首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole-genome duplication (WGD) is believed to be one of the major evolutionary events that shaped the genome organization of vertebrates. Here, we review recent research on vertebrate genome evolution, specifically on WGD and its consequences for gene and genome evolution in teleost fishes. Recent genome analyses confirmed that all vertebrates experienced two rounds of WGD early in their evolution, and that teleosts experienced a subsequent additional third-round (3R)-WGD. The 3R-WGD was estimated to have occurred 320–400 million years ago in a teleost ancestor, but after its divergence from a common ancestor with living non-teleost actinopterygians (Bichir, Sturgeon, Bowfin, and Gar) based on the analyses of teleost-specific duplicate genes. This 3R-WGD was confirmed by synteny analysis and ancestral karyotype inference using the genome sequences of Tetraodon and medaka. Most of the tetrapods, on the other hand, have not experienced an additional WGD; however, they have experienced repeated chromosomal rearrangements throughout the whole genome. Therefore, different types of chromosomal events have characterized the genomes of teleosts and tetrapods, respectively. The 3R-WGD is useful to investigate the consequences of WGD because it is an evolutionarily recent WGD and thus teleost genomes retain many more WGD-derived duplicates and “traces” of their evolution. In addition, the remarkable morphological, physiological, and ecological diversity of teleosts may facilitate understanding of macrophenotypic evolution on the basis of genetic/genomic information. We highlight the teleosts with 3R-WGD as unique models for future studies on ecology and evolution taking advantage of emerging genomics technologies and systems biology environments.  相似文献   

2.
It is now clear that a whole-genome duplication (WGD) occurred at the base of the teleost fish lineage. Like the other anciently polyploid genomes investigated so far, teleost genomes now behave like diploids with chromosomes forming pairs at meiosis. The diploidization process is currently poorly understood. It is associated with many gene deletions, such that one of the duplicates is lost at most loci and has also been proposed to coincide with an increase in genomic instability. Here we ask whether WGD is a determinant of the genomic rearrangement rate in teleosts. We study variability of the rates of rearrangement along a vertebrate phylogenetic tree, composed of 3 tetrapods (human, chicken, and mouse) and 3 teleost fishes (zebrafish, Tetraodon, and Takifugu), whose complete genome sequences are available. We devise a simple parsimony method for counting rearrangements, which takes into account various methodological complications caused by the WGD and the subsequent gene losses. We show that there does appear to be an increase in rearrangement rate after WGD, but that there is also a great deal of additional variability in rearrangement rates across species.  相似文献   

3.
K. Noack  R. Zardoya    A. Meyer 《Genetics》1996,144(3):1165-1180
The evolutionary position of bichirs is disputed, and they have been variously aligned with ray-finned fish (Actinopterygii) or lobe-finned fish (Sarcopterygii), which also include tetrapods. Alternatively, they have been placed into their own group, the Brachiopterygii. The phylogenetic position of bichirs as possibly the most primitive living bony fish (Osteichthyes) made knowledge about their mitochondrial genome of considerable evolutionary interest. We determined the complete nucleotide sequence (16,624 bp) of the mitochondrial genome of a bichir, Polypterus ornatipinnis. Its genome contains 13 protein-coding genes, 22 tRNAs, two rRNAs and one major noncoding region. The genome''s structure and organization show that this is the most basal vertebrate that conforms to the consensus vertebrate mtDNA gene order. Bichir mitochondrial protein-coding and ribosomal RNA genes have greater sequence similarity to ray-finned fish than to either lamprey or lungfish. Phylogenetic analyses suggest the bichir''s placement as the most basal living member of the ray-finned fish and rule out its classification as a lobe-finned fish. Hence, its lobe-fins are probably not a shared-derived trait with those of lobe-finned fish (Sarcopterygii).  相似文献   

4.

Background   

Whole genome duplication (WGD) is a special case of gene duplication, observed rarely in animals, whereby all genes duplicate simultaneously through polyploidisation. Two rounds of WGD (2R-WGD) occurred at the base of vertebrates, giving rise to an enormous wave of genetic novelty, but a systematic analysis of functional consequences of this event has not yet been performed.  相似文献   

5.
One important mechanism for functional innovation during evolution is the duplication of genes and entire genomes. Evidence is accumulating that during the evolution of vertebrates from early deuterostome ancestors entire genomes were duplicated through two rounds of duplications (the 'one-to-two-to-four' rule). The first genome duplication in chordate evolution might predate the Cambrian explosion. The second genome duplication possibly dates back to the early Devonian. Recent data suggest that later in the Devonian, the fish genome was duplicated for a third time to produce up to eight copies of the original deuterostome genome. This last duplication took place after the two major radiations of jawed vertebrate life, the ray-finned fish (Actinopterygia) and the sarcopterygian lineage, diverged. Therefore the sarcopterygian fish, which includes the coelacanth, lungfish and all land vertebrates such as amphibians, reptiles, birds and mammals, tend to have only half the number of genes compared with actinopterygian fish. Although many duplicated genes turned into pseudogenes, or even 'junk' DNA, many others evolved new functions particularly during development. The increased genetic complexity of fish might reflect their evolutionary success and diversity.  相似文献   

6.
The vertebrate genome is a result of two rapid and successive rounds of whole genome duplication, referred to as 1R and 2R. Furthermore, teleost fish have undergone a third whole genome duplication (3R) specific to their lineage, resulting in the retention of multiple gene paralogs. The more recent 3R event in teleosts provides a unique opportunity to gain insight into how genes evolve through specific evolutionary processes. In this study we compare molecular activities of vitamin D receptors (VDR) from basal species that diverged at key points in vertebrate evolution in order to infer derived and ancestral VDR functions of teleost paralogs. Species include the sea lamprey (Petromyzon marinus), a 1R jawless fish; the little skate (Leucoraja erinacea), a cartilaginous fish that diverged after the 2R event; and the Senegal bichir (Polypterus senegalus), a primitive 2R ray-finned fish. Saturation binding assays and gel mobility shift assays demonstrate high affinity ligand binding and classic DNA binding characteristics of VDR has been conserved across vertebrate evolution. Concentration response curves in transient transfection assays reveal EC50 values in the low nanomolar range, however maximum transactivational efficacy varies significantly between receptor orthologs. Protein-protein interactions were investigated using co-transfection, mammalian 2-hybrid assays, and mutations of coregulator activation domains. We then combined these results with our previous study of VDR paralogs from 3R teleosts into a bioinformatics analysis. Our results suggest that 1, 25D3 acts as a partial agonist in basal species. Furthermore, our bioinformatics analysis suggests that functional differences between VDR orthologs and paralogs are influenced by differential protein interactions with essential coregulator proteins. We speculate that we may be observing a change in the pharmacodynamics relationship between VDR and 1, 25D3 throughout vertebrate evolution that may have been driven by changes in protein-protein interactions between VDR and essential coregulators.  相似文献   

7.
John Edwards 《FEBS letters》2010,584(5):1047-1053
Using conservation of synteny I show how the four thymosins expressed by teleost fish are related to the three of tetrapods, which is not evident from their protein sequences. This clarification was aided by identification of a novel thymosin of reptilians that replaces the β10 thymosin of mammals. Recent reconstruction of the ancestral vertebrate genome suggests that divergence of β-thymosins began with duplication preceding the two rounds of whole genome duplication.  相似文献   

8.
Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999   总被引:6,自引:0,他引:6  
In this article I review research undertaken over the past 30 years into the role that gene duplication played in shaping vertebrate genomes. I discuss early karyotype studies that pointed to a relative stability of mammalian and avian genomes, the discovery and possible evolutionary significance of enormous genomes in urodele amphibians and lungfish, genome compaction in certain specialised bony fish, evidence for two rounds of total genome doubling in early vertebrate evolution and the fate of duplicated genes in polyploid fish.  相似文献   

9.

Background  

Recent genomic studies have revealed a teleost-specific third-round whole genome duplication (3R-WGD) event occurred in a common ancestor of teleost fishes. However, it is unclear how the genes duplicated in this event were lost or persisted during the diversification of teleosts, and therefore, how many of the duplicated genes contribute to the genetic differences among teleosts. This subject is also important for understanding the process of vertebrate evolution through WGD events. We applied a comparative evolutionary approach to this question by focusing on the genes involved in long-term potentiation, taste and olfactory transduction, and the tricarboxylic acid cycle, based on the whole genome sequences of four teleosts; zebrafish, medaka, stickleback, and green spotted puffer fish.  相似文献   

10.
11.
鱼类特异的基因组复制   总被引:2,自引:0,他引:2  
周莉  汪洋  桂建芳 《动物学研究》2006,27(5):525-532
辐鳍鱼类是脊椎动物中种类最多、分布最广的类群,其基因组大小不等。过去的观点认为,在脊椎动物进化历程中曾发生了两次基因组复制。近期的系统基因组学研究资料进一步提出,在大约350百万年,辐鳍鱼还发生了第三次基因组复制,即鱼类特异的基因组复制(fish-specificgenomeduplication,FSGD),且发生的时间正处在“物种极度丰富”的硬骨鱼谱系(真骨总目)和“物种贫乏”的谱系(辐鳍鱼纲基部的类群)出现分歧的时间点,表明FSGD与硬骨鱼物种和生物多样性的增加有关。进一步开展鱼类比较基因组学和功能基因组学研究将进一步验证FSGD这一假说。  相似文献   

12.
Paralemmin-1 is a protein implicated in plasma membrane dynamics, the development of filopodia, neurites and dendritic spines, as well as the invasiveness and metastatic potential of cancer cells. However, little is known about its mode of action, or about the biological functions of the other paralemmin isoforms: paralemmin-2, paralemmin-3 and palmdelphin. We describe here evolutionary analyses of the paralemmin gene family in a broad range of vertebrate species. Our results suggest that the four paralemmin isoform genes (PALM1, PALM2, PALM3 and PALMD) arose by quadruplication of an ancestral gene in the two early vertebrate genome duplications. Paralemmin-1 and palmdelphin were further duplicated in the teleost fish specific genome duplication. We identified a unique sequence motif common to all paralemmins, consisting of 11 highly conserved residues of which four are invariant. A single full-length paralemmin homolog with this motif was identified in the genome of the sea lamprey Petromyzon marinus and an isolated putative paralemmin motif could be detected in the genome of the lancelet Branchiostoma floridae. This allows us to conclude that the paralemmin gene family arose early and has been maintained throughout vertebrate evolution, suggesting functional diversification and specific biological roles of the paralemmin isoforms. The paralemmin genes have also maintained specific features of gene organisation and sequence. This includes the occurrence of closely linked downstream genes, initially identified as a readthrough fusion protein with mammalian paralemmin-2 (Palm2-AKAP2). We have found evidence for such an arrangement for paralemmin-1 and -2 in several vertebrate genomes, as well as for palmdelphin and paralemmin-3 in teleost fish genomes, and suggest the name paralemmin downstream genes (PDG) for this new gene family. Thus, our findings point to ancient roles for paralemmins and distinct biological functions of the gene duplicates.  相似文献   

13.
Semyonov J  Park JI  Chang CL  Hsu SY 《PloS one》2008,3(4):e1903
One of the most interesting questions in biology is whether certain pathways have been favored during evolution, and if so, what properties could cause such a preference. Due to the lack of experimental evidence, whether select gene families have been preferentially retained over time after duplication in metazoan organisms remains unclear. Here, by syntenic mapping of nonchemosensory G protein-coupled receptor genes (nGPCRs which represent half the receptome for transmembrane signaling) in the vertebrate genomes, we found that, as opposed to the 8-15% retention rate for whole genome duplication (WGD)-derived gene duplicates in the entire genome of pufferfish, greater than 27.8% of WGD-derived nGPCRs which interact with a nonpeptide ligand were retained after WGD in pufferfish Tetraodon nigroviridis. In addition, we show that concurrent duplication of cognate ligand genes by WGD could impose selection of nGPCRs that interact with a polypeptide ligand. Against less than 2.25% probability for parallel retention of a pair of WGD-derived ligands and a pair of cognate receptor duplicates, we found a more than 8.9% retention of WGD-derived ligand-nGPCR pairs--threefold greater than one would surmise. These results demonstrate that gene retention is not uniform after WGD in vertebrates, and suggest a Darwinian selection of GPCR-mediated intercellular communication in metazoan organisms.  相似文献   

14.
水稻和其他禾本科植物基因组多倍体起源的证据   总被引:5,自引:0,他引:5  
基因加倍(Gene duplication)被认为是进化的加速器。古老的基因组加倍事件已经在多个物种中被确定,包括酵母、脊椎动物以及拟南芥等。本研究发现水稻基因组同样存在全基因组加倍事件,大概发生在禾谷类作物分化之前,距今约7000万年。在水稻基因组中,共找到117个加倍区段(Duplicated block),分布在水稻的全部12条染色体,覆盖约60%的水稻基因组。在加倍区段,大约有20%的基因保留了加倍后的姊妹基因对(Duplicated pairs)。与此形成鲜明对照的是加倍区段的转录因子保留了60%的姊妹基因。禾本科植物全基因组加倍事件的确定对研究禾本科植物基因组的进化具有重要影响,暗示了多倍体化及随后的基因丢失、染色体重排等在禾谷类物种分化中扮演了重要角色。  相似文献   

15.
The predictability of evolution is debatable, with recent evidence suggesting that outcomes may be constrained by gene interaction networks [1]. Whole-genome duplication (WGD; polyploidization-ubiquitous in plant evolution [2]) provides the opportunity to evaluate the predictability of genome reduction, a pervasive feature of evolution [3, 4]. Repeated patterns of genome reduction appear to have occurred via duplicated gene (homeolog) loss in divergent species following ancient WGD [5-9], with evidence for preferential retention of duplicates in certain gene classes [8-10]. The speed at which these patterns arise is unknown. We examined presence/absence of 70 homeologous loci in 59 Tragopogon miscellus plants from five natural populations of independent origin; this allotetraploid arose ~80 years ago via hybridization between diploid parents and WGD [11]. Genes were repeatedly retained or lost in clusters, and the gene ontology categories of the missing genes correspond to those lost after ancient WGD in the same family (Asteraceae; sunflower family) [6] and with gene dosage sensitivity [8]. These results provide evidence that the outcomes of WGD are predictable, even in 40 generations, perhaps due to the connectivity of gene products [8, 10, 12]. The high frequency of single-allele losses detected and low frequency of changes fixed within populations provide evidence for ongoing evolution.  相似文献   

16.
Kim MS  Seo JS  Ahn SJ  Kim NY  Je JE  Sung JH  Lee HH  Chung JK 《Genomics》2008,92(5):366-371
Fishes possess more genes than other vertebrates, possibly because of a genome duplication event during the evolution of the teleost (ray-finned) fish lineage. To further explore this idea, we cloned five genes encoding phosphoinositide-specific phospholipase C-delta (PLC-delta), designated respectively PoPLC-deltas, from olive flounder (Paralichthys olivaceus), and we performed phylogenetic analysis and sequence comparison to compare our putative gene products (PoPLC-deltas) with the sequences of known human PLC isoforms. The deduced amino acid sequences shared high sequence identity with human PLC-delta1, -delta3, and -delta4 isozymes and exhibited similar primary structures. In phylogenetic analysis of PoPLC-deltas with PLC-deltas of five teleost fishes (zebrafish, stickleback, medaka, Tetraodon, and Takifugu), three tetrapods (human, chicken, and frog), and two tunicates (sea squirt and pacific sea squirt), whose putative sequences of PLC-delta are available in Ensembl genome browser, the result also indicated that the two paralogous genes corresponding to each PLC-delta isoform originated from fish-specific genome duplication prior to the divergence of teleost fish. Our analyses suggest that an ancestral PLC-delta gene underwent three rounds of genome duplication during the evolution of vertebrates, leading to the six genes of three PLC-delta isoforms in teleost fish.  相似文献   

17.
While the proposal that large-scale genome expansions occurred early in vertebrate evolution is widely accepted, the exact mechanisms of the expansion—such as a single or multiple rounds of whole genome duplication, bloc chromosome duplications, large-scale individual gene duplications, or some combination of these—is unclear. Gene families with a single invertebrate member but four vertebrate members, such as the Hox clusters, provided early support for Ohno's hypothesis that two rounds of genome duplication (the 2R-model) occurred in the stem lineage of extant vertebrates. However, despite extensive study, the duplication history of the Hox clusters has remained unclear, calling into question its usefulness in resolving the role of large-scale gene or genome duplications in early vertebrates. Here, we present a phylogenetic analysis of the vertebrate Hox clusters and several linked genes (the Hox “paralogon”) and show that different phylogenies are obtained for Dlx and Col genes than for Hox and ErbB genes. We show that these results are robust to errors in phylogenetic inference and suggest that these competing phylogenies can be resolved if two chromosomal crossover events occurred in the ancestral vertebrate. These results resolve conflicting data on the order of Hox gene duplications and the role of genome duplication in vertebrate evolution and suggest that a period of genome reorganization occurred after genome duplications in early vertebrates.  相似文献   

18.
Hox cluster organization represents a valuable marker to study the effects of recent genome duplication in salmonid fish (25-100 Mya). Using polymerase chain reaction amplification of cDNAs, BAC library screening, and genome walking, we reconstructed 13 Hox clusters in the Atlantic salmon containing 118 Hox genes including 8 pseudogenes. Hox paralogs resulting from the genome duplication preceding the radiation of ray-finned fish have been much better preserved in salmon than in other model teleosts. The last genome duplication in the salmon lineage has been followed by the loss of 1 of the 4 HoxA clusters. Four rounds of genome duplication after the vertebrate ancestor salmon Hox clusters display the main organizational features of vertebrate Hox clusters, with Hox genes exclusively that are densely packed in the same orientation. Recently, duplicated Hox clusters have engaged a process of divergence, with several cases of pseudogenization or asymmetrical evolution of Hox gene duplicates, and a marked erosion of identity in noncoding sequences. Strikingly, the level of divergence attained strongly depends on the Hox cluster pairs rather than on the Hox genes within each cluster. It is particularly high between both HoxBb clusters and both HoxDa clusters, whereas both HoxBa clusters remained virtually identical. Positive selection on the Hox protein-coding sequences could not be detected.  相似文献   

19.
It has been hypothesized that two successive rounds of whole-genome duplication (WGD) in the stem lineage of vertebrates provided genetic raw materials for the evolutionary innovation of many vertebrate-specific features. However, it has seldom been possible to trace such innovations to specific functional differences between paralogous gene products that derive from a WGD event. Here, we report genomic evidence for a direct link between WGD and key physiological innovations in the vertebrate oxygen transport system. Specifically, we demonstrate that key globin proteins that evolved specialized functions in different aspects of oxidative metabolism (hemoglobin, myoglobin, and cytoglobin) represent paralogous products of two WGD events in the vertebrate common ancestor. Analysis of conserved macrosynteny between the genomes of vertebrates and amphioxus (subphylum Cephalochordata) revealed that homologous chromosomal segments defined by myoglobin + globin-E, cytoglobin, and the α-globin gene cluster each descend from the same linkage group in the reconstructed proto-karyotype of the chordate common ancestor. The physiological division of labor between the oxygen transport function of hemoglobin and the oxygen storage function of myoglobin played a pivotal role in the evolution of aerobic energy metabolism, supporting the hypothesis that WGDs helped fuel key innovations in vertebrate evolution.  相似文献   

20.
The study of the evolutionary origin of vertebrates has been linked to the study of genome duplications since Susumo Ohno suggested that the successful diversification of vertebrate innovations was facilitated by two rounds of whole-genome duplication (2R-WGD) in the stem vertebrate. Since then, studies on the functional evolution of many genes duplicated in the vertebrate lineage have provided the grounds to support experimentally this link. This article reviews cases of gene duplications derived either from the 2R-WGD or from local gene duplication events in vertebrates, analyzing their impact on the evolution of developmental innovations. We analyze how gene regulatory networks can be rewired by the activity of transposable elements after genome duplications, discuss how different mechanisms of duplication might affect the fate of duplicated genes, and how the loss of gene duplicates might influence the fate of surviving paralogs. We also discuss the evolutionary relationships between gene duplication and alternative splicing, in particular in the vertebrate lineage. Finally, we discuss the role that the 2R-WGD might have played in the evolution of vertebrate developmental gene networks, paying special attention to those related to vertebrate key features such as neural crest cells, placodes, and the complex tripartite brain. In this context, we argue that current evidences points that the 2R-WGD may not be linked to the origin of vertebrate innovations, but to their subsequent diversification in a broad variety of complex structures and functions that facilitated the successful transition from peaceful filter-feeding non-vertebrate ancestors to voracious vertebrate predators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号