首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyunsaturated fatty acid (PUFA) peroxyl radicals play a crucial role in lipid oxidation. ESR spectroscopy with the spin-trapping technique is one of the most direct methods for radical detection. There are many reports of the detection of PUFA peroxyl radical adducts; however, it has recently been reported that attempted spin trapping of organic peroxyl radicals at room temperature formed only alkoxyl radical adducts in detectable amounts. Therefore, we have reinvestigated spin trapping of the linoleic, arachidonic, and linolenic acid-derived PUFA peroxyl radicals. The slow-flow technique allowed us to obtain well-resolved ESR spectra of PUFA-derived radical adducts in a mixture of soybean lipoxygenase, PUFA, and the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). However, interpretation of the ESR spectra was complicated by the overlapping of the PUFA-derived alkoxyl radical adduct spectra. In order to understand these spectra, PUFA-derived alkoxyl radical adducts were modeled by various alkoxyl radical adducts. For the first time, we synthesized a wide range of DMPO adducts with primary and secondary alkoxyl radicals. It was found that many ESR spectra previously assigned as DMPO/peroxyl radical adducts based on their close similarity to the ESR spectrum of the DMPO/superoxide radical adduct, in conjunction with their insensitivity to superoxide dismutase, are indeed alkoxyl radical adducts. We have reassigned the PUFA alkylperoxyl radical adducts to their corresponding alkoxyl radical adducts. Using hyperfine coupling constants of model DMPO/alkoxyl radical adducts, the computer simulation of DMPO/PUFA alkoxyl radical adducts was performed. It was found that the trapped, oxygen-centered PUFA-derived radical is a secondary, chiral alkoxyl radical. The presence of a chiral carbon atom leads to the formation of two diastereomers of the DMPO/PUFA alkoxyl radical adduct. Therefore, attempted spin trapping of the PUFA peroxyl radical by DMPO at room temperature leads to the formation of the PUFA alkoxyl radical adduct.  相似文献   

2.
The B2 subunit of ribonucleotide reductase from Escherichia coli contains a tyrosine radical which is essential for enzyme activity. In the reaction between ribonucleotide reductase and the substrate analogue 2'-azido-2'-deoxycytidine 5'-diphosphate a new transient radical is formed. The EPR characteristics of this new radical species are consistent with a localization of the unpaired electron at the sugar moiety of the nucleotide. The radical shows hyperfine couplings to a hydrogen and a nitrogen nucleus, the latter probably being part of the azide substituent. The formation of the nucleotide radical in this suicidal reaction is concomitant with the decay of the tyrosine radical of the B2 subunit. Kinetic data argue for a first (pseudosecond) order decay of the B2 radical via generation of the nucleotide radical followed by a slower first order decay of the nucleotide radical. End products in the reaction are cytosine and radical-free protein B2. In the reaction between bacteriophage T4 ribonucleotide reductase and 2'-azido-2'-deoxycytidine 5'-diphosphate an identical nucleotide radical is formed. The present results are consistent with the hypothesis that the appearance and structure of the transient radical mimic stages in the normal reaction pathway of ribonucleotide reductase, postulated to proceed via 3'-hydrogen abstraction and cation radical formation of the substrate nucleotide (Stubbe, J., and Ackles, D. (1980) J. Biol. Chem. 255, 8027-8030). The nucleotide radical described here might be equivalent to such a cation radical intermediate.  相似文献   

3.
The study of the important role of peroxyl radicals in biological systems is limited by their difficult detection with direct electron spin resonance (ESR). Many ESR spectra were assigned to 5,5-dimethyl-1-pyrroline N-oxide (DMPO)/peroxyl radical adducts based only on the close similarity of their ESR spectra to that of DMPO/superoxide radical adduct in conjunction with their insensitivity to superoxide dismutase, which distinguishes the radical adduct from DMPO/superoxide radical adduct. Later, the spin-trapping literature reported that DMPO/peroxyl radical adducts have virtually the same hyperfine coupling constants as synthesized alkoxyl radical adducts, raising the issue of the correct assignment of peroxyl radical adducts. However, using 17O-isotope labelling, the methylperoxyl and methoxyl radical adducts should be distinguishable. We have reinvestigated the spin trapping of the methylperoxyl radical. The methylperoxyl radical was generated in aerobic solution with 17O-molecular oxygen either in a Fenton system with dimethylsulfoxide or in a chloroperoxidase system with tert-butyl hydroperoxide. Two different spin traps, DMPO and 2,2,4-trimethyl-2H-imidazole-1-oxide (TMIO), were used to trap methylperoxyl radical. 17O-labelled methanol was used to synthesize methoxyl radical adducts by nucleophylic addition. It was shown that the 17O hyperfine coupling constants of radical adducts formed in methylperoxyl radical-generating systems are identical to that of the methoxyl radical adduct. Therefore, methylperoxyl radical-producing systems form detectable methoxyl radical adduct, but not detectable methylperoxyl radical adducts at room temperature. One of the possible mechanisms is the decomposition of peroxyl radical adduct with the formation of secondary alkoxyl radical adduct. These results allow us to reinterpret previously published data reporting detection of peroxyl radical adducts. We suggest that detection of 17O-alkoxyl radical adduct from 17O-labelled molecular oxygen can be used as indirect evidence for peroxyl radical generation.  相似文献   

4.
The one-electron oxidation of (bi)sulfite is catalyzed by peroxidases to yield the sulfur trioxide radical anion (SO3-), a predominantly sulfur-centered radical as shown by studies with 33S-labeled (bi)sulfite. This radical reacts with molecular oxygen to form a peroxyl radical. The subsequent reaction of this peroxyl radical with (bi)sulfite has been proposed to form the sulfate anion radical, which is nearly as strong an oxidant as the hydroxyl radical. We used the spin trapping electron spin resonance technique to provide for the first time direct evidence for sulfate anion radical formation during (bi)sulfite peroxidation. The sulfate anion radical is known to react with many compounds more commonly thought of as hydroxyl radical scavengers such as formate and ethanol. Free radicals derived from these scavengers are trapped in systems where (bi)sulfite peroxidation has been inhibited by these scavengers.  相似文献   

5.
Matsuzaki S  Kotake Y  Humphries KM 《Biochemistry》2011,50(50):10792-10803
The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.  相似文献   

6.
Generation of free radicals induced by nifurtimox in mammalian tissues   总被引:1,自引:0,他引:1  
Nifurtimox is reduced by rat liver microsomes to a nitro anion-free radical as indicated by ESR spectroscopy. This subcellular fraction gives a steady state radical concentration which is proportional to the square root of the protein concentration, suggesting that the nifurtimox anion radical is a necessary intermediate in the reduction and that the radical decays through a nonenzymatic second order process. The steady state concentration of the anion radical in the microsomal system is not decreased by superoxide dismutase or catalase, thus indicating that neither the superoxide anion nor hydrogen peroxide is an intermediary in the generation of the anion radical. The steady state concentration of the anion radical in the microsomal system is also not altered in the presence of metyrapone or CO and is decreased in the presence of NADP+ and p-chloromercuribenzoate. This observation suggests that the formation of nifurtimox anion radical is mediated through NADPH-cytochrome P-450 (c) reductase and not by the cytochrome P-450 system. In accordance with this interpretation, a model system consisting of NADPH and FMN-reduced nifurtimox to the nitro anion-free radical. Nifurtimox anion radical generation is significantly stimulated by rat brain and testes homogenates. The enhanced free radical formation may be the basic cause of nifurtimox toxicity in mammals.  相似文献   

7.
E Cadenas  G Merényi  J Lind 《FEBS letters》1989,253(1-2):235-238
The reaction between the phenoxyl radical of Trolox C, a water-soluble vitamin E analogue, and superoxide anion radical was examined by using the pulse radiolysis technique. The results indicate that the Trolox C phenoxyl radical may undergo a rapid one-electron transfer from superoxide radical [k = (4.5 +/- 0.5) x 10(8) M-1.S-1] to its reduced form. This finding indicates that superoxide radical might play a role in the repair of vitamin e phenoxyl radical.  相似文献   

8.
Ribonucleotide reductase (RNR) catalyzes the biosynthesis of deoxyribonucleotides. The active enzyme contains a diiron center and a tyrosyl free radical required for enzyme activity. The radical is located at Y177 in the R2 protein of mouse RNR. The radical is formed concomitantly with the mu-oxo-bridged diferric center in a reconstitution reaction between ferrous iron and molecular oxygen in the protein. EPR at 9.6 and 285 GHz was used to investigate the reconstitution reaction in the double-mutant Y177F/I263C of mouse protein R2. The aim was to produce a protein-linked radical derived from the Cys residue in the mutant protein to investigate its formation and characteristics. The mutation Y177F hinders normal radical formation at Y177, and the I263C mutation places a Cys residue at the same distance from the iron center as Y177 in the native protein. In the reconstitution reaction, we observed small amounts of a transient radical with a probable assignment to a peroxy radical, followed by a stable sulfinyl radical, most likely located on C263. The unusual radical stability may be explained by the hydrophobic surroundings of C263, which resemble the hydrophobic pocket surrounding Y177 in native protein R2. The observation of a sulfinyl radical in RNR strengthens the relationship between RNR and another free radical enzyme, pyruvate formate-lyase, where a similar relatively stable sulfinyl radical has been observed in a mutant. Sulfinyl radicals may possibly be considered as stabilized forms of very short-lived thiyl radicals, proposed to be important intermediates in the radical chemistry of RNR.  相似文献   

9.
A tyrosine-derived free radical in apogalactose oxidase   总被引:1,自引:0,他引:1  
Oxidation of apogalactose oxidase with ferricyanide leads to the formation of a stable free radical exhibiting distinctive optical absorption and EPR spectral features. The radical is associated with absorption in both near-UV and near-IR spectral regions, and its EPR spectrum is characteristic of an aromatic free radical with gav = 2.005. Reconstitution of both the apoenzyme and the free radical-containing form with copper substantially restores both the absorption spectra and the catalytic activity of the active enzyme, indicating that the preparation of the radical species does not significantly damage the protein. The absence of a free radical EPR signal in reconstituted and activated galactose oxidase containing nearly stoichiometric copper suggests the radical is an active site species relating to the free radical-coupled copper site previously proposed for this enzyme. Isotopic labeling experiments demonstrate that the radical derives from a tyrosine residue. The distinctive spectra associated with this radical indicate an environment which is different from that associated with the tyrosyl phenoxyl sites in other free radical enzymes.  相似文献   

10.
The acetaminophen phenoxyl radical was generated by the oxidation of acetaminophen by horseradish peroxidase in a fast-flow ESR experiment, and its reaction with glutathione and ascorbate was studied. Glutathione reduces the phenoxyl radical of acetaminophen to regenerate acetaminophen and form the thiyl radical of glutathione. This thiyl radical reacts with the thiolate anion of glutathione to form the disulfide radical anion, which was detected and characterized by ESR spectroscopy. In the presence of ascorbate, the ascorbyl radical was produced by the reduction of the acetaminophen phenoxyl radical by ascorbate. This reaction results in the complete reduction of the free radical of acetaminophen, whereas the glutathione reduction of the phenoxyl radical of acetaminophen was not complete on the fast-flow ESR time scale of milliseconds. This suggests that ascorbate rather than glutathione is more likely to react with the acetaminophen phenoxyl free radical in vivo. In the presence of both ascorbate and higher concentrations of glutathione, the reaction with ascorbate is dominant. When cysteine was used in the place of reduced glutathione in the above assay system, the disulfide radical anion of cystine was observed in a manner similar to glutathione. These reactions may have significance in the detoxification of acetaminophen and the free radical metabolites of xenobiotics in general. Only in cells containing low levels of ascorbate can glutathione play a direct role in the detoxification of the acetaminophen phenoxyl radical.  相似文献   

11.
The reaction between metmyoglobin and hydrogen peroxide results in the two-electron reduction of H2O2 by the protein, with concomitant formation of a ferryl-oxo heme and a protein-centered free radical. Sperm whale metmyoglobin, which contains three tyrosine residues (Tyr-103, Tyr-146, and Tyr-151) and two tryptophan residues (Trp-7 and Trp-14), forms a tryptophanyl radical at residue 14 that reacts with O2 to form a peroxyl radical and also forms distinct tyrosyl radicals at Tyr-103 and Tyr-151. Horse metmyoglobin, which lacks Tyr-151 of the sperm whale protein, forms an oxygen-reactive tryptophanyl radical and also a phenoxyl radical at Tyr-103. Human metmyoglobin, in addition to the tyrosine and tryptophan radicals formed on horse metmyoglobin, also forms a Cys-110-centered thiyl radical that can also form a peroxyl radical. The tryptophanyl radicals react both with molecular oxygen and with the spin trap 3,5-dibromo-4-nitrosobenzenesulfonic acid (DBNBS). The spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) traps the Tyr-103 radicals and the Cys-110 thiyl radical of human myoglobin, and 2-methyl-2-nitrosopropane (MNP) traps all of the tyrosyl radicals. When excess H2O2 is used, DBNBS traps only a tyrosyl radical on horse myoglobin, but the detection of peroxyl radicals and the loss of tryptophan fluorescence support tryptophan oxidation under those conditions. Kinetic analysis of the formation of the various free radicals suggests that tryptophanyl radical and tyrosyl radical formation are independent events, and that formation of the Cys-110 thiyl radical on human myoglobin occurs via oxidation of the thiol group by the Tyr-103 phenoxyl radical. Peptide mapping studies of the radical adducts and direct EPR studies at low temperature and room temperature support the conclusions of the EPR spin trapping studies.  相似文献   

12.
利用停留仪快速反应动力学方法和自旋捕集ESR技术监测高铁离子自由基和自旋捕捉剂POBN的反应,发现高铁离子自由基本身不被自旋捕捉剂POBN捕捉,但是POBN可以捕捉到停流仪第三相中的OH,可能来自剩余的Fenton试剂或高铁离子自由基的衰变。以含两个双键的不饱和脂肪酸-亚油酸(LH)作为模型化合物,测定高铁离子自由基与亚油酸分子的反应速率。ESR结果表明,高铁离子自由基可能在一定程度上启动了亚油酸体系的脂质过氧化。  相似文献   

13.
Using Electron Spin Resonance (ESR) spectroscopy, we have identified the cysteine thiol peroxyl radical (CysSOO.) at low temperatures in two aqueous glasses. This radical shows a typical peroxyl radical ESR spectrum, but unlike carbon-based peroxyl radicals has a violet color (lambda max = 540 nm) and forms a new radical showing a singlet ESR spectrum when photobleached with visible light. The cysteine peroxyl radical reacts to form the cysteine sulfinyl radical (CysSO.) in the glass which allows warming to 165K. 17O isotopic substitution studies indicate dissolved molecular oxygen is the source of oxygen in CysSOO.. Anisotropic g-values and the parallel anisotropic 17O hyperfine couplings for this radical are reported.  相似文献   

14.
Radiation-induced free radical formation in single crystals of guanine hydrochloride dihydrate has been studied at temperatures between 20 and 300 K using ESR and ENDOR spectroscopy. At low temperatures three radical species are trapped. Two of these are the C8 H-addition radical R1 previously analysed by Alexander and Gordy (1967) and the O6-protonated anion radical R2. The third species (R4) remains unidentified. Upon annealing at 280 K for an extended period the protonated anion R2 transforms into a new radical R3 which exhibit a well-defined hyperfine pattern but still could not be identified unambiguously. Also radical R4 probably transforms into a new radical (R5) upon such treatment. One proton coupling due to R5 was detected. A scheme of radical reactions incorporating these five radicals is proposed. This scheme also suggests that differences in radical formation between the monohydrate and dihydrate crystals of guanine hydrochloride depends upon differences in the hydrogen bonding network.  相似文献   

15.
Several free radical intermediates formed during synthesis of prostaglandin H synthase (PGHS) catalyze the biosynthesis of prostaglandins from arachidonic acid (AA). We attempted to directly detect free radical intermediates of PGHS in cells. Studies were carried out using human platelets, which possess significant PGHS activity. Electron spin resonance (ESR) spectra showed a g = 2.005 signal radical, which was formed by the incubation of collagen, thrombin, AA, and a variety of peroxides with human platelets. The ESR spectra obtained using 5,5-dimethyl-1 pyrroline N-oxide (DMPO) and alpha-phenyl N-tert.-butylnitron (PBN) were typical of an immobilized nitroxide. Extensive Pronase digestion of both the DMPO and PBN adducts allowed us to deduce that it was a carbon-centered radical. The formation of this radical was inhibited by potassium cyanide and by desferroxamine. Peroxides stimulated formation of the g = 2.005 signal radical and inhibited platelet aggregation induced by AA. PGHS cosubstrates increased the intensity of the radical signal but inhibited platelet aggregation induced by AA. Both S-nitro-L-glutathione and reduced glutathione quenched the g = 2.005 radical but could not restore platelet aggregatory activity. These results suggest that the carbon-centered radical is a self-destructing free radical formed during peroxide-mediated deactivation of PGHS in human platelets.  相似文献   

16.
Peroxide-generated tyrosyl radicals in both prostaglandin H synthase (PGHS) isozymes have been demonstrated to couple the peroxidase and cyclooxygenase activities by serving as the immediate oxidant for arachidonic acid (AA) in cyclooxygenase catalysis. Acetylation of Ser-530 of PGHS-1 by aspirin abolishes all oxygenase activity and transforms the peroxide-induced tyrosyl radical from a functional 33-35-gauss (G) wide doublet/wide singlet to a 26-G narrow singlet unable to oxidize AA. In contrast, aspirin-treated PGHS-2 (ASA-PGHS-2) no longer forms prostaglandins but retains oxygenase activity forming 11(R)- and 15(R)-hydroperoxyeicosatetraenoic acid and also retains the EPR line-shape of the native peroxide-induced 29-30-G wide singlet radical. To evaluate the functional role of the wide singlet radical in ASA-PGHS-2, we have examined the ability of this radical to oxidize AA in single-turnover EPR studies. Anaerobic addition of AA to ASA-PGHS-2 immediately after formation of the wide singlet radical generated either a 7-line EPR signal similar to the pentadienyl AA radical obtained in native PGHS-2 or a 26-28-G singlet radical. These EPR signals could be accounted for by a pentadienyl radical and a strained allyl radical, respectively. Experiments using 11d-AA, 13(R)d-AA, 15d-AA, 13,15d(2)-AA, and octadeuterated AA (d(8)-AA) confirmed that the unpaired electron in the pentadienyl radical is delocalized over C11, C13, and C15. A 6-line EPR radical was observed when 16d(2)-AA was used, indicating only one strongly interacting C16 hydrogen. These results support a functional role for peroxide-generated tyrosyl radicals in lipoxygenase catalysis by ASA-PGHS-2 and also indicate that the AA radical in ASA-PGHS-2 is more constrained than the corresponding radical in native PGHS-2.  相似文献   

17.
Endothelial nitric-oxide synthase (eNOS) plays important roles in vascular physiology and homeostasis. Whether eNOS catalyzes nitric oxide biosynthesis or the synthesis of reactive oxygen species such as superoxide, hydrogen peroxide, and peroxynitrite is dictated by the bioavailability of tetrahydrobiopterin (BH(4)) and L-arginine during eNOS catalysis. The effect of BH(4) and L-arginine on oxygen-induced radical intermediates has been investigated by single turnover rapid-freeze quench and EPR spectroscopy using the isolated eNOS oxygenase domain (eNOS(ox)). Three distinct radical intermediates corresponding to >50% of the heme were observed during the reaction between ferrous eNOS(ox) and oxygen. BH(4)-free eNOS(ox) produced the superoxide radical very efficiently in the absence of L-arginine. L-Arginine decreased the formation rate of superoxide by an order of magnitude but not its final level or EPR line shape. For BH(4)-containing eNOS(ox), only a stoichiometric amount of BH(4) radical was produced in the presence of L-arginine, but in its absence a new radical was obtained. This new radical could be either a peroxyl radical of BH(4) or an amino acid radical was in the vicinity of the heme. Formation of this new radical is very rapid, >150 s(-1), and it was subsequently converted to a BH(4) radical. The trapping of the superoxide radical by cytochrome c in the reaction of BH(4)(-) eNOS(ox) exhibited a limiting rate of approximately 15 s(-1), the time for the superoxide radical to leave the heme pocket and reach the protein surface; this reveals a general problem of the regular spin-trapping method in determining radical formation kinetics. Cytochrome c failed to trap the new radical species. Together with other EPR characteristics, our data strongly support the conclusion that this new radical is not a superoxide radical or a mixture of superoxide and biopterin radicals. Our study points out distinct roles of BH(4) and L-arginine in regulating eNOS radical intermediates. BH(4) prevented superoxide formation by chemical conversions of the Fe(II)O(2) intermediate, and l-arginine delayed superoxide formation by electronic interaction with the heme-bound oxygen.  相似文献   

18.
The reaction of adenosylcobalamin-dependent dioldehydrase with 1,2-propanediol gives rise to a radical intermediate observable by EPR spectroscopy. This reaction requires a monovalent cation such as potassium ion. The radical signal arises from the formation of a radical pair comprised of the Co(II) of cob(II)alamin and a substrate-related radical generated upon hydrogen abstraction by the 5'-deoxyadenosyl radical. The high-field asymmetric doublet arising from the organic radical has allowed investigation of its composition and environment through the use of EPR spectroscopic techniques. To characterize the protonation state of the oxygen substituents in the radical intermediate, X-band EPR spectroscopy was performed in the presence of D(2)O and compared to the spectrum in H(2)O. Results indicate that the unpaired electron of the steady-state radical couples to a proton on the C(1) hydroxyl group. Other spectroscopic experiments were performed, using either potassium or thallous ion as the activating monovalent cation, in an attempt to exploit the magnetic nature of the (205,203)Tl nucleus to identify any intimate interaction of the radical intermediate with the activating cation. The radical intermediate in complex with dioldehydrase, cob(II)alamin and one of the activating monovalent cations was observed using EPR, ENDOR, and ESEEM spectroscopy. The spectroscopic evidence did not implicate a direct coordination of the activating cation and the substrate derived radical intermediate.  相似文献   

19.
Adenosylmethionine-dependent radical enzymes provide a novel mechanism for generating the highly oxidizing 5'-deoxyadenosyl radical in an anaerobic reducing environment. Recent studies suggest a unique covalent interaction between adenosylmethionine and a catalytic iron-sulfur cluster that may promote inner-sphere electron transfer to the sulfonium, resulting in the reductive cleavage of a C[bond]S and the generation of a 5'-deoxyadenosyl radical. The utilization of this radical as a catalytic and stoichiometric oxidant in many different enzyme reactions reflects the broad diversity of radical enzymes throughout biology.  相似文献   

20.
PLP catalyzes the 1,2 shifts of amino groups in free radical-intermediates at the active sites of amino acid aminomutases. Free radical forms of the substrates are created upon H atom abstractions carried out by the 5'-deoxyadenosyl radical. In most of these enzymes, the 5'-deoxyadenosyl radical is generated by an iron-sulfur cluster-mediated reductive cleavage of S-adenosyl-(S)-methionine. However, in lysine 5,6-aminomutase and ornithine 4,5-aminomutase, the radical is generated by homolytic cleavage of the cobalt-carbon bond of adenosylcobalamin. The imine linkages in the initial radical forms of the external aldimines undergo radical addition to form azacyclopropylcarbinyl radicals as central intermediates in the catalytic cycles. In the case of lysine 2,3-aminomutase, the multistep catalytic mechanism is corroborated by direct spectroscopic observation and characterization of a product radical trapped during steady-state turnover. Analogues of the substrate-related radical having substituents adjacent to the radical center to stabilize the unpaired electron are also observed and characterized spectroscopically. A functional allylic analogue of the 5'-deoxyadenosyl radical is observed spectroscopically. A high-resolution crystal structure fully supports the mechanistic proposals. Evidence for a similar free radical mediated amino group transfer in the adenosylcobalamin-dependent lysine 5,6-aminomutase is provided by spectroscopic detection and characterization of radicals generated from the 4-thia analogues of the lysine substrates. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号