首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Association mapping can quickly and efficiently dissect complex agronomic traits. Rapeseed is one of the most economically important polyploid oil crops, although its genome sequence is not yet published. In this study, a recently developed 60K Brassica Infinium® SNP array was used to analyse an association panel with 472 accessions. The single-nucleotide polymorphisms (SNPs) of the array were in silico mapped using ‘pseudomolecules’ representative of the genome of rapeseed to establish their hypothetical order and to perform association mapping of seed weight and seed quality. As a result, two significant associations on A8 and C3 of Brassica napus were detected for erucic acid content, and the peak SNPs were found to be only 233 and 128 kb away from the key genes BnaA.FAE1 and BnaC.FAE1. BnaA.FAE1 was also identified to be significantly associated with the oil content. Orthologues of Arabidopsis thaliana HAG1 were identified close to four clusters of SNPs associated with glucosinolate content on A9, C2, C7 and C9. For seed weight, we detected two association signals on A7 and A9, which were consistent with previous studies of quantitative trait loci mapping. The results indicate that our association mapping approach is suitable for fine mapping of the complex traits in rapeseed.  相似文献   

2.
赵卫国  塔娜  王灏 《西北植物学报》2024,44(8):1261-1272
【目的】为了解析油菜种子硫代葡萄糖苷性状的重要遗传位点及候选基因,【方法】本研究利用KN DH群体在冬性环境2015-2018连续4年的种子硫苷含量表型和KN 高密度SNP遗传连锁图谱,通过Wincart 2.5软件的符合区间作图法对甘蓝型油菜种子硫代葡萄糖苷含量进行QTL定位和潜在候选基因鉴定。【结果】共鉴定到47个硫苷含量QTL,单个QTL解释表型变异最大是qGC.16YL19-4(19.44%),解释表型变异最小的是qGC.15YL12-5(1.82%)。利用元分析的方法将初步鉴定的47个QTL整合为38个consensus QTL,其中7个consensus QTL(cqGC.A9-5、cqGC.A9-7、cqGC.A9-9、cqGC.C2-9、cqGC.C2-10、cqGC.C9-5和cqGC.C9-6)为环境稳定表达QTL,包括3个硫苷含量主效QTL(cqGC.A9-5、cqGC.C2-10和cqGC.C9-5)。在主效QTLcqGC.A9-5和cqGC.C9-5鉴定到3个候选基因BnaA09g05480D,BnaC09g05620D和BnaC09g05810D,其功能主要涉及了油菜硫苷生物合成途径中吲哚-3-乙醛肟(IAOx)的合成和将2-烷基-苹果酸异构化形成3-烷基-苹果酸酯,以及硫苷的转运与分配。【结论】本研究获得了油菜种子硫苷含量3个主效QTL及3个候选基因,该结果为硫苷含量相关基因的功能机械和优质油菜品种培育提供理论依据。  相似文献   

3.
为定位与油分、蛋白质和硫苷含量等品质性状相关的数量性状位点(QTL),以2个含油量较高的甘蓝型油菜(Brassica napus)品系8908B和R1为研究材料,配置正反交组合。在正反交F2代群体中,含油量和蛋白质含量都存在极显著的负相关,相关系数分别为-0.68和-0.81,含油量和硫苷含量相关性不显著:蛋白质含量和硫苷含量在正交群体中相关性不显著,但在反交群体中存在显著负相关(相关系数r=-0.45)。利用正交F2代群体中的118个单株,构建了包含121个标记的遗传连锁图谱,图谱长1298.7cM,有21个连锁群(LGs)。采用复合区间作图法,在连锁图上定位了2个与含油量有关的QTL,分别位于LG8和LG10,其贡献率分别为4.8%和13.7%,增效基因都来源于R1;定位了2个与蛋白质含量有关的QTL:pr01和pr02,分别位于LG1和LG3,其贡献率分别为15.2%和14.1%,位点pr07由8908B提供增效基因,pro2则由R1提供增效基因:定位了4个与硫苷含量有关的QTL,其中LG20上有2个,LG4和LG8上各1个,它们的贡献率在1.9%-25.4%之间,除LG20上glu7的增效基因来自R1外,其余3个QTL位点均由8908B提供增效基因。  相似文献   

4.
5.
6.
7.

Background

Tocopherols are important antioxidants in vegetable oils; when present as vitamin E, tocopherols are an essential nutrient for humans and livestock. Rapeseed (Brassica napus L, AACC, 2 n = 38) is one of the most important oil crops and a major source of tocopherols. Although the tocopherol biosynthetic pathway has been well elucidated in the model photosynthetic organisms Arabidopsis thaliana and Synechocystis sp. PCC6803, knowledge about the genetic basis of tocopherol biosynthesis in seeds of rapeseed is scant. This project was carried out to dissect the genetic basis of seed tocopherol content and composition in rapeseed through quantitative trait loci (QTL) detection, genome-wide association analysis, and homologous gene mapping.

Methodology/Principal Findings

We used a segregating Tapidor × Ningyou7 doubled haploid (TNDH) population, its reconstructed F2 (RC-F2) population, and a panel of 142 rapeseed accessions (association panel). Genetic effects mainly contributed to phenotypic variations in tocopherol content and composition; environmental effects were also identified. Thirty-three unique QTL were detected for tocopherol content and composition in TNDH and RC-F2 populations. Of these, seven QTL co-localized with candidate sequences associated with tocopherol biosynthesis through in silico and linkage mapping. Several near-isogenic lines carrying introgressions from the parent with higher tocopherol content showed highly increased tocopherol content compared with the recurrent parent. Genome-wide association analysis was performed with 142 B. napus accessions. Sixty-one loci were significantly associated with tocopherol content and composition, 11 of which were localized within the confidence intervals of tocopherol QTL.

Conclusions/Significance

This joint QTL, candidate gene, and association mapping study sheds light on the genetic basis of seed tocopherol biosynthesis in rapeseed. The sequences presented here may be used for marker-assisted selection of oilseed rape lines with superior tocopherol content and composition.  相似文献   

8.
油菜油分、蛋白质和硫苷含量相关性分析及QTL 定位   总被引:3,自引:0,他引:3  
为定位与油分、蛋白质和硫苷含量等品质性状相关的数量性状位点(QTL), 以2个含油量较高的甘蓝型油菜(Brassica napus)品系8908B和R1为研究材料, 配置正反交组合。在正反交F2代群体中, 含油量和蛋白质含量都存在极显著的负相关, 相关系数分别为-0.68和-0.81, 含油量和硫苷含量相关性不显著; 蛋白质含量和硫苷含量在正交群体中相关性不显著, 但在反交群体中存在显著负相关(相关系数r =-0.45)。利用正交F2代群体中的118个单株, 构建了包含121个标记的遗传连锁图谱, 图谱长1 298.7 cM, 有21个连锁群(LGs)。采用复合区间作图法, 在连锁图上定位了2个与含油量有关的QTL, 分别位于LG8和LG10, 其贡献率分别为4.8%和13.7%, 增效基因都来源于R1; 定位了2个与蛋白质含量有关的QTL: pro1 和 pro2, 分别位于LG1和LG3, 其贡献率分别为15.2%和14.1%, 位点pro1由8908B提供增效基因, pro2则由R1提供增效基因; 定位了4个与硫苷含量有关的QTL, 其中LG20上有2个, LG4和LG8上各1个, 它们的贡献率在1.9%-25.4%之间, 除LG20上glu1的增效基因来自R1外, 其余3个QTL位点均由8908B提供增效基因。  相似文献   

9.
The effect of canola (Brassica napus) as a crop suppressive to Pratylenchus neglectus is in part due to the release of nematicidal isothiocyanates, particularly 2-phenylethyl isothiocyanate, from degrading root tissues. However, many cultivars of canola are relatively susceptible to P. neglectus and will fail to reduce soil populations of the nematode. A survey of B. napus accessions and closely related species revealed limited scope to decrease the susceptibility of canola through conventional intercrossing. Susceptibility to P. neglectus was not related to the total glucosinolate levels, but there were signifi- cant, negative correlations (r = -0.619, -0.517; P < 0.001) between root levels of 2-phenylethyl glucosinolate (isothiocyanate precursor) and plant susceptibility to P. neglectus: plants containing more than a certain threshold level of 2-phenylethyl glucosinolate showed reduced susceptibility to the nematode. Selection for high root levels of 2-phenylethyl glucosinolate should reduce the susceptibility of the plants during the growing season while also increasing the nematicidal impact of the degrading root tissues, thereby improving the suppressive benefits of the crop when used in rotation with cereals.  相似文献   

10.
We examined the bioactivity of Yamato-mana (Brassica rapa L. Oleifera Group) constituent glucosinolates and found that 3-butenyl glucosinolate (gluconapin) decreased the plasma triglyceride gain induced by corn oil administration to mice. However, phenethyl glucosinolate (gluconasturtiin) had little effect. 2-Propenyl glucosinolate (sinigrin) also reduced the plasma triglyceride level, which suggests that alkenyl glucosinolates might be promising agents to prevent postprandial hypertriglyceridemia.  相似文献   

11.
High-density genetic markers are the prerequisite for understanding linkage disequilibrium (LD) and genome-wide association studies (GWASs) of complex traits in crops. To evaluate the LD pattern in oilseed rape, we sequenced a previous association panel containing 189 B. napus inbred lines using double-digested restriction-site associated DNA (ddRAD) and genotyped 19,327 RAD tags. A total of 15,921 RAD tags were assigned to a published genetic linkage map and the majority (71.1%) of these tags was uniquely mapped to the draft reference genome “Darmor-bzh.” The distance of LD decay was 1,214 kb across the genome at the background level (r2 = 0.26), with the distances of LD decay being 405 kb and 2,111 kb in the A and C subgenomes, respectively. A total of 361 haplotype blocks with length > 100 kb were identified in the entire genome. The association panel could be classified into two groups, P1 and P2, which are essentially consistent with the geographical origins of varieties. A large number of group-specific haplotypes were identified, reflecting that varieties in the P1 and P2 groups experienced distinct selection in breeding programs to adapt their different growth habitats. GWAS repeatedly detected two loci significantly associated with oil content of seeds based on the developed SNPs, suggesting that the high-density SNPs were useful for understanding the genetic determinants of complex traits in GWAS.  相似文献   

12.
Natural plant populations often show substantial heritable variation in chemical structure of secondary metabolites. Despite a great deal of evidence from laboratory studies that these chemicals influence herbivore behaviour and life history, there exists little evidence for the structuring of natural herbivore communities according to plant chemical profiles. Brassica oleracea (Brassicaceae) produces aliphatic glucosinolates, which break down into toxins when leaf tissue is damaged. Structural diversity in these glucosinolates is heritable, and varies considerably at two ecological scales in the UK: both within and between populations. We surveyed herbivore attack on plants producing different glucosinolates, using 12 natural B. oleracea populations. In contrast to the results of previous studies in this system, which suffered low statistical power, we found significant differential responses of herbivore species to heritable glucosinolates, both within and between plant populations. We found significant correlations between herbivore infestation rates and the presence or absence of two heritable glucosinolates: sinigrin and progoitrin. There was variation between herbivore species in the direction of response, the ecological scale at which responses were identified, and the correlations for some herbivore species changed at different times of the year. We conclude that variation in plant secondary metabolites can structure the community of herbivores that attack them, and propose that herbivore-mediated differential selection deserves further investigation as a mechanism maintaining the observed diversity of glucosinolates in wild Brassica.  相似文献   

13.
Isopropylmalate synthase (IPMS) is a key enzyme in the biosynthesis of the essential amino acid leucine, and thus primary metabolism. In Arabidopsis, the functionally similar enzyme, methythiolalkylmalate synthase (MAM), is an important enzyme in the elongation of methionine prior to glucosinolate (GSL) biosynthesis, as part of secondary metabolism. We describe the cloning of an IPMS gene from Brassica, BatIMS, and its functional characterisation by heterologous expression in E. coli and Arabidopsis. Over expression of BatIMS in Arabidopsis resulted in plants with an aberrant phenotype, reminiscent of mutants in GSL biosynthesis. Metabolite analyses showed that these plants had both perturbed amino acid metabolism and enhanced levels of GSLs. Microarray profiling showed that BatIMS over expression caused up regulation of the genes for methionine-derived GSL biosynthesis, and down regulation of genes involved in leucine catabolism, in addition to perturbed expression of genes involved in auxin and ethylene metabolism. The results illustrate the cross talk that can occur between primary and secondary metabolism within transgenic plants. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

14.
To localize the metabolic block(s) in the biosynthesis of glucosinolates in the Brassica napus L. cv. Bronowski, 5-methylthiopentanal oxime-1-14C was synthesized and fed to this cultivar and cv. Regina II, which has average levels of glucosinolates. The aldoxime was as efficient as a precursor of 3-butenylglucosinolate in both cultivars, but less efficient as a precursor of 2-hydroxy-3-butenylglucosinolate in Bronowski. These results suggest that there is a block in the biosynthesis of 3-butenylglucosinolate in Bronowski that is situated before the synthesis of the intermediate 5-methylthiopentanal oxime, as well as a block in the hydroxylation step. The silique walls of Bronowski contained increased amounts of total sulphur and inorganic sulphate.  相似文献   

15.
该研究以‘铁观音’茶树品种的种子为试验材料,采用转录组测序技术分析种子发育的3个时期(幼果期、膨大期、成熟期)的表达差异,探究茶树种子油脂代谢的分子机制。结果表明:(1)经转录组测序、组装后共获得30 940 581个clean reads,经数据合并拼接最终得到36 951条非冗余Unigene序列,其中28 476个Unigene可得到功能注释;在转录本中能够被注释到GO分类的Unigene有11 201条(30.3%),KEGG分析发现共有17 172个基因参与了127个代谢通路。(2)经KEGG通路筛选出14条与脂肪酸代谢相关的通路,且随着茶籽的发育,大部分脂肪酸调控途径相关基因呈下调趋势,其中上调基因数最多的有α-亚麻酸代谢途径和脂肪酸降解途径(有17个基因表达量上调),下调基因数最多的是甘油磷脂代谢途径(有58个基因表达量下调);在茶籽发育幼果期α-亚麻酸代谢途径中表达量上调的基因数超过表达量下调的基因数。(3)研究发现茶籽脂肪酸合成相关的基因涉及14个脂类调控途径,共409条差异基因;随着茶树种子发育到成熟期,上调的差异表达基因数量在减少,下调的差异表达基因数量增加,其中α-亚麻酸途径中的基因PLA2G16、DAD1、pldA、FabF、FabI表达量上调显著,随后表达量下调。(4)qRT-PCR检测结果表明,7个茶树FAD和1个ACP差异表达基因的水平与转录组测序结果基本一致;随着茶籽的发育,基因CsFAD7和Δ6-CsFAD从幼果期、果实膨大期至果实成熟期都为差异下调表达,CsFAD2、CsFAD6和Δ7-CsFAD为差异上调表达,CsFAD8、Δ8-CsFAD和CsACP在幼果期至果实膨大期差异上调表达,在果实膨大期至果实成熟期差异下调表达。  相似文献   

16.
In Brassica napus, glucosinolates are transported from all parts of the plant into the embryo during seed development. In this study we describe the uptake of the alkenyl glucosinolate sinigrin by microspore derived embryos from high and low glucosinolate genotypes. Microspore derived embryos develop completely isolated from maternal tissues unlike zygotic embryos, which contains glucosinolates transported into the embryo synthesised in the vegetative tissues. The sinigrin in the culture medium was almost completely absorbed by the embryos after three days of culture. The embryos of high and low glucosinolate genotypes were equally capable of absorbing sinigrin from the medium. A significant increase in different alkenyl glucosinolates following feeding of sinigrin suggests induction of biosynthetic enzymes in the embryos. Following excess feeding of sinigrin, we found a strong uptake against a concentration gradient and stable accumulation by the embryos. The glucosinolate was detected in single dissected cotyledons by a photometric test and by HPLC. This test could potentially be useful for screening mutants defective in glucosinolate uptake into the embryo.  相似文献   

17.
The parental and hybrid seed of three synthesis experiments(B. oleracea x B. campeslris = B. napus) has been analysed byacrylamide gel electrophoresis for general proteins and certainenzymes. A serological study has been made of one of the synthesisexperiments. The protein and enzyme patterns of the newly establishedhybrids are compared with those of two well-established varietiesof B. napus. The results suggest that the hybrid seed has noprotein which differs from those in the parental types, andthat the protein spectrum of the hybrid is a summation of someof the proteins found in the parents. The analytical methodsemployed are discussed with particular reference to their valueas an assessment of plant genotype.  相似文献   

18.
甘蓝型油菜含油量的主基因+多基因遗传效应分析   总被引:13,自引:0,他引:13  
应用多世代联合分析数量性状主基因和多基因混合遗传的统计方法,分析了甘蓝型油菜两个组合的5个世代——亲本P1、P2、F1、F2和F2:3家系材料含油量的遗传效应。结果表明,分离世代F2及F2:3家系含油量次数分布均呈混合的正态分布,符合主基因+多基因的遗传特征。D-2模型是该项研究两个甘蓝型油菜杂交组合含油量的最适遗传模型,含油量的遗传是由一对加性主基因和加-显性多基因共同控制的。组合1(1141Bx垦C1-1)主基因加性效应值为-1.74,表明亲本1141B中主基因位点上的等位基因降低含油量,而亲本垦C1-1中的等位基因增加含油量。多基因加性效应值和显性效应值分别为1.20和-1.93;F2的主基因遗传力和多基因遗传力分别为68.21%和27.17%;F2:3的主基因遗传力和多基因遗传力分别为81.70%和16.80%。组合2(32Bx垦C1-2)主基因加性效应值为-3.74,表明亲本32B中主基因位点上的等位基因降低含油量,而亲本垦C1-2中的等位基因增加含油量。多基因加性效应值和显性效应值分别为-1.99和0.93;F2的主基因遗传力和多基因遗传力分别为66.20%,和28.10%;F2:3的主基因遗传力和多基因遗传力为81.00%和14.90%。两组合在F2:3家系世代含油量的主基因遗传力均较F2高,因此认为高含油量育种中在F2:3家系进行选择效率较高。  相似文献   

19.

Background

Single nucleotide polymorphisms (SNPs) are the most common type of genetic variation. Identification of large numbers of SNPs is helpful for genetic diversity analysis, map-based cloning, genome-wide association analyses and marker-assisted breeding. Recently, identifying genome-wide SNPs in allopolyploid Brassica napus (rapeseed, canola) by resequencing many accessions has become feasible, due to the availability of reference genomes of Brassica rapa (2n = AA) and Brassica oleracea (2n = CC), which are the progenitor species of B. napus (2n = AACC). Although many SNPs in B. napus have been released, the objective in the present study was to produce a larger, more informative set of SNPs for large-scale and efficient genotypic screening. Hence, short-read genome sequencing was conducted on ten elite B. napus accessions for SNP discovery. A subset of these SNPs was randomly selected for sequence validation and for genotyping efficiency testing using the Illumina GoldenGate assay.

Results

A total of 892,536 bi-allelic SNPs were discovered throughout the B. napus genome. A total of 36,458 putative amino acid variants were located in 13,552 protein-coding genes, which were predicted to have enriched binding and catalytic activity as a result. Using the GoldenGate genotyping platform, 94 of 96 SNPs sampled could effectively distinguish genotypes of 130 lines from two mapping populations, with an average call rate of 92%.

Conclusions

Despite the polyploid nature of B. napus, nearly 900,000 simple SNPs were identified by whole genome resequencing. These SNPs were predicted to be effective in high-throughput genotyping assays (51% polymorphic SNPs, 92% average call rate using the GoldenGate assay, leading to an estimated >450 000 useful SNPs). Hence, the development of a much larger genotyping array of informative SNPs is feasible. SNPs identified in this study to cause non-synonymous amino acid substitutions can also be utilized to directly identify causal genes in association studies.  相似文献   

20.
A stable yellow-seeded variety is the breeding goal for obtaining the ideal rapeseed (Brassica napus L.) plant, and the amount of acid detergent lignin (ADL) in the seeds and the hull content (HC) are often used as yellow-seeded rapeseed screening indices. In this study, a genome-wide association analysis of 520 accessions was performed using the Q + K model with a total of 31,839 single-nucleotide polymorphism (SNP) sites. As a result, three significant associations on the B. napus chromosomes A05, A09, and C05 were detected for seed ADL content. The peak SNPs were within 9.27, 14.22, and 20.86 kb of the key genes BnaA.PAL4, BnaA.CAD2/BnaA.CAD3, and BnaC.CCR1, respectively. Further analyses were performed on the major locus of A05, which was also detected in the seed HC examination. A comparison of our genome-wide association study (GWAS) results and previous linkage mappings revealed a common chromosomal region on A09, which indicates that GWAS can be used as a powerful complementary strategy for dissecting complex traits in B. napus. Genomic selection (GS) utilizing the significant SNP markers based on the GWAS results exhibited increased predictive ability, indicating that the predictive ability of a given model can be substantially improved by using GWAS and GS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号