首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acute subdural hematoma due to a bridging vein rupture is a devastating but rare injury. There has to date been no satisfactory biomechanical explanation for this infrequent but costly injury. We surmise that it may be associated with multiple head impacts. Though numerical models have been used to estimate vein strains in single impact events, none to date have examined the influence on localized brain strain of rapidly consecutive impacts. Using the Simulated Injury Monitor, we investigated the hypothesis that such double impacts can increase strain beyond that created by any single impact. Input to our parametric study comprised hypothetical biphasic rotational head accelerations producing a maximum angular velocity of 40 rad./s. In each of 19 simulations, two identical angular inputs are applied at right angles to each other but with time separations varying from 0 to 40 ms. For these double impacts, it has been generally found that strain in the region of the bridging veins is different, than what would be associated with any corresponding single impact. In some cases, the effect is to actually reduce the tissue strain. In others, the strain in the region of the bridging veins is increased markedly. The mechanistic explanation for the strain increase is that the tissue strain from the first impact has not diminished fully when strain from the second impact is initiated. Rapidly consecutive impacts could be a potential mechanism leading to vein rupture that warrants further investigation.  相似文献   

2.
Computational models of the human brain are widely used in the evaluation and development of helmets and other protective equipment. These models are often attempted to be validated using cadaver tissue displacements despite studies showing neural tissue degrades quickly after death. Addressing this limitation, this study aimed to develop a technique for quantifying living brain motion in vivo using a closed head impact animal model of traumatic brain injury (TBI) called CHIMERA. We implanted radiopaque markers within the brain of three adult ferrets and resealed the skull while the animals were anesthetized. We affixed additional markers to the skull to track skull kinematics. The CHIMERA device delivered controlled, repeatable head impacts to the head of the animals while the impacts were fluoroscopically stereo-visualized. We observed that 1.5 mm stainless steel fiducials (∼8 times the density of the brain) migrated from their implanted positions while neutral density targets remained in their implanted position post-impact. Brain motion relative to the skull was quantified in neutral density target tests and showed increasing relative motion at higher head impact severities. We observed the motion of the brain lagged behind that of the skull, similar to previous studies. This technique can be used to obtain a comprehensive dataset of in vivo brain motion to validate computational models reflecting the mechanical properties of the living brain. The technique would also allow the mechanical response of in vivo brain tissue to be compared to cadaveric preparations for investigating the fidelity of current human computational brain models.  相似文献   

3.
Jockey head injuries, especially concussions, are common in horse racing. Current helmets do help to reduce the severity and incidences of head injury, but the high concussion incidence rates suggest that there may be scope to improve the performance of equestrian helmets. Finite element simulations in ABAQUS/Explicit were used to model a realistic helmet model during standard helmeted rigid headform impacts and helmeted head model University College Dublin Brain Trauma Model (UCDBTM) impacts.

Current helmet standards for impact determine helmet performance based solely on linear acceleration. Brain injury-related values (stress and strain) from the UCDBTM showed that a performance improvement based on linear acceleration does not imply the same improvement in head injury-related brain tissue loads. It is recommended that angular kinematics be considered in future equestrian helmet standards, as angular acceleration was seen to correlate with stress and strain in the brain.  相似文献   

4.
Blunt and rotational head impacts due to vehicular collisions, falls and contact sports cause relative motion between the brain and skull. This increases the normal and shear stresses in the (skull/brain) interface region consisting of cerebrospinal fluid (CSF) and subarachnoid space (SAS) trabeculae. The relative motion between the brain and skull can explain many types of traumatic brain injuries (TBI) including acute subdural hematomas (ASDH) and subarachnoid hemorrhage (SAH) which is caused by the rupture of bridging veins that transverse from the deep brain tissue to the superficial meningeal coverings. The complicated geometry of the SAS trabeculae makes it impossible to model all the details of the region. Investigators have compromised this layer with solid elements, which may lead to inaccurate results. In this paper, the failure of the cerebral blood vessels due to the head impacts have been investigated. This is accomplished through a global/local modelling approach. Two global models, namely a global solid model (GSM) of the skull/brain and a global fluid model (GFM) of the SAS/CSF, were constructed and were validated. The global models were subjected to two sets of impact loads (head injury criterion, HIC = 740 and 1044). The relative displacements between the brain and skull were determined from GSM. The CSF equivalent fluid pressure due to the impact loads were determined by the GFM. To locally study the mechanism of the injury, the relative displacement between the brain and skull along with the equivalent fluid pressure were implemented into a new local solid model (LSM). The strains of the cerebral blood vessels were determined from LSM. These values were compared with their relevant experimental ultimate strain values. The results showed an agreement with the experimental values indicating that the second impact (HIC = 1044) was strong enough to lead to severe injury. The global/local approach provides a reliable tool to study the cerebral blood vessel ruptures leading to ASDH and/or SAH.  相似文献   

5.
Abstract

Sporting helmets with linear attenuating strategies are proficient at reducing the risk of traumatic brain injury. However, the continued high incidence of concussion in American football, has led researchers to investigate novel helmet liner strategies. These strategies typically supplement existing technologies by adding or integrating head-helmet decoupling mechanisms. Decoupling strategies aim to redirect or redistribute impact force around the head, reducing impact energy transferred to the brain. This results in decreased brain tissue strain, which is beneficial in injury risk reduction due to the link between tissue strain and concussive injury.

The purpose of this study was to mathematically demonstrate the effect of ten cases, representing theoretical redirection and redistribution helmet liner strategies, on brain tissue strain resulting from impacts to the head. The kinematic response data from twenty head impacts collected in the laboratory was mathematically modified to represent the altered response of the ten different cases and used as input parameters to determine the effect on maximum principal strain (MPS) values, calculated using finite element modeling. The results showed that a reduced dominant coordinate component (contributes the greatest to resultant) of rotational acceleration decreased maximum principal strain in American football helmets. The study theoretically demonstrates that liner strategies, if applied correctly, can influence brain motion, reduce brain tissue strain, and could decrease injury risk in an American football helmet.  相似文献   

6.
Every year, thousands of fatalities result from head injuries, the majority of which are sustained in automotive accidents. In this paper, an experimental study of the response of the human head to impact is presented. A rapid prototyped model of a human head was generated based on high-resolution magnetic resonance imaging (MRI) scan data. The physical model was subjected to low velocity impacts using a metallic pendulum and a sensitivity study was performed to explore the influence of various parameters, including mass and velocity of the impactor, on the response. The experimental response characteristics are compared with predictions from an analytical model as well as with numerical predictions from finite element (FE) models generated from the same MRI data set. The results from the experimental tests closely match those predicted by both the analytical and the FE models and thus provide us with substantive corroboration of all three approaches. The remarkable agreement obtained between the measured response characteristics of rapid-prototyped skulls and numerical (FE) models obtained from in vivo MRI data clearly demonstrates the potential use of rapid-prototyping to generate experimental models for head impact studies, and, more generally, for the study of the response of complex bio-structures to loading. In addition, the quantitative and qualitative accuracy of the predictions from the analytical model is clearly demonstrated by the FE and experimental corroboration. In particular, the analytical prediction that, as impact mass drops the impact duration becomes increasingly short, appears to be substantiated, which has important implications for the onset of high pressure and shear strain gradients in the brain with potentially deleterious effects.  相似文献   

7.
Concussion has been linked to the presence of injurious strains in the brain tissues. Research investigating severe brain injury has reported that strains in the brain may be affected by two parameters: magnitude of the acceleration, and duration of that acceleration. However, little is known how this relationship changes in terms of creating risk for brain injury for magnitudes and durations of acceleration common in sporting environments. This has particular implications for the understanding and prevention of concussive risk of injury in sporting environments. The purpose of this research was to examine the interaction between linear and rotational acceleration and duration on maximum principal strain in the brain tissues for loading conditions incurred in sporting environments. Linear and rotational acceleration loading curves of magnitudes and durations similar to those from impact in sport were used as input to the University College Brain Trauma Model and maximum principal strain (MPS) was measured for the different curves. The results demonstrated that magnitude and duration do have an effect on the strain incurred by the brain tissue. As the duration of the acceleration increases, the magnitude required to achieve strains reflecting a high risk of concussion decreases, with rotational acceleration becoming the dominant contributor. The magnitude required to attain a magnitude of MPS representing risk of brain injury was found to be as low as 2500 rad/s2 for impacts of 10–15 ms; indicating that interventions to reduce the risk of concussion in sport must consider the duration of the event while reducing the magnitude of acceleration the head incurs.  相似文献   

8.
Traumatic brain injury (TBI) research has attained renewed momentum due to the increasing awareness of head injuries, which result in morbidity and mortality. Based on the nature of primary injury following TBI, complex and heterogeneous secondary consequences result, which are followed by regenerative processes 1,2. Primary injury can be induced by a direct contusion to the brain from skull fracture or from shearing and stretching of tissue causing displacement of brain due to movement 3,4. The resulting hematomas and lacerations cause a vascular response 3,5, and the morphological and functional damage of the white matter leads to diffuse axonal injury 6-8. Additional secondary changes commonly seen in the brain are edema and increased intracranial pressure 9. Following TBI there are microscopic alterations in biochemical and physiological pathways involving the release of excitotoxic neurotransmitters, immune mediators and oxygen radicals 10-12, which ultimately result in long-term neurological disabilities 13,14. Thus choosing appropriate animal models of TBI that present similar cellular and molecular events in human and rodent TBI is critical for studying the mechanisms underlying injury and repair.Various experimental models of TBI have been developed to reproduce aspects of TBI observed in humans, among them three specific models are widely adapted for rodents: fluid percussion, cortical impact and weight drop/impact acceleration 1. The fluid percussion device produces an injury through a craniectomy by applying a brief fluid pressure pulse on to the intact dura. The pulse is created by a pendulum striking the piston of a reservoir of fluid. The percussion produces brief displacement and deformation of neural tissue 1,15. Conversely, cortical impact injury delivers mechanical energy to the intact dura via a rigid impactor under pneumatic pressure 16,17. The weight drop/impact model is characterized by the fall of a rod with a specific mass on the closed skull 18. Among the TBI models, LFP is the most established and commonly used model to evaluate mixed focal and diffuse brain injury 19. It is reproducible and is standardized to allow for the manipulation of injury parameters. LFP recapitulates injuries observed in humans, thus rendering it clinically relevant, and allows for exploration of novel therapeutics for clinical translation 20.We describe the detailed protocol to perform LFP procedure in mice. The injury inflicted is mild to moderate, with brain regions such as cortex, hippocampus and corpus callosum being most vulnerable. Hippocampal and motor learning tasks are explored following LFP.  相似文献   

9.
The purpose of this study was to quantify head impact exposure (frequency, location and magnitude of head impacts) for individual male and female collegiate ice hockey players and to investigate differences in exposure by sex, player position, session type, and team. Ninety-nine (41 male, 58 female) players were enrolled and 37,411 impacts were recorded over three seasons. Frequency of impacts varied significantly by sex (males: 287 per season, females: 170, p<0.001) and helmet impact location (p<0.001), but not by player position (p=0.088). Head impact frequency also varied by session type; both male and female players sustained more impacts in games than in practices (p<0.001), however the magnitude of impacts did not differ between session types. There was no difference in 95th percentile peak linear acceleration between sexes (males: 41.6 g, females: 40.8 g), but 95th percentile peak rotational acceleration and HITsp (a composite severity measure) were greater for males than females (4424, 3409 rad/s2, and 25.6, 22.3, respectively). Impacts to the back of the helmet resulted in the greatest 95th percentile peak linear accelerations for males (45.2 g) and females (50.4 g), while impacts to the side and back of the head were associated with the greatest 95th percentile peak rotational accelerations (males: 4719, 4256 rad/sec2, females: 3567, 3784 rad/sec2 respectively). It has been proposed that reducing an individual's head impact exposure is a practical approach for reducing the risk of brain injuries. Strategies to decrease an individual athlete's exposure need to be sport and gender specific, with considerations for team and session type.  相似文献   

10.
《IRBM》2019,40(4):244-252
BackgroundMany head injury indices and finite element (FE) head models have been proposed to predict traumatic brain injury (TBI). Although FE head models are suitable methods with high accuracy, they are computationally intensive. Head motion-based brain injury criteria are usually fast tools with lower accuracy. So, the objective of this study is to propose new criteria along with an artificial neural network model to predict TBI risks, which can be fast and accurate.MethodsFor this purpose, 250 FE head simulations have been carried out at 5 magnitudes and 50 rotational impact directions using the SIMon model. The effects of directions and magnitudes of rotational impacts were assessed for cumulative strain damage measure (CSDM) values. Next, statistical analysis and neural network were applied to predict CSDM values.ResultsThe results of the present research showed that the direction of rotation in the sagittal and frontal planes had a considerable effect on the CSDM values. Furthermore, new brain injury indices and a radial basis function neural network have been proposed to predict CSDM values which having high correlation coefficients with SIMon responses.ConclusionsThe results of this research demonstrated that rotational impact directions should be used to develop new head injury criteria being able to predict CSDM values. However, findings of present research proved that head motion-based brain injury criteria and RBF network can be used to predict FE head model responses with high speed and accuracy.  相似文献   

11.
Ice hockey has the highest rates for concussion among team sports in Canada. In elite play, the most common mechanism is impact to the head by an opposing player’s upper limb, with shoulder-to-head impacts accounting for twice as many concussions as elbow- and hand-to-head impacts combined. Improved understanding of the biomechanics of head impacts in hockey may inform approaches to prevention. In this study, we measured the magnitude and duration of linear and rotational head accelerations when hockey players (n = 11; aged 21–25) delivered checks “as hard as comfortable” to the head of an instrumented dummy with their shoulder, elbow and hand. There were differences in both peak magnitude and duration of head accelerations across upper limb impact sites, based on repeated-measures ANOVA (p < 0.005). Peak linear head accelerations averaged 1.9-fold greater for hand and 1.3-fold greater for elbow than shoulder (mean values = 20.35, 14.23 and 10.55 g, respectively). Furthermore, peak rotational head accelerations averaged 2.1-fold greater for hand and 1.8-fold greater for elbow than shoulder (1097.9, 944.1 and 523.1 rad/s2, respectively). However, times to peak linear head acceleration (a measure of the duration of the acceleration impulse) were 2.1-fold longer for shoulder than elbow, and 2.5-fold longer for shoulder than hand (12.26, 5.94 and 4.98 ms, respectively), and there were similar trends in the durations of rotational head acceleration. Our results show that, in body checks to the head delivered by varsity-level hockey players, shoulder-to-head impacts generated longer durations but lower magnitude of peak head acceleration than elbow- and hand-to-head impacts.  相似文献   

12.
On-field measurement of head impacts has relied on the Head Impact Telemetry (HIT) System, which uses helmet mounted accelerometers to determine linear and angular head accelerations. HIT is used in youth and collegiate football to assess the frequency and severity of helmet impacts. This paper evaluates the accuracy of HIT for individual head impacts. Most HIT validations used a medium helmet on a Hybrid III head. However, the appropriate helmet is large based on the Hybrid III head circumference (58 cm) and manufacturer's fitting instructions. An instrumented skull cap was used to measure the pressure between the head of football players (n=63) and their helmet. The average pressure with a large helmet on the Hybrid III was comparable to the average pressure from helmets used by players. A medium helmet on the Hybrid III produced average pressures greater than the 99th percentile volunteer pressure level. Linear impactor tests were conducted using a large and medium helmet on the Hybrid III. Testing was conducted by two independent laboratories. HIT data were compared to data from the Hybrid III equipped with a 3-2-2-2 accelerometer array. The absolute and root mean square error (RMSE) for HIT were computed for each impact (n=90). Fifty-five percent (n=49) had an absolute error greater than 15% while the RMSE was 59.1% for peak linear acceleration.  相似文献   

13.
Sports‐related head impact and injury has become a very highly contentious public health and medico‐legal issue. Near‐daily news accounts describe the travails of concussed athletes as they struggle with depression, sleep disorders, mood swings, and cognitive problems. Some of these individuals have developed chronic traumatic encephalopathy, a progressive and debilitating neurodegenerative disorder. Animal models have always been an integral part of the study of traumatic brain injury in humans but, historically, they have concentrated on acute, severe brain injuries. This review will describe a small number of new and emerging animal models of sports‐related head injury that have the potential to increase our understanding of how multiple mild head impacts, starting in adolescence, can have serious psychiatric, cognitive and histopathological outcomes much later in life.

  相似文献   


14.
The woodpecker does not suffer head/eye impact injuries while drumming on a tree trunk with high acceleration(more than 1000×g) and high frequency.The mechanism that protects the woodpecker’s head has aroused the interest of ornithologists,biologists and scientists in the areas of mechanical engineering,material science and electronics engineering.This article reviews the literature on the biomechanisms and materials responsible for protecting the woodpecker from head impact injury and their applications in engineering and human protection.  相似文献   

15.
Rollover crashes are dynamic and complex events in which head impacts with the roof can cause catastrophic neck injuries. Ex vivo and computational models are valuable in understanding, and ultimately preventing, these injuries. Although neck posture and muscle activity influence the resulting injury, there is currently no in vivo data describing these parameters immediately prior to a head-first impact. The specific objectives of this study were to determine the in vivo neck vertebral alignment and muscle activation levels when upside down, a condition that occurs during a rollover. Eleven human subjects (6F, 5M) were tested while seated upright and inverted in a custom-built apparatus. Vertebral alignment was measured using fluoroscopy and muscle activity was recorded using surface and indwelling electrodes in eight superficial and deep neck muscles. In vivo vertebral alignment and muscle activation levels differed between the upright and inverted conditions. When inverted and relaxed, the neck was more lordotic, C1 was aligned posterior to C7, the Frankfort plane was extended, and the activity of six muscles increased compared to upright and relaxed. When inverted subjects were asked to look forward to eliminate head extension, flexor muscle activity increased, C7 was more flexed, and C1 was aligned anterior to C7 versus upright and relaxed. Combined with the large inter-subject variability observed, these findings indicate that cadaveric or computational models designed to study injuries and prevention devices while inverted need to consider a variety of postures and muscle conditions to be relevant to the in vivo situation.  相似文献   

16.
Concussion in American football is a prevalent concern. Research has been conducted examining frequencies, location, and thresholds for concussion from impacts. Little work has been done examining how impact location may affect risk of concussive injury. The purpose of this research was to examine how impact site on the helmet and type of impact, affects the risk of concussive injury as quantified using finite element modelling of the human head and brain. A linear impactor was used to impact a helmeted Hybrid III headform in several locations and using centric and non-centric impact vectors. The resulting dynamic response was used as input for the Wayne State Brain Injury Model to determine the risk of concussive injury by utilizing maximum principal strain as the predictive variable. The results demonstrated that impacts that occur primarily to the side of the head resulted in higher magnitudes of strain in the grey and white matter, as well as the brain stem. Finally, commonly worn American football helmets were used in this research and significant risk of injury was incurred for all impacts. These results suggest that improvements in American football helmets are warranted, in particular for impacts to the side of the helmet.  相似文献   

17.
In order to predict and evaluate injury mechanism and biomechanical response of the facial impact on head injury in a crash accident. With the combined modern medical imaging technologies, namely computed tomography (CT) and magnetic resonance imaging (MRI), both geometric and finite element (FE) models for human head-neck with detailed cranio-facial structure were developed. The cadaveric head impact tests were conducted to validate the headneck finite element model. The intracranial pressure, skull dynamic response and skull-brain relative displacement of the whole head-neck model were compared with experimental data. Nine typical cases of facial traffic accidents were simulated, with the individual stress wave propagation paths to the intracranial contents through the facial and cranial skeleton being discussed thoroughly. Intracranial pressure, von Mises stress and shear stress distribution were achieved. It is proved that facial structure dissipates a large amount of impact energy to protect the brain in its most natural way. The propagation path and distribution of stress wave in the skull and brain determine the mechanism of brain impact injury, which provides a theoretic basis for the diagnosis, treatment and protection of craniocerebral injury caused by facial impact.  相似文献   

18.
Due to the high mortality incident brought about by traumatic brain injury (TBI), methods that would enable one to better understand the underlying mechanisms involved in it are useful for treatment. There are both in vivo and in vitro methods available for this purpose. In vivo models can mimic actual head injury as it occurs during TBI. However, in vivo techniques may not be exploited for studies at the cell physiology level. Hence, in vitro methods are more advantageous for this purpose since they provide easier access to the cells and the extracellular environment for manipulation.Our protocol presents an in vitro model of TBI using stretch injury in brain microvascular endothelial cells. It utilizes pressure applied to the cells cultured in flexible-bottomed wells. The pressure applied may easily be controlled and can produce injury that ranges from low to severe. The murine brain microvascular endothelial cells (cEND) generated in our laboratory is a well-suited model for the blood brain barrier (BBB) thus providing an advantage to other systems that employ a similar technique. In addition, due to the simplicity of the method, experimental set-ups are easily duplicated. Thus, this model can be used in studying the cellular and molecular mechanisms involved in TBI at the BBB.  相似文献   

19.
In American football, impacts to the helmet and the resulting head accelerations are the primary cause of concussion injury and potentially chronic brain injury. The purpose of this study was to quantify exposures to impacts to the head (frequency, location and magnitude) for individual collegiate football players and to investigate differences in head impact exposure by player position. A total of 314 players were enrolled at three institutions and 286,636 head impacts were recorded over three seasons. The 95th percentile peak linear and rotational acceleration and HITsp (a composite severity measure) were 62.7g, 4378rad/s(2) and 32.6, respectively. These exposure measures as well as the frequency of impacts varied significantly by player position and by helmet impact location. Running backs (RB) and quarter backs (QB) received the greatest magnitude head impacts, while defensive line (DL), offensive line (OL) and line backers (LB) received the most frequent head impacts (more than twice as many than any other position). Impacts to the top of the helmet had the lowest peak rotational acceleration (2387rad/s(2)), but the greatest peak linear acceleration (72.4g), and were the least frequent of all locations (13.7%) among all positions. OL and QB had the highest (49.2%) and the lowest (23.7%) frequency, respectively, of front impacts. QB received the greatest magnitude (70.8g and 5428rad/s(2)) and the most frequent (44% and 38.9%) impacts to the back of the helmet. This study quantified head impact exposure in collegiate football, providing data that is critical to advancing the understanding of the biomechanics of concussive injuries and sub-concussive head impacts.  相似文献   

20.
Pediatric necks present different responses and injury patterns compared with those of adults in motor vehicle crashes (MVCs). To evaluate the effect of different muscle modeling methodologies, three muscle models were developed and simulated under low-speed frontal impact conditions with an average peak acceleration of 3g's. The muscle activation curve for the curve-guided model, the muscle segment was curved using guiding nodes, was further optimized based on experimental data. The pediatric neck model was also simulated under more severe frontal impact conditions with an average peak acceleration of 8g's. Simulation results revealed that the curve-guided model needed more muscle force than the straight-guided model, in which the muscle segment was straight with guiding nodes, and the curve-constrained model, in which the muscle segment was curved without guiding nodes and which imposes more constraints on the head and neck than the curve-guided model. The predicted head responses for the child finite element neck model were within or close to the experimental corridors of 3- and 8-g's frontal impacts. The neck injuries for a 10-year-old child commonly occurred at the interspinous ligament in the C7–T1 segment. The model could be used to analyze the responses and injuries of pediatric neck and head in low-speed frontal impacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号