首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A phylogenetic analysis of Neuroptera using thirty‐six predominantly morphological characters of adults and larvae is presented. This is the first computerized cladistic analysis at the ordinal level. It included nineteen species representing seventeen families of Neuroptera, three species representing two families (Sialidae and both subfamilies of Corydalidae) of Megaloptera, two species representing two families of Raphidioptera and as prime outgroup one species of a family of Coleoptera. Ten equally most parsimonious cladograms were found, of which one is selected and presented in detail. The results are discussed in light of recent results from mental phylogenetic cladograms. The suborders Nevrorthi‐ formia, Myrmeleontiformia and Hemerobiiformia received strong support, however Nevrorthiformia formed the adelphotaxon of Myrmeleontiformia + Hemerobiiformia (former sister group of Myrmeleontiformia only). In Myrmeleontiformia, the sister‐group relationships between Psychopsidae + Nemopteridae and Nymphidae + (Myrmeleontidae + Ascalaphidae) are corroborated. In Hemerobiiformia, Ithonidae + Polystoechotidae is confirmed as the sister group of the remaining families. Dilaridae + (Mantispidae + (Rhachiberothidae + Berothidae)), which has already been proposed, is confirmed. Chrysopidae + Osmylidae emerged as the sister group of a clade comprising Hemerobiidae + ((Coniopterygidae + Sisyridae) + (dilarid clade)). Despite the sister‐group relationship of Coniopterygidae + Sisyridae being only weakly supported, the position of Coniopterygidae within the higher Hemerobiiformia is corroborated. At the ordinal level, the analysis provided clear support for the hypothesis that Megaloptera + Neuroptera are sister groups, which upsets the conventional Megaloptera + Raphidioptera hypothesis.  相似文献   

2.
Phylogeny of the Neuropterida (Insecta: Holometabola)   总被引:3,自引:0,他引:3  
The Neuropterida, with about 6500 known species — living fossils in a way — at the base of the Holometabola (as a sister group of the Coleoptera), comprise Raphidioptera (about 210 species, two families), Megaloptera (about 300 species, two families) and Neuroptera (6000 species, 17 families). Megaloptera + Neuroptera is argued vs. the traditional Raphidioptera + Megaloptera. Raphidioptera are undisputedly monophyletic. Monophyly of Megaloptera is the operational hypothesis, although occasionally questioned. Sucking tubes of the larvae are the most spectacular autapomorphy of Neuroptera. The construction of larval head capsules indicates three evolutionary lines: Nevrorthiformia, and Myrmeleontiformia + Hemerobiiformia. Traditional Myrmeleontiformia is Psychopsidae + (Nemopteridae + (Nymphidae + (Myrmeleontidae + Ascalaphidae))), the present approach is (Psychopsidae + Nemopteridae) + all other Myrmeleontiformia. Hemerobiiformia are based on the ‘maxillary head’ concept. The ithonid clade Ithonidae/Rapismatidae + Polystoechothidae and the dilarid clade Dilaridae + (Mantispidae + (Rhachiberothidae + Berothidae)) are based on robust criteria. Other relationships remain unclear: Hemerobiidae + Chrysopidae (on similarity) and the ‘early offshoot’ concept of coniopterygidae (on autapomorphies) should not be perpetuated. Chysopidae + Osmylidae and (Hemerobiidae + (Coniopterygidae + Sisyridae)) + dilarid clade are discussed. Aquatic larvae, regarded as independent apomorphies of megaloptera and neuropteran Nevrorthidae and Sisyridae for a long time, are re‐interpreted as a synapomorphy of Megaloptera + Neuroptera and thus plesiomorphic within these groups. Terrestrial larvae (with cryptonephry to solve osmotic problems) are consequently apomorphic. Aquatic Sisyridae with cryptonephry of a single malpighian tubule, is conflicting, but larvae may have become secondarily aquatic, after a terrestrial intermezzo.  相似文献   

3.
Abstract Segment 9 of male Raphidioptera, comprising tergite, sternite, gonocoxites, gonostyli and gonapophyses, is a benchmark for homologies in the male and female terminalia of the three Neuropterida orders Raphidioptera, Megaloptera and Neuroptera. The segments relating to genitalia are 9, 10 and 11 in males and 7, 8 and 9 in females. Results from holomorphological and recent molecular cladistic analyses of Neuropterida agree in supporting the sister‐group relationships between: (1) the Raphidioptera and the clade Megaloptera + Neuroptera, and (2) the suborder Nevrorthiformia and all other Neuroptera. The main discrepancy between the results of these studies is the nonmonophyly of the suborder Hemerobiiformia in the molecular analysis. The monophyly of the Megaloptera (which has been repeatedly questioned) is further corroborated by a hitherto overlooked ground pattern autapomorphy: the presence of eversible sacs within the complex of the fused gonocoxites 11 in Corydalidae and Sialidae. The recently discovered paired complex of gonocoxites 10 (parameres) in Nipponeurorthus (Nevrorthidae) indicates that the curious apex of sternite 9 of Nevrorthus and Austroneurorthus is the amalgamation of the sclerites of gonocoxites 10 with sternite 9, interpreted as synapomorphic. In the molecular study, the Nevrorthidae, Sisyridae and Osmylidae branch off in consecutive splitting events, a result that is supported by the analysis of male genital sclerites reported here. Extraordinary parallel apomorphies (e.g. excessive enlargement and modification of gonocoxites 10 ending in a thread‐like ‘penisfilum’) in derived representatives of Coniopterygidae, Berothidae, Rhachiberothidae and Mantispidae corroborate the dilarid clade of the morphological analysis and leads us to hypothesize a sister‐group relationship of the Coniopterygidae with the dilarid clade. A re‐interpretation of the tignum of Chrysopidae as gonocoxites 11 means that the structure previously called the gonarcus represents the fused gonocoxites 9. In Hemerobiidae, the corresponding sclerite is consequently also homologized as fused gonocoxites 9. The enlargement of the lateral wings of the gonocoxites in both families is interpreted as a synapomorphy. Excessive enlargement of gonostyli 11 in the Polystoechotid clade and Myrmeleontiformia supports a sister‐group relationship of these two clades. The occurrence of certain serial homologues of female genitalia structures (gonocoxites and gonapophyses), such as the digitiform processus together with the flat appendices in segment 8 of certain Myrmeleontidae, or the wart‐like processus together with the flat circular sclerites in segment 7 of certain Berothidae, as well as the presence of gonocoxites 8 as pseudosternites in certain Nemopteridae and Coniopterygidae, are probably character reversals. The digitiform processus of tergite 9 (pseudogonocoxites) in Rhachiberothidae and Austroberothella (Berothidae) are either independently developed acquisitions with a function in oviposition, or are homologous sclerites, possibly of epipleurite origin.  相似文献   

4.
The spermiogenesis and the sperm ultrastructure of several species of Coniopterygidae have been examined. The spermatozoa consist of a three-layered acrosome, an elongated elliptical nucleus, a long flagellum provided with a 9+9+3 axoneme and two mitochondrial derivatives. No accessory bodies were observed. The axoneme exhibits accessory microtubules provided with 13, rather than 16, protofilaments in their tubular wall; the intertubular material is reduced and distributed differently from that observed in other Neuropterida. Sperm axoneme organization supports the isolated position of the family previously proposed on the basis of morphological data.  相似文献   

5.
The Mesozoic chrysopid-like Planipennia are revised and several new genera and species are described. The new superfamily Chrysopoidea is proposed for the extant and fossil Chrysopidae, and the fossil families Liassochrysidae n. fam., Allopteridae Zhang 1991 n. sensu, Mesochrysopidae Handlirsch, 1906 n. sensu, Tachinymphidae n. fam., and Limaiidae Martins-Neto and Vulcano 1989 n. sensu. A phylogenetic analysis of the Chrysopoidea is proposed, based on the wing venation characters. With at least the four families Allopteridae, Mesochrysopidae, Tachinymphidae, and Chrysopidae, showing different wing venation patterns, the systematic diversity and morphological disparity of the Chrysopoidea are maximal during the Late Jurassic and Early Cretaceous. The Mesozoic family Limaiidae was still present during the Paleocene/Eocene suggesting a minimal impact on the Chrysopoidea of the crisis of the diversity at the K-T boundary. Other Cenozoic Chrysopoidea can be attributed to the Chrysopidae sensu stricto.  相似文献   

6.
External and internal head structures of larvae of Nevrorthidae were described in detail. The results were compared to conditions found in other representatives of Neuroptera and the other two neuropterid orders. The cladistic analysis supported the monophyly of Neuroptera, Neuroptera exclusive of Nevrorthidae, Hemerobiiformia, and Myrmeleontiformia. Neuroptera exclusive of Nevrorthidae are supported by the formation of an undivided postmentum and the presence of cryptonephric Malpighian tubules. The highly specialized articulation of the neck (Rollengelenk) and the absence of a salivary duct are autapomorphies of Nevrorthidae. Ithonidae and Polystoechotidae form a clade and are the sister group of the remaining Hemerobiiformia, which are characterized by the complete lack of a gula and a terminal filament of the antenna. Within this lineage, a clade comprising Mantispidae, Dilaridae, Berothidae, and Rhachiberothidae is well supported. Larvae of Myrmeleontiformia are characterized by a complex transformation of head structures, with a hypostomal bridge, a small triangular gula, largely reduced maxillary grooves, and anteriorly shifted posterior tentorial grooves. The slender finger‐like mid‐dorsal apodeme is another autapomorphy of the group. Psychopsidae are placed as the sister group of the remaining Myrmeleontiformia, which are characterized by a conspicuous, protruding ocular region (often less distinct or even absent in Nemopteridae). Ascalaphidae are the sister group of Myrmeleontidae. Larvae of both families share the fusion of the tibia and tarsus in the hind leg. The larval characters analysed were not sufficient for full resolution of the myrmeleontiform and hemerobiiform lineages. The position of several families such as Osmylidae, Sisyridae, and Coniopterygidae remains uncertain. The results are in agreement with an aquatic ancestor of Neuroptera and secondarily acquired terrestrial habits within the lineage (Neuroptera exclusive of Nevrorthidae), and another invasion of the aquatic environment by Sisyridae. © 2010 The Linnean Society of London, Zoological Journal of the Linnean Society, 2010, 158 , 533–562.  相似文献   

7.
SUMMARY. The discovery of a third species of alderfly ( Sialis nigripes ) in Britain and Ireland necessitates a new larval key for the group in these islands. Characters are now provided to distinguish the larvae of the three species, and their habitat and distribution in the British Isles are outlined.  相似文献   

8.
Despite several recent analyses on the phylogeny of Neuroptera some questions still remain to be answered. In the present analysis we address these questions by exploring a hitherto unexplored character complex: the tentorium, the internal cuticular support structure of the insect head. We described in detail the tentoria of representatives of all extant neuropteran families and the muscles originating on the tentorium using 3D microCT images and analyzed differences in combination with a large published matrix based on larval characters. We find that the tentorium and associated musculature are a source of phylogenetically informative characters. The addition of the tentorial characters to the larval matrix causes a basad shift of the Sisyridae and clearly supports a clade of all Neuroptera except Sisyridae and Nevrorthidae. A sister group relationship of Coniopterygidae and the dilarid clade is further corroborated. A general trend toward a reduction of the dorsal tentorial arms and the development of laminatentoria is observed. In addition to the phylogenetic analysis, a correlation among the feeding habits, the development of the maxillary muscles, and the laminatentoria is demonstrated.  相似文献   

9.
A new lacewing species, Leptolingia shartegica sp. nov., (Grammolingiidae), from the Upper Jurassic of the Mongolian Shar-Teg locality is described.  相似文献   

10.
Three new genera and five new species of osmylid lacewings are described from the locality Karatau (Kazakhstan, Upper Jurassic): Jurosmylus parvulus sp. nov. (Protosmylinae), Ensiosmylus acutus gen. et sp. nov. (Spilosmylinae), Kolbasinella elongata gen. et sp. nov. (Gumillinae), Arbusella bella gen. et sp. nov. and Jurakempynus arcanus sp. nov. (Kempyninae). Another new osmylid species (Jurakempynus sublimis sp. nov.) is described from the Upper Jurassic of Mongolia (Shar-Teg locality). The quantitative compositions of the osmylid faunas of Karatau and Shar-Teg are discussed.  相似文献   

11.
A short review of main cytogenetic features of insects belonging to the sister neuropteran families Myrmeleontidae (antlions) and Ascalaphidae (owlflies) is presented, with a particular focus on their chromosome numbers and sex chromosome systems. Diploid male chromosome numbers are listed for 37 species, 21 genera from 9 subfamilies of the antlions as well as for seven species and five genera of the owlfly subfamily Ascalaphinae. The list includes data on five species whose karyotypes were studied in the present work. It is shown here that antlions and owlflies share a simple sex chromosome system XY/XX; a similar range of chromosome numbers, 2n = 14-26 and 2n = 18-22 respectively; and a peculiar distant pairing of sex chromosomes in male meiosis. Usually the karyotype is particularly stable within a genus but there are some exceptions in both families (in the genera Palpares and Libelloides respectively). The Myrmeleontidae and Ascalaphidae differ in their modal chromosome numbers. Most antlions exhibit 2n = 14 and 16, and Palparinae are the only subfamily characterized by higher numbers, 2n = 22, 24, and 26. The higher numbers, 2n = 20 and 22, are also found in owlflies. Since the Palparinae represent a basal phylogenetic lineage of the Myrmeleontidae, it is hypothesized that higher chromosome numbers are ancestral for antlions and were inherited from the common ancestor of Myrmeleontidae + Ascalaphidae. They were preserved in the Palparinae (Myrmeleontidae), but changed via chromosomal fusions toward lower numbers in other subfamilies.  相似文献   

12.
The genus Afromantispa Snyman & Ohl, 2012 was recently synonymised with Mantispa Illiger, 1798 by Monserrat (2014). Here morphological evidence is presented in support of restoring the genus Afromantispa stat. rev. to its previous status as a valid and morphologically distinct genus. Twelve new combinations (comb. n.) are proposed as species of Afromantispa including three new synonyms.  相似文献   

13.
Previous studies have demonstrated the presence of sperm dimorphism in the Mantispidae Perlamantispa perla. We extended the study on several other mantidflies. In all the examined species the occurrence of euspermatozoa (typical) and paraspermatozoa (atypical) was established. The euspermatozoa are characterized by the presence of a cylindrical nucleus surrounded by an envelope that fans out laterally into two thin wings of different length. The acrosome seems to be missing. The nucleus is surrounded by extracellular material. The flagellum is provided with a 9 + 9 + 2 axonemal pattern; the accessory tubules contain 16 protofilaments and the intertubular material has the distribution typical of the taxon. Two elongated accessory bodies flank partially the axoneme and connect this structure with the mitochondrial derivatives. The flagellar axoneme of paraspermatozoa consists of an axoneme and two giant mitochondrial derivatives filled with large globular units. The axoneme exhibits a 9 + 9 + 2 pattern, in which the central 9 + 2 units have a normal structure, in that the microtubular doublets are provided with both dynein arms and radial links. On the contrary, the nine accessory microtubules have a large diameter and their tubular wall consists of 40 protofilaments. This comparative study provided evidences about the uniformity of sperm ultrastructure in Mantispidae. The function of non-fertilizing giant sperm in mantidflies is discussed.  相似文献   

14.
Relative movements of the main wing areas around the major flexion lines are compared during wing folding at rest, and during the supinatory phase of the flight cycle, which involves considerable wing deformation. Folding of the wing apex at rest is achieved by a combination of movements around the median flexion line (the main longitudinal flexion line), the principal transverse fold, and a variety of smaller, oblique 'tucking' folds. During flight, wing tip deformation is strongly influenced by elastic forces involved in the normal wing folding and unfolding processes. Those beetles possessing an inwardly sprung wing apex display partial folding at supination, associated with the temporary relaxation of the forces opposing spring recoil. These beetles also show enhanced mobility about the median flexion line which facilitates leading edge supination. The presence of the principal transverse fold may help to concentrate ventral flexure towards the wing tip. The wings of beetles possessing an outwardly-sprung apex are much less affected by the presence of the flexion lines associated with folding. In these cases, enhanced supination of the leading edge, in the face of an overall increase in wing membrane stiffness, may be related to the presence of the highly-sclerotized pterostigma.  相似文献   

15.
16.
The first Mesozoic alderfly larva of Sharasialis fusiformis gen. et sp. nov. is described from the Upper Jurassic Lagerst?tte of Shar-Teg (southwestern Mongolia). In contrast to Cenozoic alderflies, it has a short thick appendage instead of a long terminal filament.  相似文献   

17.
The complete mitochondrial genome of Acanthacorydalis orientalis(McLachlan)was determined and analyzed(GenBank accession number:KF840564).This paper represents the first mitochondrial(mt) genome of the dobsonfly genus Acanthacorydalis.The mt genome is a typical circular DNA of 15 753 bp composed of 37 genes with an A+T content of 76.7%.It has an ancestral gene arrangement of the insect mt genomes.Eleven of the 13 PCGs start with codon ATT and ATG,while several exceptions such as ATA and TTG respectively for atpS and nad\ are also present.Five protein-coding genes end with a single T,while others have a termination codon of TAA or TAG.Most tRNAs are folded into the typical clover-leaf structure except for the trnS 1 whose dihydrouridine arm was a simple loop.The secondary structure of rrnl consists of five structural domains and 50 helices,while the rrns includes three domains and 34 helices.The control region has a stretches of Ts with a length of 22 bp but lacks obvious tandem repeat region.Both Bayesian inference and maximum likelihood(ML) analyses,based on all 13 protein-coding genes and two rRNA genes of the mt genomes,confirm the monophyly of Corydalinae and suggest that Acanthacorydalis,together with Corydalus,which is an endemic dobsonfly genus from the New World,belong to a monophyletic lineage.  相似文献   

18.
19.
Abstract  Sisyra pedderensis sp.n. is described from Lake Pedder, Tasmania, bringing to seven the number of described species of Sisyridae (Spongillaflies) known from Australia.  相似文献   

20.
External and internal head structures of adult Coniopteryx pygmaea Enderlein, 1906, one of the smallest known lacewings, are described in detail for the first time. Possible effects of miniaturization and two hypotheses on the phylogenetic position of Coniopterygidae are evaluated and compared with data from literature. Several convergent modifications in C. pygmaea and other miniaturized insect species are outlined, e.g., a relative increase in the size of the brain, simplification of the tracheal system with respect to the number of tracheae, and reduction of the number of ommatidia and diameter of the facets. Further, the ocular ridge is bell-shaped and countersunk into the head capsule. The cuticle is weakly sclerotized and equipped with wax glands which are unique in Neuroptera. The total number of muscles is not affected by miniaturization. The phylogenetic analysis yields Coniopterygidae as sistergroup to the dilarid clade based on one larval character, the shape of the stylets. The enforced basal position of Coniopterygidae is supported by one disputable synapomorphy of the remaining Neuroptera, the presence of paraglossae in adults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号