotic-free processes. This protocol also describes how ASCs can be used as feeder cells for maintenance of other pluripotent stem cells. ASC derivation is rapid and can be completed in <1 week, with mouse and human iPS reprogramming times averaging 1.5 and 2.5 weeks, respectively.  相似文献   

15.
White adipose tissue (WAT) represents a large amount of all adult tissues. For a long time, it was considered as a poorly active, overgrown and undesirable tissue. It was mainly studied for its involvement in energy metabolism and disorders, as well as for its endocrine functions. WAT is composed of two main populations, matures adipocytes and stroma vascular fraction (SVF) that can be separated easily. The SVF contains two compartments, stromal and hematopoietic that have been recently characterized. The stromal population (or ADAS for Adipose Derived Stromal Cells) presents functional features of, as well as lineage relationship with, macrophages. These stromal cells, that are able to differentiate into adipocytes, also display endothelial potential, and could be considered as vascular progenitors. Differentiation of various adipose-derived cell subsets towards functional cardiomyocytes, osteoblasts, chondrocytes, muscle, hematopoietic and neural cells was also obtained in vitro or in vivo. Adipose tissue thus appears as a complex tissue composed of different cell subsets that could vary according to the nature and the location of fat pads, or to the physiological or pathological status. WAT appears as a very plastic and heterogeneous tissue that is very easy to sample. This represents a great advantage when considering adipose tissue as a potential and suitable source of stem cell for cell therapy. Further investigations in this way have to lead to the emergence of new insights fundamental to progress in our knowledge of adipose tissue biology.  相似文献   

16.
脂肪干细胞(adipose-derived stem cells,ADSCs)是从脂肪组织中分离得到的一种具有多元分化潜能的干细胞,且脂肪组织在人体内的储量丰富,取材简单。因此,人源脂肪干细胞(human adipose-derived stem cells,hADSCs)具有良好的应用前景,如干细胞治疗、再生以及药物研发等。然而,要将这些基础研究成果应用于临床,必须通过临床前的安全性、可行性和潜在的风险评估。而在实验动物中,猪与人类在解剖学、遗传学和生理学上非常相似,因此猪脂肪干细胞(porcine adiposederived stem cells,pADSCs)的相关研究对人脂肪干细胞走向临床应用具有重要的理论及实践意义。基于猪脂肪干细胞的重要作用,本文综述了猪脂肪干细胞的分离、培养、免疫表型、分化能力及应用前景。  相似文献   

17.
Adipose tissue is a source of adult multipotent stem cells that can differentiate along mesenchymal lineage. When mature fat cells obtained from human subcutaneous adipose tissue were maintained with attachment to the ceiling surface of culture flasks filled with medium, two fibroblastic cell populations appeared at the ceiling and the bottom surface. Both populations were positive to CD13, CD90, and CD105, moderately positive to CD9, CD166, and CD54, negative to CD31. CD34, CD66b, CD106, and CD117, exhibited potential of unlimited proliferation, and differentiated along mesenchymal lineage to produce adipocytes, osteoblasts, and chondrocytes. The population that appeared at the ceiling surface showed higher potential of adipogenic differentiation. These observations showed that the cells tightly attached to mature fat cells can generate two fibroblastic cell populations with multiple but distinct potential of differentiation. Since enough number of both populations for clinical transplantation can be easily obtained by maintaining fat cells from a small amount of subcutaneous adipose tissue, this method has an advantage in preparing autologous cells for patients needing repair of damaged tissues by reconstructive therapy.  相似文献   

18.
Decellularized human extracellular matrices (ECMs) are an extremely appealing biomaterial for tissue engineering and regenerative medicine. In this study, we decellularized human adipose tissue, fabricated a thin ECM sheet and explored the potential of this human adipose-derived ECM sheet as a substrate to support the formation of tissues other than adipose tissue. Acellular ECM sheets were fabricated from human adipose tissue through successive physical and chemical treatments: homogenization, centrifugation, casting, freeze-drying and sodium dodecyl sulfate treatment. The ECM sheets exhibited good mechanical properties, despite their porous structure. They degraded quickly in the presence of collagenase and the degradation rate increased with the collagenase concentration in phosphate-buffered saline. Five different human cell types, covering a broad range of cells and applications (normal human dermal fibroblasts, human aortic smooth muscle cells, human chondrocytes, human umbilical vein endothelial cells and human adipose-derived stem cells), were seeded onto the ECM sheets. All the human cell types spread well, proliferated and were successfully integrated into the decellularized ECM sheet. Overall, the results suggest that recellularized ECM sheets are a promising substitute for defective or damaged human tissues.  相似文献   

19.
The human adipose tissue is a source of multipotent stem cells   总被引:36,自引:0,他引:36  
Multipotent stem cells constitute an unlimited source of differentiated cells that could be used in pharmacological studies and in medicine. Recently, several publications have reported that adipose tissue contains a population of cells able to differentiate into different cell types including adipocytes, osteoblasts, myoblasts, and chondroblasts. More recently, stem cells with a multi-lineage potential at the single cell level have been isolated from human adipose tissue. These cells, called human Multipotent Adipose-Derived Stem (hMADS) cells, have been established in culture and interestingly, maintain their characteristics with long-term passaging. The adipocyte differentiation of hMADS cells has been thoroughly studied and differentiated cells exhibit the unique feature of human adipocytes. Finally, potential applications of stem cells isolated from adipose tissue in medicine will be discussed.  相似文献   

20.
The osmic acid fixation-Coulter electronic counter method described for determining adipose cell size and number in intact adipose tissue fragments has been modified for use with suspensions of isolated rat and human adipose cells. Mean cell sizes in tissue fragments and isolated cell suspensions prepared from the same tissue are virtually identical in rats of various weights. No statistically significant difference in mean adipose cell size between tissue and isolated cell suspension was observed in human adipose tissue although the variability was much greater than in rat tissue. The distribution of cell sizes among replicate samples is more uniform in the isolated cell preparations, possibly reflecting the considerably larger quantities of tissue used in preparing isolated cells than in determining cell size and number directly from tissue fragments. An example of the utility of the modified method during routine metabolic studies with isolated rat epididymal adipose cells is described; isolated cells of increasing size can be obtained from rats of increasing body weight, or from the separated distal and proximal portions of the fat pads of rats of the same weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号