首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Gallbladder carcinoma (GBC) is a highly lethal malignancy of the gastrointestinal tract. Despite extensive research, the underlying molecular mechanism of GBC remains largely unclear. Deleted in malignant brain tumors 1 (DMBT1) is low-expression during cancer progression and as a potential tumor-suppressor gene in various types of cancer. However, its role in Gallbladder cancer remains poorly understood. Here, we found that DMBT1 was significantly low-expression and deletion of copy number in GBC tissues by qRT-PCR and Western blot. Overexpression of DMBT1 impaired survival, promoted apoptosis in GBC cells in vitro, and inhibited tumor progression in vivo. Further study of underlying mechanisms demonstrated that DMBT1 combined with PTEN which could stabilize PTEN protein, resulting in inhibiting the activation of PI3K/AKT signaling pathway. Our study revealed a new sight of DMBT1 as a tumor-suppressor gene on the PI3K/AKT pathway in GBC, which may be a potential therapeutic target for improving treatment.  相似文献   

2.
3.
Proliferation is one of the significant hallmarks of gallbladder cancer, which is a relatively rare but fatal malignance. Aim of this study was to examine the biological impact and molecular mechanism of the candidate hub-gene on the proliferation and tumorigenesis of gallbladder cancer. We analyzed the differentially expressed genes and the correlation between these genes with MKI67, and showed that KIF11 is one of the major upregulated regulators of proliferation in gallbladder cancer (GBC). The Gene Ontology, Gene Sets Enrichment Analysis and KEGG Pathway analysis indicated that KIF11 may promote GBC cell proliferation through the ERBB2/PI3K/AKT signaling pathway. Gain-of-function and loss-of-function assay demonstrated that KIF11 regulated GBC cell cycle and cancer cell proliferation in vitro. GBC cells exhibited G2M phase cell cycle arrest, cell proliferation and clone formation ability reduction after treatment with Monastrol, a specific inhibitor of KIF11. Xenograft model showed that KIF11 promotes GBC growth in vivo. Rescue experiments showed that KIF11-induced GBC cell proliferation dependented on ERBB2/PI3K/AKT pathway. Moreover, we found that H3K27ac signals are enriched among the promoter region of KIF11 in the UCSC Genome Browser Database. Differentially expressed analysis showed that EP300, a major histone acetyltransferase modifying H3K27ac signal, is highly expressed in gallbladder cancer and correlation analysis illustrated that EP300 is positively related with KIF11 in almost all the cancer types. We further found that KIF11 was significantly downregulated in a dose-dependent and time-dependent manner after histone acetylation inhibitor treatment. The present results highlight that high KIF11 expression promotes GBC cell proliferation through the ERBB2/PI3K/AKT signaling pathway. The findings may help deepen our understanding of mechanism underlying GBC cancer development and development of novel diagnostic and therapeutic target.  相似文献   

4.
Fang J  Ding M  Yang L  Liu LZ  Jiang BH 《Cellular signalling》2007,19(12):2487-2497
PI3K pathway exerts its function through its downstream molecule AKT in regulating various cell functions including cell proliferation, cell transformation, cell apoptosis, tumor growth and angiogenesis. PTEN is an inhibitor of PI3K, and its loss or mutation is common in human prostate cancer. But the direct role and mechanism of PI3K/PTEN signaling in regulating angiogenesis and tumor growth in vivo remain to be elucidated. In this study, by using chicken chorioallantoic membrane (CAM) and in nude mice models, we demonstrated that inhibition of PI3K activity by LY294002 decreased PC-3 cells-induced angiogenesis. Reconstitution of PTEN, the molecular inhibitor of PI3K in PC-3 cells inhibited angiogenesis and tumor growth. Immunohistochemical staining indicated that PTEN expression suppressed HIF-1, VEGF and PCNA expression in the tumor xenographs. Similarly, expression of AKT dominant negative mutant also inhibited angiogenesis and tumor growth, and decreased the expression of HIF-1 and VEGF in the tumor xenographs. These results suggest that inhibition of PI3K signaling pathway by PTEN inhibits tumor angiogenesis and tumor growth. In addition, we found that AKT is the downstream target of PI3K in controlling angiogenesis and tumor growth, and PTEN could inhibit angiogenesis by regulating the expression of HIF-1 and VEGF expression through AKT activation in PC-3 cells.  相似文献   

5.
Novel drugs are required for non-small cell lung cancer (NSCLC) treatment urgently. Repurposing old drugs as new treatments is a practicable approach with time and cost savings. Some studies have shown that carrimycin, a Chinese Food and Drug Administration (CFDA)-approved macrolide antibiotic, possesses potent anti-tumor effects against oral squamous cell carcinoma. However, its detailed component and underlying mechanisms in anti-NSCLC remain unknown. In our study, isovalerylspiramycin I (ISP-I) was isolated from carrimycin and demonstrated a remarkable anti-NSCLC efficacy in vitro and in vivo with a favorable safety profile. It has been proven that in NSCLC cell lines H460 and A549, ISP-I could induce G2/M arrest and apoptosis, which was mainly attributed to ROS accumulation and subsequently PI3K/AKT signaling pathway inhibition. Numerous downstream genes including mTOR and FOXOs were also changed correspondingly. An observation of NAC-induced reverse effect on ISP-I-leading cell death and PI3K/AKT pathway inhibition, emphasized the necessity of ROS signaling in this event. Moreover, we identified ROS accumulation and PI3K/AKT pathway inhibition in tumor xenograft models in vivo as well. Taken together, our study firstly reveals that ISP-I is a novel ROS inducer and may act as a promising candidate with multi-target and low biological toxicity for anti-NSCLC treatment.  相似文献   

6.
The current study was undertaken to investigate anticancer activity of coumestrol phytoestrogen against human skin cancer. MTT assay was performed for cell viability assessment and clonogenic assay for cell colony formation assessment. Apoptosis was analysed by Annexin V/FITC staining, AO/EB staining and western blotting assays. Effects on the m-TOR/PI3K/AKT signalling pathway were investigated by western blotting. Results indicated that coumestrol induced significant toxicity in human skin cancer cells in contrast to mouse skin cancer cells. The proliferation rate in normal skin cells remained almost intact. Annexin V-FITC and AO/EB staining assays indicated coumestrol induced cytotoxicity in skin cancer cells is mediated through apoptosis stimulation. The apoptosis in skin cancer cells was mediated through caspase-activation. Cell migration and invasion was inhibited by coumestrol in human skin cancer cells via inhibition of MMP-2 and MMP-9 expressions. Moreover, m-TOR/PI3K/AKT signalling pathway in SKEM-5 cells was blocked by coumestrol.  相似文献   

7.
 PTEN是一个重要的抑癌基因.为了调查PTEN在H2O2对细胞凋亡诱导过程中的作用及机制,采用Western 印迹方法,检测了在PTEN缺失细胞及对照细胞中H2O2对PI3K/AKT通路的影响;采用Annexin Ⅴ-FITC标记结合流式检测H2O2对PTEN缺失细胞及对照细胞凋亡的诱导.结果表明,在PTEN功能正常的对照细胞中,H2O2短时间活化,长时间抑制PI3K/AKT通路,但PTEN缺失后,H2O2对PI3K/AKT通路的介导被阻断;0.1mmol/L H2O2处理12 h及24 h可以诱导对照细胞的凋亡,但对PTEN缺失细胞没有明显影响.这一结果证明,PTEN通过参与H2O2对PI3K/AKT通路活性的调控影响H2O2介导的凋亡.  相似文献   

8.
Several natural products have been demonstrated to both enhance the anti-tumor efficacy and alleviate the side effects of conventional chemotherapy drugs. Rhein, a main constituent of the Chinese herb rhubarb, has been shown to induce apoptosis in various cancer types. However, the exact pharmacological mechanisms controlling the influence of Rhein on chemotherapy drug effects in pancreatic cancer (PC) remain largely undefined. In this study, we found that Rhein inhibited the growth and proliferation of PC cells through G1 phase cell cycle arrest. Moreover, Rhein induced caspase-dependent mitochondrial apoptosis of PC cells through inactivation of the PI3K/AKT pathway. Combination treatment of Rhein and oxaliplatin synergistically enhanced apoptosis of PC cells through increased generation of intracellular reactive oxygen species (ROS) and inactivation of the PI3K/AKT pathway. Pre-treatment with the ROS scavenger N-acetyl-L-cysteine attenuated the combined treatment-induced apoptosis and restored the level of phosphorylated AKT, indicating that ROS is an upstream regulator of the PI3K/AKT pathway. The combination therapy also exhibited stronger anti-tumor effects compared with single drug treatments in vivo. Taken together, these data demonstrate that Rhein can induce apoptosis and enhance the oxaliplatin sensitivity of PC cells, suggesting that Rhein may be an effective strategy to overcome drug resistance in the chemotherapeutic treatment of PC.  相似文献   

9.
目的探讨PI3K/AKT信号转导通路在大肠埃希菌(Escherichia coli,E.coli)诱导的人巨噬细胞系U937细胞凋亡中的作用。方法利用Western blot分析检测E.coli感染不同时间后磷酸化及非磷酸化AKT的表达;预先用不同浓度的LY294002(PI3K途径抑制剂)处理U937细胞60min,观察E.coli感染30min后U937细胞的凋亡情况。结果随着感染时间的延长,磷酸化AKT的表达逐渐下降。加入PI3K的抑制剂LY294002后,U937细胞的凋亡率逐渐升高。结论PI3K/AKT信号转导通路参与了E. coli诱导的U937细胞凋亡过程。LY294002通过特异性地抑制PI3K/AKT活性增加E.coli诱导的U937细胞凋亡率。  相似文献   

10.
Intervertebral disc degeneration (IDD) is induced by multiple factors including increased apoptosis, decreased survival, and reduced extracellular matrix (ECM) synthesis in the nucleus pulposus (NP) cells. The tumor suppressor phosphatase and tensin homolog deleted from chromosome 10 (PTEN) is the only known lipid phosphatase counteracting the PI3K/AKT pathway. Loss of PTEN leads to activated PI3K/AKT signaling, which plays a key role in a variety of cancers. However, the role of PTEN/PI3K/AKT signaling nexus in IDD remains unknown. Here, we report that PTEN is overexpressed in degenerative NP, which correlates with inactivated AKT. Using the PTEN knockdown approach by lentivirus‐mediated short interfering RNA gene transfer technique, we report that PTEN decreases survival but induces apoptosis and senescence of NP cells. PTEN also inhibits expression and production of ECM components including collagen II, aggrecan, and proteoglycan. Furthermore, PTEN modulates the expression of ECM regulatory molecules SOX‐9 and matrix metalloproteinase‐3 (MMP‐3). Using small‐molecule AKT inhibitor GDC‐0068, we confirm that PTEN regulates NP cell behaviors through its direct targeting of PI3K/AKT. These findings demonstrate for the first time that PTEN/PI3K/AKT signaling axis plays an important role in the pathogenesis of IDD. Targeting PTEN using gene therapy may represent a promising therapeutic approach against disc degenerative diseases.  相似文献   

11.
12.
Systems biology approaches that combine experimental data and theoretical modelling to understand cellular signalling network dynamics offer a useful platform to investigate the mechanisms of resistance to drug interventions and to identify combination drug treatments. Extending our work on modelling the PI3K/PTEN/AKT signalling network (SN), we analyse the sensitivity of the SN output signal, phospho-AKT, to inhibition of HER2 receptor. We model typical aberrations in this SN identified in cancer development and drug resistance: loss of PTEN activity, PI3K and AKT mutations, HER2 overexpression, and overproduction of GSK3β and CK2 kinases controlling PTEN phosphorylation. We show that HER2 inhibition by the monoclonal antibody pertuzumab increases SN sensitivity, both to external signals and to changes in kinetic parameters of the proteins and their expression levels induced by mutations in the SN. This increase in sensitivity arises from the transition of SN functioning from saturation to non-saturation mode in response to HER2 inhibition. PTEN loss or PIK3CA mutation causes resistance to anti-HER2 inhibitor and leads to the restoration of saturation mode in SN functioning with a consequent decrease in SN sensitivity. We suggest that a drug-induced increase in SN sensitivity to internal perturbations, and specifically mutations, causes SN fragility. In particular, the SN is vulnerable to mutations that compensate for drug action and this may result in a sensitivity-to-resistance transition. The combination of HER2 and PI3K inhibition does not sensitise the SN to internal perturbations (mutations) in the PI3K/PTEN/AKT pathway: this combination treatment provides both synergetic inhibition and may prevent the SN from acquired mutations causing drug resistance. Through combination inhibition treatments, we studied the impact of upstream and downstream interventions to suppress resistance to the HER2 inhibitor in the SN with PTEN loss. Comparison of experimental results of PI3K inhibition in the PTEN upstream pathway with PDK1 inhibition in the PTEN downstream pathway shows that upstream inhibition abrogates resistance to pertuzumab more effectively than downstream inhibition. This difference in inhibition effect arises from the compensatory mechanism of an activation loop induced in the downstream pathway by PTEN loss. We highlight that drug target identification for combination anti-cancer therapy needs to account for the mutation effects on the upstream and downstream pathways.  相似文献   

13.
Cancer being the leading cause of mortality has become a great threat worldwide. Current cancer therapeutics lack specificity and have side effects due to a lack of understanding of the molecular mechanisms and signalling pathways involved in carcinogenesis. In recent years, researchers have been focusing on several signalling pathways to pave the way for novel therapeutics. The PTEN/PI3K/AKT pathway is one of the important pathways involved in cell proliferation and apoptosis, leading to tumour growth. In addition, the PTEN/PI3K/AKT axis has several downstream pathways that could lead to tumour malignancy, metastasis and chemoresistance. On the other hand, microRNAs (miRNAs) are important regulators of various genes leading to disease pathogenesis. Hence studies of the role of miRNAs in regulating the PTEN/PI3K/AKT axis could lead to the development of novel therapeutics for cancer. Thus, in this review, we have focused on various miRNAs involved in the carcinogenesis of various cancer via the PTEN/PI3K/AKT axis.  相似文献   

14.
Cancer cells in which the PTEN lipid phosphatase gene is deleted have constitutively activated phosphatidylinositol 3-kinase (PI3K)-dependent signaling and require activation of this pathway for survival. In non-small cell lung cancer (NSCLC) cells, PI3K-dependent signaling is typically activated through mechanisms other than PTEN gene loss. The role of PI3K in the survival of cancer cells that express wild-type PTEN has not been defined. Here we provide evidence that H1299 NSCLC cells, which express wild-type PTEN, underwent proliferative arrest following treatment with an inhibitor of all isoforms of class I PI3K catalytic activity (LY294002) or overexpression of the PTEN lipid phosphatase. In contrast, overexpression of a dominant-negative mutant of the p85alpha regulatory subunit of PI3K (Deltap85) induced apoptosis. Whereas PTEN and Delta85 both inhibited activation of AKT/protein kinase B, only Deltap85 inhibited c-Jun NH2-terminal kinase (JNK) activity. Cotransfection of the constitutively active mutant Rac-1 (Val12), an upstream activator of JNK, abrogated Deltap85-induced lung cancer cell death, whereas constitutively active mutant mitogen-activated protein kinase kinase (MKK)-1 (R4F) did not. Furthermore, LY294002 induced apoptosis of MKK4-null but not wild-type mouse embryo fibroblasts. Therefore, we propose that, in the setting of wild-type PTEN, PI3K- and MKK4/JNK-dependent pathways cooperate to maintain cell survival.  相似文献   

15.
16.
Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL) cells are insensitive to BCR-ABL tyrosine kinase inhibitor imatinib, the underlying mechanisms remain largely unknown. Here, we showed that imatinib treatment induced significant upregulation of miR-21 and downregulation of PTEN in Ph+ ALL cell line Sup-b15. Transient inhibition of miR-21 resulted in increased apoptosis, PTEN upregulation and AKT dephosphorylation, whereas ectopic overexpression of miR-21 further conferred imatinib resistance. Furthermore, knockdown of PTEN protected the cells from imatinib-induced apoptosis achieved by inhibition of miR-21. Additionally, PI3K inhibitors also notably enhanced the effects of imatinib on Sup-b15 cells and primary Ph+ ALL cells similar to miR-21 inhibitor. Therefore, miR-21 contributes to imatinib resistance in Ph+ ALL cells and antagonizing miR-21 demonstrates therapeutic potential by sensitizing the malignancy to imatinib therapy.  相似文献   

17.
The signaling pathway of phosphatidylinositol 3-kinase (PI3K)/AKT, which is involved in cell survival, proliferation, and growth, has become a major focus in targeting cancer therapeutics. Nonsteroidal anti-inflammatory drug-activated gene (NAG-1) was previously identified as a gene induced by several anti-tumorigenic compounds including nonsteroidal anti-inflammatory drugs, peroxisome proliferator-activated receptor gamma ligands, and dietary compounds. NAG-1 has been shown to exhibit anti-tumorigenic and/or pro-apoptotic activities in vivo and in vitro. In this report, we showed a PI3K/AKT/glycogen synthase kinase-3beta (GSK-3beta) pathway regulates NAG-1 expression in human colorectal cancer cells as assessed by the inhibition of PI3K, AKT, and GSK-3beta. PI3K inhibition by LY294002 showed an increase in NAG-1 protein and mRNA expression, and 1l-6-hydroxymethyl-chiro-inositol 2(R)-2-O-methyl-3-O-octadecylcarbonate (AKT inhibitor) also induced NAG-1 expression. LY294002 caused increased apoptosis, cell cycle, and cell growth arrest in HCT-116 cells. Inhibition of GSK-3beta, which is negatively regulated by AKT, using AR-A014418 and lithium chloride completely abolished LY294002-induced NAG-1 expression as well as the NAG-1 promoter activity. Furthermore, the down-regulation of GSK-3 gene using small interference RNA resulted in a decline of the NAG-1 expression in the presence of LY294002. These data suggest that expression of NAG-1 is regulated by PI3K/AKT/GSK-3beta pathway in HCT-116 cells and may provide a further understanding of the important role of PI3K/AKT/GSK-3beta pathway in tumorigenesis.  相似文献   

18.
Diffuse intrinsic pontine glioma (DIPG) is a devastating disease with an extremely poor prognosis. Recent studies have shown that platelet-derived growth factor receptor (PDGFR) and its downstream effector pathway, PI3K/AKT/mTOR, are frequently amplified in DIPG, and potential therapies targeting this pathway have emerged. However, the addition of targeted single agents has not been found to improve clinical outcomes in DIPG, and targeting this pathway alone has produced insufficient clinical responses in multiple malignancies investigated, including lung, endometrial, and bladder cancers. Acquired resistance also seems inevitable. Activation of the Ras/Raf/MEK/ERK pathway, which shares many nodes of cross talk with the PI3K/AKT pathway, has been implicated in the development of resistance. In the present study, perifosine, a PI3K/AKT pathway inhibitor, and trametinib, a MEK inhibitor, were combined, and their therapeutic efficacy on DIPG cells was assessed. Growth delay assays were performed with each drug individually or in combination. Here, we show that dual inhibition of PI3K/AKT and MEK/ERK pathways synergistically reduced cell viability. We also reveal that trametinib induced AKT phosphorylation in DIPG cells that could not be effectively attenuated by the addition of perifosine, likely due to the activation of other compensatory mechanisms. The synergistic reduction in cell viability was through the pronounced induction of apoptosis, with some effect from cell cycle arrest. We conclude that the concurrent inhibition of the PI3K/AKT and MEK/ERK pathways may be a potential therapeutic strategy for DIPG.  相似文献   

19.
ATP citrate lyase (ACL) catalyzes the conversion of cytosolic citrate to acetyl-CoA and oxaloacetate. A definitive role for ACL in tumorigenesis has emerged from ACL RNAi and chemical inhibitor studies, showing that ACL inhibition limits tumor cell proliferation and survival and induces differentiation in vitro. In vivo, it reduces tumor growth leading to a cytostatic effect and induces differentiation. However, the underlying molecular mechanisms are poorly understood and agents that could enhance the efficacy of ACL inhibition have not been identified. Our studies focus on non-small cell lung cancer (NSCLC) lines, which show phosphatidylinositol 3-kinase (PI3K)/AKT activation secondary to a mutation in the K-Ras gene or the EGFR gene. Here we show that ACL knockdown promotes apoptosis and differentiation, leading to the inhibition of tumor growth in vivo. Moreover, in contrast to most studies, which elucidate how activation/suppression of signaling pathways can modify metabolism, we show that inhibition of a metabolic pathway "reverse signals" and attenuates PI3K/AKT signaling. Additionally, we find that statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which act downstream of ACL in the cholesterol synthesis pathway, dramatically enhance the anti-tumor effects of ACL inhibition, even regressing established tumors. With statin treatment, both PI3K/AKT and the MAPK pathways are affected. Moreover, this combined treatment is able to reduce the growth of EGF receptor resistant tumor cell types. Given the essential role of lipid synthesis in numerous cancers, this work may impact therapy in a broad range of tumors.  相似文献   

20.
Abstract

To investigate the effect of microRNA 21 (miR-21) on hepatic stellate cells (HSCs) proliferation and apoptosis, and further to study its potential mechanisms. LX-2 cells were divided into miR-21 mimic group (Mimic), miR-21 mimic negative control group (NM), miR-21 inhibitor group (Inhibitor), miR-21 inhibitor negative control group (NC), and blank control group (Control). The cell proliferation was detected by CCK-8 assay and the cell migration and invasion were detected by scratch and transwell assay. Cell cycle and apoptosis were detected by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β1 were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation, apoptosis, and phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway related genes and proteins were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. The cells proliferation, migration, and invasion were promoted in Mimic group. The levels of IL-6, TNF-α, and TGF-β1 were increased after miR-21 administration. The expression of α-smooth muscle actin (SMA) and collagen 1 (Colla1) were increased, while Bax/B-cell lymphoma (Bcl)-2 ratio and programed cell death 4 (PDCD4) were reduced after miR?21 treatment. Meanwhile, the mRNA and protein expression of PTEN were reduced and PI3K/AKT pathway been promoted. Our study demonstrated that miR-21 could promote proliferation and inhibit apoptosis of HSCs, and its mechanism may be related to PTEN/PI3K/AKT pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号