首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The process of tail regeneration in the tuatara (Sphenodon punctatus) is not entirely known. Similarity to and differences from lizard tail regenerations are indicated in the present histological and ultrastructural study. Regeneration is influenced by the animal's age and ambient temperature, but in comparison to that of lizards it is very slow and tends to produce outgrowths that do not reach the length of the original tail. Although microscopically similar to lizard blastemas, the mesenchyme rapidly gives rise to a dense connective tissue that contains few muscle bundles, nerves, and fat cells. The unsegmented cartilaginous tube forming the axial skeleton is not calcified after 5 months of regeneration, but calcification in the inner region of the cartilage, present after 10 months, increases thereafter. Amyelinic and myelinic peripheral nerves are seen within the regenerating tails of 2–3 mm in length and the spinal cord forms an ependymal tube inside a cartilaginous casing. Tissues of the original tail, like muscles, vertebrae and the adipose mass, are largely replaced by dense connective tissue that occupies most of the volume of the new tail at 5 and 10 months of regeneration. It is unknown whether the differentiation of the dense connective tissue is caused by the relatively low temperature that this species lives under or stems from a genetic predisposition toward scarring as with most other amniotes. Increases of muscle and adipose tissues seen in older regenerated tails derive from somatic growth of the new tail in the years following tail loss and not from a rapid regeneration process like that in lizards.  相似文献   

2.
It is well-known that some species of lizard have an exceptional ability known as caudal autotomy (voluntary self-amputation of the tail) as an anti-predation mechanism. After amputation occurs, they can regenerate their new tails in a few days. The new tail section is generally shorter than the original one and is composed of cartilage rather than vertebrae bone. In addition, the skin of the regenerated tail distinctly differs from its original appearance. We performed a proteomics analysis for extracts derived from regenerating lizard tail tissues after amputation and found that endoplasmin (ENPL) was the main factor among proteins up-regulated in expression during regeneration. Thus, we performed further experiments to determine whether ENPL could induce chondrogenesis of tonsil-derived mesenchymal stem cells (T-MSCs). In this study, we found that chondrogenic differentiation was associated with an increase of ENPL expression by ER stress. We also found that ENPL was involved in chondrogenic differentiation of T-MSCs by suppressing extracellular signal-regulated kinase (ERK) phosphorylation.  相似文献   

3.
To understand the mechanism of muscle remodeling during Xenopus laevis metamorphosis, we examined the in vitro effect of insulin-like growth factor 1 (IGF-1) on growth and differentiation of three different-fate myogenic cell populations: tadpole tail, tadpole dorsal, and young adult leg muscle. IGF-1 promoted growth and differentiation of both tail and leg myogenic cells only under conditions where these cells could proliferate. Inhibition of cell proliferation by DNA synthesis inhibitor cytosine arabinoside completely canceled the IGF-1’s cell differentiation promotion, suggesting the possibility that IGF-1’s differentiation-promotion effect is an indirect effect via IGF-1’s cell proliferation promotion. IGF-1 promoted differentiation dose dependently with maximum effect at 100–500 ng/ml. RT-PCR analysis revealed the upregulation (11-fold) of ifg1 mRNA expression in developing limbs, suggesting that IGF-1 plays a role in promoting muscle differentiation during limb development. The combined effect of triiodo-l-thyronine (T3) and IGF-1 was also examined. In adult leg cells, IGF-1 promoted growth and differentiation irrespective of the presence of T3. In larval tail cells, cell count was 76% lower in the presence of T3, and IGF-1 did not promote proliferation and differentiation in T3-containing medium. In larval dorsal cells, cell count was also lower in the presence of T3, but IGF-1 enhanced proliferation and differentiation in T3-containing medium. This result is likely due to the presence among dorsal cells of both adult and larval types (1:1). Thus, IGF-1 affects only adult-type myogenic cells in the presence of T3 and helps accelerate dorsal muscle remodeling during metamorphosis.  相似文献   

4.
5.
Caudal autotomy, or voluntary self-amputation of the tail, is a common and effective predator evasion mechanism used by most lizard species. The tail contributes to a multitude of biological functions such as locomotion, energetics, and social interactions, and thus there are often costs associated with autotomy. Notably, relatively little is known regarding bioenergetic costs of caudal autotomy in lizards, though key morphological differences exist between the original and regenerated tail that could alter the biochemistry and energetics. Therefore, we investigated lizard caudal biochemical content before and after regeneration in three gecko and one skink species. Specifically, we integrated biochemical and morphological analyses to quantify protein and lipid content in original and regenerated tails. All lizards lost significant body mass, mostly protein, due to autotomy and biochemical results indicated that original tails of all species contained a greater proportion of protein than lipid. Morphological analyses of two gecko species revealed interspecific differences in protein and lipid content of regenerated lizard tails. Results of this study contribute to our understanding of the biochemical consequences of a widespread predator evasion mechanism.  相似文献   

6.
《Zoology (Jena, Germany)》2015,118(3):183-191
The tail of many species of lizard is used as a site of fat storage, and caudal autotomy is a widespread phenomenon among lizards. This means that caudal fat stores are at risk of being lost if the tail is autotomized. For fat-tailed species, such as the leopard gecko, this may be particularly costly. Previous work has shown that tail regeneration in juveniles of this species is rapid and that it receives priority for energy allocation, even when dietary resources are markedly reduced. We found that the regenerated tails of juvenile leopard geckos are more massive than their original counterparts, regardless of dietary intake, and that they exhibit greater amounts of skeleton, inner fat, muscle and subcutaneous fat than original tails (as assessed through cross-sectional area measurements of positionally equivalent stations along the tail). Autotomy and regeneration result in changes in tail shape, mass and the pattern of tissue distribution within the tail. The regenerated tail exhibits enhanced fat storage capacity, even in the face of a diet that results in significant slowing of body growth. Body growth is thus sacrificed at the expense of rapid tail growth. Fat stores laid down rapidly in the regenerating tail may later be used to fuel body growth or reproductive investment. The regenerated tail thus seems to have adaptive roles of its own, and provides a potential vehicle for studying trade-offs that relate to life history strategy.  相似文献   

7.
This study examines the mechanism by which TGF-β1, an important mediator of cell growth and differentiation, blocks the differentiation of normal rat diploid fetal osteoblasts in vitro. We have established that the inability for pre-osteoblasts to differentiate is associated with changes in the expression of cell growth, matrix forming, and bone related genes. These include histone, jun B, c-fos, collagen, fibronectin, osteocalcin, alkaline phosphatase, and osteopontin. Morphologically, the TGF-β1-treated osteoblasts exhibit an elongated, spread shape as opposed to the characteristic cuboidal appearance during the early stages of growth. This is followed by a decrease in the number of bone nodules formed and the amount of calcium deposition. These effects on differentiation can occur without dramatic changes in cell growth if TGF-β1 is given for a short time early in the proliferative phase. However, continuous exposure to TGF-β1 leads to a bifunctional growth response from a negative effect during the proliferative phase to a positive growth effect during the later matrix maturation and mineralization phases of the osteoblast developmental sequence. Extracellular matrix genes, fibronectin, osteopontin and α1(I) collagen, are altered in their expression pattern which may provide an aberrant matrix environment for mineralization and osteoblast maturation and potentiate the TGF-β1 response throughout the course of osteoblast differentiation. The initiation of a TGF-β1 effect on cell growth and differentiation is restricted to the proliferative phase of the culture before the cells express the mature osteoblastic phenotype. Second passage cells that are accelerated to differentiate by the addition of dexamethasone or by seeding cultures at a high density are refractory to TGF-β1. These in vitro results indicate that TGF-β1 exerts irreversible effects at a specific stage of osteoblast phenotype development resulting in a potent inhibition of osteoblast differentiation at concentrations from 0.1 ng/ml. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Oxytocin is a neuropeptide widely expressed in the brain. Oxytocin plays a role in both proliferation and differentiation of various cells. Previous studies have suggested that oxytocin could affect the morphology of neuronal cells, therefore the objective of the present study was to test whether (1) oxytocin receptor stimulation/inhibition by specific ligands may change cell morphology and gene expression of selected cytoskeletal proteins (2) oxytocin receptor silencing/knockdown may decrease the length of cell projections (3) oxytocin receptor knockdown may affect human glioblastoma U-87MG cell survival. We confirmed the stimulatory effect of retinoic acid (10 µM) and oxytocin (1 µM) on projection growth. The combination of retinoic acid (10 µM) and oxytocin receptor antagonist (L-371,257, 1 µM) decreased projections length. Contrary to our assumptions, oxytocin receptor silencing did not prevent stimulation of length of projection by retinoic acid. Retinoic acid’s and oxytocin’s stimulation of projections length was significantly blunted in U-87MG cells with oxytocin receptor knockdown. Cell viability was significantly decreased in U-87MG cells with oxytocin receptor knockdown. Significantly higher levels of mRNA for cytoskeletal proteins drebrin and vimentin were observed in response to oxytocin incubation for 48 h. The data obtained in the present study clearly show that oxytocin induces formation and elongation of cell projections in astrocyte-like U-87MG cells. The effect is mediated by oxytocin receptors and it is accompanied by an increase in gene expression of drebrin and vimentin. Thus, oxytocin receptor signaling, particularly in the glial cells, may play an important role in native cell life, differentiation processes, and tumor progression, as well.  相似文献   

9.
10.
Summary Cellular DNA, milk protein content, and protein secretion by bovine mammary explants were compared to cultures of confluent and growing primary bovine mammary secretory cells over 4 d. Explants were obtained at slaughter from eight Holstein cows (120 ± 35 d lactation). Primary cells were grown to confluence, cryopreserved, thawed, and cultured through five passages. Explants and cells were cocultured with liver and adipose tissue in the presence of somatotropin, insulinlike growth factor-I, and somatotropin + insulinlike growth factor-I. Cellular DNA and milk proteins were assayed using fluorescent probes and flow cytometry. Media proteins were assayed by densitometer scanning of electrophoresis gel bands. DNA content of explant, confluent, and growing primary cells increased similarly through the 96 h incubation. DNA content in G0G1 phase was increased by: (a) insulinlike growth factor-I in explant cells; (b) somatotropin, insulinlike growth factor-I, and their combination in confluent primary cells; and (c) the combination of somatotropin and insulinlike growth factor in growing primary cells. Approximately 65% of explant and confluent primary cells were in the G0G1 or differentiated phase compared to 47% for the growing primary cells. Whey protein content and secretion were similar among cell types. Explant cells contained and secreted more β-casein than primary cells but secretion trends for β-casein and k-casein were similar after 48 h for both cell types. Results suggest that primary cell cultures are comparable to explant cultures when used to study mechanisms of DNA and milk protein synthesis and secretion.  相似文献   

11.
An in vitro system of isolated skin cells has been developed in order to address the understanding on the factors that control the shedding cycle and differentiation of lizard epidermis. The skin from the regenerating lizard tail has been separated in epidermis and dermis, cells have been dissociated, cultivated in vitro, and studied ultrastructurally after 1–30 days of culture condition. Dissociated keratinocytes after 12 days in culture show numerous cell elongations and contain bundles of keratin or sparse keratin filaments. These cells often contain one to three 0.5–3 μm large and dense “keratinaceous bodies”, an organelle representing tonofilament disassembling. Most keratinocytes have sparse tonofilaments in the cytoplasm and form shorter bundles of keratin in the cell periphery. The dissociated dermis mainly consists of mesenchymal cells containing sparse bundles of intermediate filaments. These cells proliferate and form multi-stratified layers and a dermal pellicle in about 2–3 weeks in vitro in our basic medium. Conversely, cultures of keratinocytes do not expand but eventually reduce to few viable cells within 2–3 weeks of in vitro condition. It is suggested that dermal cells sustain themselves through the production of growth factors but that epidermal cells requires specific growth factors still to be identified before setting-up an in vitro system that allows analyzing the control of the shedding cycle in lizards.  相似文献   

12.
Organ Culture of Foetal Rat Pancreas   总被引:1,自引:0,他引:1  
The differentiation and growth of the foetal rat pancreas (20 days postcoitum) was studied in parabiotic organ culture with foetal adrenal tissue. In such co-cultures, characteristic pancreatic morphology was preserved and further acinar cell differentiation was fostered. Acinar cells continued to represent about 65% of the total explant volume following short-term incubation. The selective islet cell proliferation, previously observed in control pancreatic explants cultured alone, did not occur when adrenals were co-cultured. In addition, the amylase content of the incubation media and of the explanted pancreatic tissue remained high with adrenal co-culture, while the insulin content of the media and of the explanted tissue was markedly suppressed when compared to control pancreatic explants cultured alone. The effects of the adrenal in maintaining the differentiated acinar component of the pancreas and suppressing media insulin concentration diminished over extended incubation. The addition of adrenals to culture of foetal pancreatic explants after 6 days of control culture (at a time when differentiated acinar cells were not identifiable in the explant) did not result in redifferentiation of the acinar component, but did markedly depress media insulin content. Removal of adrenals after 4 days of co-culture resulted in an immediate rise in media insulin concentration and a rapid decline in pancreatic acinar mass. An adrenal-exocrine pancreatic axis is proposed and it is suggested that foetal adrenal secretions may play an important role in the development of the exocrine pancreas in vivo as well as in vitro.  相似文献   

13.
Bipotential cells in human trabecular bone explant cultures that express osteoblast characteristics are able to undergo adipogenesis in the presence of 3-isobutyl-1-methylxanthine plus dexamethasone (Nuttall et al. [1998] J Bone Miner Res 13:371-382). The initial studies of these bipotential cells in explant cultures have been extended to examine differential gene expression during osteoblast/adipocyte transdifferentiation. Using differential display, we have identified a gene expressed in trabecular bone explant cultures that is downregulated as these cells differentiate from an osteoblast to an adipocyte phenotype. Homology searching identified this gene as the human urea transporter HUT11. The expression and downregulation of HUT11 have been observed in multiple patient bone explant cultures. The size of the bone explant-derived HUT11 mRNA is approximately 4.4 kb, which is identical to the largest splice variant reported. In this article, we report the cloning and sequencing of this gene from primary human osteoblasts. In addition, we report tissue distribution for the bone explant-derived form of HUT11 mRNA and show a reciprocal relationship between the expression of HUT11 and the nuclear hormone receptor peroxisome proliferator-activated receptor gamma 2, which is a marker of adipocyte differentiation. Because the control of osteoblast/adipocyte transdifferentiation is unknown, selective downregulation of HUT11 during adipogenesis suggests that HUT11 expression may be a marker of the switch from an osteoblast to an adipocyte phenotype. Understanding the role of HUT11 in osteoblasts may provide insights into the mechanism controlling osteoblast and adipocyte differentiation.  相似文献   

14.
15.
We studied the effects of BMP-7/OP-1 on growth and differentiation of bone marrow stromal cells. BMS2, a mouse bone marrow stromal cell line capable of differentiating into adipocytes and osteoblasts, were treated in a serum-free medium containing differentiation agents that favor the expression of both lineages. BMP-7/OP-1 stimulated cell proliferation and differentiation concomitantly. These effects were dose- and growth phase-dependent. Cells were more sensitive to the treatment early in the culture (30-40% confluence) with a significant increase in cell proliferation and markers of differentiation at low concentrations. When treated later in the growth phase (90-100% confluence), no significant increase in cell proliferation was seen. The concentration requirement for cells later in the culture to reach an equivalent degree of differentiation was 3-10- fold higher than for cells treated early. In both cases, the effects on adipocyte differentiation were biphasic; low concentrations stimulated adipocyte differentiation which was inhibited at higher concentrations where stimulation of osteoblast markers were observed. We conclude that cell proliferation and cell differentiation into adipocyte/osteoblast can occur simultaneously under BMP-7/OP-1 treatment.  相似文献   

16.
In rat osteoblast-like cells, a time-dependent sequence of growth and differentiation-dependent genes has been identified and a model of osteoblast differentiation in culture suggested. We investigated the expression of the bone matrix-associated proteins osteonectin and procollagen I and of the bone cell phenotype-related proteins alkaline phosphatase and osteocalcin during cell culture in primary human osteoblast like cells. Primary human explant cultures from nine young healthy donors were established under highly standardized conditions. Cells in the second passage were analyzed on different days from day 1 to 32, comparing cells growing under the influence of ascorbate with controls. Gene expression was determined by Northern blot analysis or polymerase chain reaction. Osteocalcin expression was also investigated after 1,25-(OH)(2)D(3) stimulation. On the protein level, newly synthesized collagen I, alkaline phosphatase activity, and secretion of osteocalcin were analyzed at all time points. On comparing our findings to the pattern of gene expression suggested for the rat calvarial osteoblast system, we found a similar developmental sequence for the so-called "proliferation" as well as a similar, but lengthened, sequence for the "matrix maturation stage." During "matrix maturation," we found an ongoing proliferation despite increased alkaline phosphatase and decreased procollagen I gene expression. Our study, therefore, shows that in pHOB the gene expression profile proceeded to the "matrix maturation stage," as defined by Owen and colleagues, independent of ongoing proliferation. We were unable to observe the mineralization period as demonstrated by the missing increase of osteocalcin expression and lack of nodule formation in our human osteoblast model. In contrast to the rat system, we found a proliferation stimulating influence of ascorbate, suggesting species-specific differences in response to differentiation factors. From these data, we conclude that general considerations on physiology and pathophysiology of bone cell differentiation have to be confirmed in the human osteoblastic cell system.  相似文献   

17.
18.
Although it has been established that cellular stiffness can change as a stem cell differentiates, the precise relationship between cell mechanics and other phenotypic properties remains unclear. Inherent cell heterogeneity and asynchronous differentiation complicate population analysis; therefore, single-cell analysis was employed to determine how changes in cell stiffness correlate with changes in molecular biomarkers during differentiation. Design of a custom gridded tissue culture dish facilitated single-cell comparisons between cell mechanics and other differentiation biomarkers by enabling sequential measurement of cell mechanics and protein biomarker expression at the single cell level. The Young’s modulus of mesenchymal stem cells was shown not only to decrease during chemically-induced osteoblast differentiation, but also to correlate more closely with the day of differentiation than did the relative expression of the traditional osteoblast differentiation markers, bone sialoprotein and osteocalcin. Therefore, cell stiffness, a measurable property of individual cells, may serve as an improved indicator of single-cell osteoblast differentiation compared to traditional biological markers. Revelation of additional osteoblast differentiation indicators, such as cell stiffness, can improve identification and collection of starting cell populations, with applications to mesenchymal stem cell therapies and stem cell-based tissue engineering.  相似文献   

19.
Summary A continuous line of epithelioid cells was established from explant skin tissues of the green sea turtle,Chelonia mydas. These cells, designated GTS, have been subcultured more than 60 times in commercially available mammalian cell culture medium supplemented with 5% bovine calf serum. Of those temperatures tested, optimal growth was achieved at 30°C although replication occurred between 16 and 37°C. These cells may be held as monolayers at 8°C or stored frozen in growth medium containing 10% dimethylsulfoxide at −70 or −196°C. The modal number of 55 chromosomes per cell is in agreement with the heterogametic female diploid number of this species. The GTS line represents the first established culture of normal epithelioid skin cells to be reported for a poikilothermic species.  相似文献   

20.
While androgens have important skeletal effects, the mechanism(s) of androgen action on bone remain unclear. Current osteoblast models to study androgen effects have several limitations, including the presence of heterogeneous cell populations. In this study, we examined the effects of androgens on the proliferation and differentiation of a novel human fetal osteoblastic cell line (hFOB/AR-6) that expresses a mature osteoblast phenotype and a physiological number (∼4,000/nucleus) of androgen receptors (AR). Treatment with 5α-dihydrotestosterone (5α-DHT) inhibited the proliferation of hFOB/AR-6 cells in a dose-dependent fashion, while it had no effect on the proliferation of hFOB cells, which express low levels of AR (<200/nucleus). In hFOB/AR-6 cells, co-treatment with the specific AR antagonist, hydroxyflutamide abolished 5α-DHT-induced growth inhibition. Steady-state levels of transforming growth factor-β1 (TGF-β1) and TGF-β-induced early gene (TIEG) mRNA decreased after treatment of hFOB/AR-6 cells with 5α-DHT, suggesting a role for the TGF-β1-TIEG pathway in mediating 5α-DHT-induced growth inhibition of hFOB/AR-6 cells. In support of this, co-treatment of hFOB/AR-6 cells with TGF-β1 (40 pg/ml) reversed the 5α-DHT-induced growth inhibition, whereas TGF-β1 alone at this dose had no effect on hFOB/AR-6 cell proliferation. Furthermore, treatment of hFOB/AR-6 cells with 5α-DHT and testosterone (10−8 M) inhibited basal and 1,25-(OH)2D3-induced alkaline phosphatase (ALP) activity and type I collagen synthesis without affecting osteocalcin production. Thus, in this fetal osteoblast cell line expressing a physiological number of AR, androgens decrease proliferation and the expression of markers associated with osteoblast differentiation. These studies suggest that the potential anabolic effect of androgens on bone may not be mediated at the level of the mature osteoblast. J. Cell. Biochem. 71:96–108, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号