首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The study of domestication contributes to our knowledge of evolution and crop genetic resources. Human selection has shaped wild Brassica rapa into diverse turnip, leafy, and oilseed crops. Despite its worldwide economic importance and potential as a model for understanding diversification under domestication, insights into the number of domestication events and initial crop(s) domesticated in B. rapa have been limited due to a lack of clarity about the wild or feral status of conspecific noncrop relatives. To address this gap and reconstruct the domestication history of B. rapa, we analyzed 68,468 genotyping-by-sequencing-derived single nucleotide polymorphisms for 416 samples in the largest diversity panel of domesticated and weedy B. rapa to date. To further understand the center of origin, we modeled the potential range of wild B. rapa during the mid-Holocene. Our analyses of genetic diversity across B. rapa morphotypes suggest that noncrop samples from the Caucasus, Siberia, and Italy may be truly wild, whereas those occurring in the Americas and much of Europe are feral. Clustering, tree-based analyses, and parameterized demographic inference further indicate that turnips were likely the first crop type domesticated, from which leafy types in East Asia and Europe were selected from distinct lineages. These findings clarify the domestication history and nature of wild crop genetic resources for B. rapa, which provides the first step toward investigating cases of possible parallel selection, the domestication and feralization syndrome, and novel germplasm for Brassica crop improvement.  相似文献   

3.
Wide variation for morphological traits exists in Brassica rapa and the genetic basis of this morphological variation is largely unknown. Here is a report on quantitative trait loci (QTL) analysis of flowering time, seed and pod traits, growth-related traits, leaf morphology, and turnip formation in B. rapa using multiple populations. The populations resulted from crosses between the following accessions: Rapid cycling, Chinese cabbage, Yellow sarson, Pak choi, and a Japanese vegetable turnip variety. A total of 27 QTL affecting 20 morphological traits were detected, including eight QTL for flowering time, six for seed traits, three for growth-related traits and 10 for leaf traits. One major QTL was found for turnip formation. Principal component analysis and co-localization of QTL indicated that some loci controlling leaf and seed-related traits and those for flowering time and turnip formation might be the same. The major flowering time QTL detected in all populations on linkage group R02 co-localized with BrFLC2. One major QTL, controlling turnip formation, was also mapped at this locus. The genes that may underly this QTL and comparative analyses between the four populations and with Arabidopsis thaliana are discussed.  相似文献   

4.
Amplified fragment length polymorphism (AFLP) markers were employed to assess the genetic diversity amongst two large collections of Brassica rapa accessions. Collection A consisted of 161 B. rapa accessions representing different morphotypes among the cultivated B. rapa, including traditional and modern cultivars and breeding materials from geographical locations from all over the world and two Brassica napus accessions. Collection B consisted of 96 accessions, representing mainly leafy vegetable types cultivated in China. On the basis of the AFLP data obtained, we constructed phenetic trees using mega 2.1 software. The level of polymorphism was very high, and it was evident that the amount of genetic variation present within the groups was often comparable to the variation between the different cultivar groups. Cluster analysis revealed groups, often with low bootstrap values, which coincided with cultivar groups. The most interesting information revealed by the phenetic trees was that different morphotypes are often more related to other morphotypes from the same region (East Asia vs. Europe) than to similar morphotypes from different regions, suggesting either an independent origin and or a long and separate domestication and breeding history in both regions.  相似文献   

5.
For identification of genes responsible for varietal differences in flowering time and leaf morphological traits, we constructed a linkage map of Brassica rapa DNA markers including 170 EST-based markers, 12 SSR markers, and 59 BAC sequence-based markers, of which 151 are single nucleotide polymorphism (SNP) markers. By BLASTN, 223 markers were shown to have homologous regions in Arabidopsis thaliana, and these homologous loci covered nearly the whole genome of A. thaliana. Synteny analysis between B. rapa and A. thaliana revealed 33 large syntenic regions. Three quantitative trait loci (QTLs) for flowering time were detected. BrFLC1 and BrFLC2 were linked to the QTLs for bolting time, budding time, and flowering time. Three SNPs in the promoter, which may be the cause of low expression of BrFLC2 in the early-flowering parental line, were identified. For leaf lobe depth and leaf hairiness, one major QTL corresponding to a syntenic region containing GIBBERELLIN 20 OXIDASE 3 and one major QTL containing BrGL1, respectively, were detected. Analysis of nucleotide sequences and expression of these genes suggested possible involvement of these genes in leaf morphological traits.  相似文献   

6.
Mapping loci controlling vernalization requirement in Brassica rapa   总被引:1,自引:0,他引:1  
Brassica cultivars are classified as biennial or annual based on their requirement for a period of cold treatment (vernalization) to induce flowering. Genes controlling the vernalization requirement were identified in a Brassica rapa F2 population derived from a cross between an annual and a biennial oilseed cultivar by using an RFLP linkage map and quantitative trait locus (QTL) analysis of flowering time in F3 lines. Two genomic regions were strongly associated with variation for flowering time of unvernalized plants and alleles from the biennial parent in these regions delayed flowering. These QTLs had no significant effect on flowering time after plants were vernalized for 6 weeks, suggesting that they control flowering time through the requirement for vernalization. The two B. rapa linkage groups containing these QTLs had RFLP loci in common with two B. napus linkage groups that were shown previously to contain QTLs for flowering time. An RFLP locus detected by the cold-induced gene COR6.6 cloned from Arabidopsis thaliana mapped very near to one of the B. rapa QTLs for flowering time.  相似文献   

7.

Background

Brassica rapa is an economically important crop species. During its long breeding history, a large number of morphotypes have been generated, including leafy vegetables such as Chinese cabbage and pakchoi, turnip tuber crops and oil crops.

Results

To investigate the genetic variation underlying this morphological variation, we re-sequenced, assembled and annotated the genomes of two B. rapa subspecies, turnip crops (turnip) and a rapid cycling. We then analysed the two resulting genomes together with the Chinese cabbage Chiifu reference genome to obtain an impression of the B. rapa pan-genome. The number of genes with protein-coding changes between the three genotypes was lower than that among different accessions of Arabidopsis thaliana, which can be explained by the smaller effective population size of B. rapa due to its domestication. Based on orthology to a number of non-brassica species, we estimated the date of divergence among the three B. rapa morphotypes at approximately 250,000 YA, far predating Brassica domestication (5,000-10,000 YA).

Conclusions

By analysing genes unique to turnip we found evidence for copy number differences in peroxidases, pointing to a role for the phenylpropanoid biosynthesis pathway in the generation of morphological variation. The estimated date of divergence among three B. rapa morphotypes implies that prior to domestication there was already considerably divergence among B. rapa genotypes. Our study thus provides two new B. rapa reference genomes, delivers a set of computer tools to analyse the resulting pan-genome and uses these to shed light on genetic drivers behind the rich morphological variation found in B. rapa.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-250) contains supplementary material, which is available to authorized users.  相似文献   

8.
Winter survival is an important characteristic of oilseedBrassica that is seeded in the fall in northern climates,and it may be affected by genetic variation for other cold-regulated traits,such as freezing tolerance and vernalization responsive flowering time. Weanalyzed immortalized populations of oilseed Brassica rapa(recombinant inbred lines) and B. napus (double haploidlines) derived from crosses of annual and biennial types in order to comparethe map positions and effects of quantitative trait loci controlling wintersurvival, nonacclimated and acclimated freezing tolerances, and flowering time.The B. napus population was evaluated in multiple winters,and six of the 16 total significant QTL for winter survival were detected inmore than one winter. Correspondence in the map positions of QTL controllingdifferent traits within species provided evidence that some alleles causinggreater acclimated freezing tolerance and later flowering time also contributedto increased winter survival. Correspondence in the map positions of QTLbetween species provided evidence for allelic variation at homologous loci inB. rapa and B. napus. The potentialrole of some candidate genes in regulating these traits is discussed.  相似文献   

9.
10.
Vernalization is an important process that regulates the floral transition in plants. MicroRNAs (miRNAs) are endogenous non‐coding small RNA (sRNA) molecules that function in plant growth and development. Despite that miRNAs related to flowering have previously been characterized, their roles in response to vernalization in pak‐choi (Brassica rapa ssp. chinensis) has never been studied. Here, two sRNA libraries from B. rapa leaves (vernalized and non‐vernalized plants) were constructed and sequenced. Two hundred eight known and 535 novel miRNAs were obtained, of which 20 known and 66 new miRNAs were significantly differentially expressed and considered as vernalization‐related miRNAs. The corresponding targets were predicted on the basic of sequence homology search. In addition, 11 miRNAs and eight targets were selected for real‐time quantitative PCR to confirm their expression profiles. Functional annotation of targets using gene ontology and Kyoto encyclopedia of genes and genomes results suggested that most targets were significantly enriched in the hormone signaling pathway. Moreover, a decreased indole‐3‐acetic acid (IAA) and an increased GA3 hormone were detected after vernalization, indicating that the IAA and GA3 might response to vernalization. These results indicated that vernalization regulates flowering through microRNA mechanism by affecting endogenous hormone level in B. rapa. This study provides useful insights of promising miRNAs candidates involved in vernalization in B. rapa, and facilitates further investigation of the miRNA‐mediated molecular mechanisms of vernalization in B. rapa.  相似文献   

11.
A Brassica rapa collection of 239 accessions, based on two core collections representing different morphotypes from different geographical origins, is presented and its use for association mapping is illustrated for flowering time. We analyzed phenotypic variation of leaf and seed pod traits, plant architecture, and flowering time using data collected from three field experiments and evaluated the genetic diversity with a set of SSR markers. The Wageningen University and Research Centre (WUR) and the Vavilov Research Institute of Plant Industry (VIR) core collections had similar representations of most morphotypes, as illustrated by the phenotypic and genetic variation within these groups. The analysis of population structure revealed five subgroups in the collection, whereas previous studies of the WUR core collection indicated four subgroups; the fifth group identified consisted mainly of oil accessions from the VIR core collection, winter oils from Pakistan, and a number of other types. A very small group of summer oils is described, that is not related to other oil accessions. A candidate gene approach was chosen for association mapping of flowering time with a BrFLC1 biallelic CAPS marker and a BrFLC2 multiallelic SSR marker. The two markers were significantly associated with flowering time, but their effects were confined to certain morphotypes and (or) alleles. Based on these results, we discuss the optimal design for an association mapping population and the need to fix the heterogeneous accessions to facilitate phenotyping and genotyping.  相似文献   

12.
Brassica rapa L. is an important vegetable crop in eastern Asia. The objective of this study was to investigate the genetic variation in leaf Zn, Fe and Mn accumulation, Zn toxicity tolerance and Zn efficiency in B. rapa. In total 188 accessions were screened for their Zn-related characteristics in hydroponic culture. In experiment 1, mineral assays on 111 accessions grown under sufficient Zn supply (2 μM ZnSO4) revealed a variation range of 23.2–155.9 μg g−1 dry weight (d. wt.) for Zn, 60.3–350.1 μg g−1 d. wt. for Fe and 20.9–53.3 μg g−1 d. wt. for the Mn concentration in shoot. The investigation of tolerance to excessive Zn (800 μM ZnSO4) on 158 accessions, by using visual toxicity symptom parameters (TSPs), identified different levels of tolerance in B. rapa. In experiment 2, a selected sub-set of accessions from experiment 1 was characterized in more detail for their mineral accumulation and tolerance to excessive Zn supply (100 μM and 300 μM ZnSO4). In this experiment Zn tolerance (ZT) determined by relative root or shoot dry biomass varied about 2-fold. The same six accessions were also examined for Zn efficiency, determined as relative growth under 0 μM ZnSO4 compared to 2 μM ZnSO4. Zn efficiency varied 1.8-fold based on shoot dry biomass and 2.6-fold variation based on root dry biomass. Zn accumulation was strongly correlated with Mn and Fe accumulation both under sufficient and deficient Zn supply. In conclusion, there is substantial variation for Zn accumulation, Zn toxicity tolerance and Zn efficiency in Brassica rapa L., which would allow selective breeding for these traits.  相似文献   

13.
Herbivore-induced plant volatiles provide foraging cues for herbivores and for herbivores’ natural enemies. Aphids induce plant volatile emissions and also utilize plant-derived olfactory volatile cues, but the chemical ecology of aphids and other phloem-feeding insects is less extensively documented than that of chewing insects. Here, we characterize the volatile cues emitted by turnip plants (Brassica rapa) under attack by an aphid (Myzus persicae) or by the chewing lepidopteran larva Heliothis virescens. We also tested the behavioral responses of M. persicae individuals to the odors of undamaged and herbivore-damaged plants presented singly or in combination, as well as to the odor of crushed conspecifics (simulating predation). Gas chromatographic analysis of the volatile blend of infested turnips revealed distinct profiles for both aphid- and caterpillar-induced plants, with induced compounds including green-leaf alcohols, esters, and isothiocyanates. In behavioral trials, aphids exhibited increased activity in the presence of plant odors and positive attraction to undamaged turnip plants. However, aphids exhibited a strong preference for the odors of healthy versus plants subjected to herbivore damage, and neither aphid- or caterpillar-damaged plants were attractive compared to clean-air controls. Reduced aphid attraction to herbivore-infested plants may be mediated by changes in the volatile blend constituent composition, including large amounts of isothiocyanates and green-leaf volatiles or, in the case of aphid-infested plants, of the aphid alarm pheromone, (E)-β-farnesene.  相似文献   

14.
15.
16.
Summary Preliminary analysis using nuclear RFLPs provided evidence that subspecies within Brassica rapa originated from two different centers. One center is in Europe, represented by turnip and turnip rape from which the oilseed sarson was derived. A second center is in South China containing a variety of Chinese vegetables of which pak choi and narinosa seem to be the most ancient forms. Based on RFLP data, the accessions of B. oleracea examined could be divided into three distinct groups, represented by thousand head kale, broccoli and cabbage. Thousand head kale and Chinese kale appear to be the primitive types. Observations of parallel variation among subspecies of both species are discussed.  相似文献   

17.
18.
Genetic diversity and relationships based on isozymes were studied in 31 accessions of turnip (Brassica rapa L. var. rapa). The material included varieties, elite stocks, landraces and older turnip of slash-and-burn type from the Nordic area. A total of 9 isozyme loci and 26 alleles were studied. The isozyme systems were ACO, DIA, GPI, GOT, PGM, PGD and SKD. The level of heterozygosity was reduced in the landraces, but it was high for the variety group 'Ostersundom'. Turnip has a higher genetic variation than other crops within B. rapa and than in other species with the same breeding system. The genetic diversity showed that 18.7% of the genetic variation was within the accessions, and the total H tau value was 0.358. Gpi-I and Pgd-I showed the lowest variation compared with the other loci. The cluster analysis revealed five clusters, with one main cluster including 25 of the 31 accessions. The dendrogram indicated that the variety group 'Ostersundom' clustered together whereas the variety group 'Bortfelder' was associated with country of origin. The landraces were spread in different clusters. The 'slash-and-burn' type of turnip belonged to two groups.  相似文献   

19.
Latitudinal variation in climate is predicted to select for latitudinal differentiation in sensitivity to the environmental cues that signal plants to flower at the appropriate time for a given climate. In Arabidopsis thaliana, flowering is promoted by exposure to cold temperatures (vernalization), and several vernalization pathway loci are known. To test whether natural variation in vernalization sensitivity could account for a previously observed latitudinal cline in flowering time in A. thaliana, we exposed 21 European accessions to 0, 10, 20, or 30 d of vernalization and observed leaf number at flowering under short days in a growth chamber. We observed a significant latitudinal cline in vernalization sensitivity: southern accessions were more sensitive to vernalization than northern accessions. In addition, accessions that were late flowering in the absence of vernalization were more sensitive to vernalization cues. Allelic variation at the flowering time regulatory gene FLC was not associated with mean vernalization sensitivity, but one allele class exhibited greater variance in vernalization sensitivity.  相似文献   

20.
Introgression of genomic variation between and within related crop species is a significant evolutionary approach for population differentiation, genome reorganization and trait improvement. Using the Illumina Infinium Brassica 60K SNP array, we investigated genomic changes in a panel of advanced generation new‐type Brassica napus breeding lines developed from hundreds of interspecific crosses between 122 Brassica rapa and 74 Brassica carinata accessions, and compared them with representative accessions of their three parental species. The new‐type B. napus population presented rich genetic diversity and abundant novel genomic alterations, consisting of introgressions from B. rapa and B. carinata, novel allelic combinations, reconstructed linkage disequilibrium patterns and haplotype blocks, and frequent deletions and duplications (nonrandomly distributed), particularly in the C subgenome. After a much shorter, but very intensive, selection history compared to traditional B. napus, a total of 15 genomic regions with strong selective sweeps and 112 genomic regions with putative signals of selective sweeps were identified. Some of these regions were associated with important agronomic traits that were selected for during the breeding process, while others were potentially associated with restoration of genome stability and fertility after interspecific hybridization. Our results demonstrate how a novel method for population‐based crop genetic improvement can lead to rapid adaptation, restoration of genome stability and positive responses to artificial selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号