首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Although stochasticity in oceanographic conditions is known to be an important driver of temporal genetic change in many marine species, little is known about whether genetically distinct plankton populations can persist in open ocean habitats. A prior study demonstrated significant population genetic structure among oceanic gyres in the mesopelagic copepod Haloptilus longicornis in both the Atlantic and Pacific Oceans, and we hypothesized that populations within each gyre represent distinct gene pools that persist over time. We tested this expectation through basin-scale sampling across the Atlantic Ocean in 2010 and 2012. Using both mitochondrial (mtCOII) and microsatellite markers (7 loci), we show that the genetic composition of populations was stable across two years in both the northern and southern subtropical gyres. Genetic variation in this species was partitioned among ocean gyres (F CT = 0.285, P < 0.0001 for mtCOII, F CT = 0.013, P < 0.0001 for microsatellites), suggesting strong spatial population structure, but no significant partitioning was found among sampling years. This temporal persistence of population structure across a large geographic scale was coupled with chaotic genetic patchiness at smaller spatial scales, but the magnitude of genetic differentiation was an order of magnitude lower at these smaller scales. Our results demonstrate that genetically distinct plankton populations persist over time in highly-dispersive open ocean habitats, and this is the first study to rigorously test for temporal stability of large scale population structure in the plankton.  相似文献   

3.
In anurans reproductive behavior is strongly seasonal. During the spring, frogs emerge from hibernation and males vocalize for mating or advertising territories. Female frogs have the ability to evaluate the quality of the males'' resources on the basis of these vocalizations. Although studies revealed that central single torus semicircularis neurons in frogs exhibit season plasticity, the plasticity of peripheral auditory sensitivity in frog is unknown. In this study the seasonally plasticity of peripheral auditory sensitivity was test in the Emei music frog Babina daunchina, by comparing thresholds and latencies of auditory brainstem responses (ABRs) evoked by tone pips and clicks in the reproductive and non-reproductive seasons. The results show that both ABR thresholds and latency differ significantly between the reproductive and non-reproductive seasons. The thresholds of tone pip evoked ABRs in the non-reproductive season increased significantly about 10 dB than those in the reproductive season for frequencies from 1 KHz to 6 KHz. ABR latencies to waveform valley values for tone pips for the same frequencies using appropriate threshold stimulus levels are longer than those in the reproductive season for frequencies from 1.5 to 6 KHz range, although from 0.2 to 1.5 KHz range it is shorter in the non-reproductive season. These results demonstrated that peripheral auditory frequency sensitivity exhibits seasonal plasticity changes which may be adaptive to seasonal reproductive behavior in frogs.  相似文献   

4.
Animals often encounter the problem of identifying the temporal structure of their species-specific communication sounds amidst heterospecific signals that are more intense. Little information is available, however, concerning the effects of intensity on these discriminative capacities. Here we report that male frogs, Physalaemus pustulosus, are able to discriminate between sounds that differ only in their direction of frequency modulation and that this discrimination remains intact over their entire response range; more than a 10,000-fold range in sound intensity in some cases.  相似文献   

5.
Knowledge of temporal patterns of larval fish occurrence is limited in south China, despite its ecological importance. This research examines the annual and seasonal patterns of fish larval presence in the large subtropical Pearl River. Data is based on samples collected every two days, from 2006 to 2013. In total, 45 taxa representing 13 families and eight orders were sampled. The dominant larval family was Cyprinidae, accounting for 27 taxa. Squaliobarbus curriculus was the most abundant species, followed by Megalobrama terminalis, Xenocypris davidi, Cirrhinus molitorella, Hemiculter leuscisculus and Squalidus argentatus. Fish larvae abundances varied significantly throughout the seasons (multivariate analyses: Cluster, SIMPROF and ANOSIM). The greatest numbers occurred between May and September, peaking from June through August, which corresponds to the reproductive season. In this study, redundancy analysis was used to describe the relationship between fish larval abundance and associated environmental factors. Mean water temperature, river discharge, atmospheric pressure, maximum temperature and precipitation play important roles in larval occurrence patterns. According to seasonal variations, fish larvae occurrence is mainly affected by water temperature. It was also noted that the occurrence of Salanx reevesii and Cyprinus carpio larvae is associated with higher dissolved oxygen (DO) concentrations, higher atmospheric pressure and lower water temperatures which occur in the spring. On the other hand, M. terminalis, X. davidi, and C. molitorella are associated with high precipitation, high river discharge, low atmospheric pressure and low DO concentrations which featured during the summer months. S. curriculus also peaks in the summer and is associated with peak water temperatures and minimum NH3–N concentrations. Rhinogobius giurinus occur when higher atmospheric pressure, lower precipitation and lower river discharges occur in the autumn. Dominant fish species stagger their spawning period to avoid intraspecific competition for food resources during early life stages; a coexistence strategy to some extent. This research outlines the environmental requirements for successful spawning for different fish species. Understanding processes such as those outlined in this research paper is the basis of conservation of fish community diversity which is a critical resource to a successful sustainable fishery in the Pearl River.  相似文献   

6.
7.
In our daily lives, auditory stream segregation allows us to differentiate concurrent sound sources and to make sense of the scene we are experiencing. However, a combination of segregation and the concurrent integration of auditory streams is necessary in order to analyze the relationship between streams and thus perceive a coherent auditory scene. The present functional magnetic resonance imaging study investigates the relative role and neural underpinnings of these listening strategies in multi-part musical stimuli. We compare a real human performance of a piano duet and a synthetic stimulus of the same duet in a prioritized integrative attention paradigm that required the simultaneous segregation and integration of auditory streams. In so doing, we manipulate the degree to which the attended part of the duet led either structurally (attend melody vs. attend accompaniment) or temporally (asynchronies vs. no asynchronies between parts), and thus the relative contributions of integration and segregation used to make an assessment of the leader-follower relationship. We show that perceptually the relationship between parts is biased towards the conventional structural hierarchy in western music in which the melody generally dominates (leads) the accompaniment. Moreover, the assessment varies as a function of both cognitive load, as shown through difficulty ratings and the interaction of the temporal and the structural relationship factors. Neurally, we see that the temporal relationship between parts, as one important cue for stream segregation, revealed distinct neural activity in the planum temporale. By contrast, integration used when listening to both the temporally separated performance stimulus and the temporally fused synthetic stimulus resulted in activation of the intraparietal sulcus. These results support the hypothesis that the planum temporale and IPS are key structures underlying the mechanisms of segregation and integration of auditory streams, respectively.  相似文献   

8.
Cavener DR  Clegg MT 《Genetics》1981,98(3):613-623
Seasonal patterns of allozyme variation are examined for 12 polymorphic enzyme loci in Drosophila melanogaster. The data derive from a total of 56 samples taken from a natural population in the Summer and Fall of 1978 and 1979. Samples were obtained at approximately five-day intervals and assayed for 6-phosphogluconate dehydrogenase (6Pgd), phosphoglucomutase (Pgm) and glucose-6-phosphate dehydrogenase (G6pd). The remaining nine enzymes were assayed in an average of eight samples per season. None of the loci exhibit regular seasonal cycles of gene-frequency change, although 6Pgd does show significant, but irregular, frequency oscillations. There is also little evidence for gene-frequency differences between years, although 6Pgd is again exceptional in showing significant frequency changes between years. In addition, genotypic frequency distributions are usually consistent with random mating expectations. With the notable exception of 6Pgd, the data give a strong impression of gene-frequency homogeneity within and among years, despite obvious seasonal changes in climate and in the distribution of breeding sites.  相似文献   

9.
10.
11.
In anurans,calling behaviour is strongly seasonal and circadian.Previous studies have revealed that auditory sensitivity in frogs exhibits seasonal plasticity,a...  相似文献   

12.
Skilled piano performance requires considerable movement control to accomplish the high levels of timing and force precision common among professional musicians, who acquire piano technique over decades of practice. Finger movement efficiency in particular is an important factor when pianists perform at very fast tempi. We document the finger movement kinematics of highly skilled pianists as they performed a five-finger melody at very fast tempi. A three-dimensional motion-capture system tracked the movements of finger joints, the hand, and the forearm of twelve pianists who performed on a digital piano at successively faster tempi (7–16 tones/s) until they decided to stop. Joint angle trajectories computed for all adjacent finger phalanges, the hand, and the forearm (wrist angle) indicated that the metacarpophalangeal joint contributed most to the vertical fingertip motion while the proximal and distal interphalangeal joints moved slightly opposite to the movement goal (finger extension). An efficiency measure of the combined finger joint angles corresponded to the temporal accuracy and precision of the pianists’ performances: Pianists with more efficient keystroke movements showed higher precision in timing and force measures. Keystroke efficiency and individual joint contributions remained stable across tempo conditions. Individual differences among pianists supported the view that keystroke efficiency is required for successful fast performance.  相似文献   

13.
Large excitatory synapses are found at specific points in the neuronal circuits of the auditory brainstem, to enable fast information transfer and the preservation of acoustic timing information. The extracellular cues and signaling mechanisms that lead to the development of these specialized synaptic connections, exemplified by the calyx of Held in the medial nucleus of the trapezoid body (MNTB), are still largely unknown. Here, we investigate the role of BMP signaling for the early development of the ventral cochlear nucleus (VCN) and MNTB, and for the initial formation of the calyx of Held synaptic connection. We used conditional alleles of two BMP type‐1 receptors in the background of a constitutive BMPR1b knock‐out (KO), or else a conditional allele of SMAD4. The conditional alleles were recombined by the Krox20Cre mouse line that is active around mid‐gestation in rhombomeres (r) 3 and 5 from which the VCN and MNTB are derived; alternatively, virus‐mediated Cre‐expression was performed early postnatally in the VCN. The data show that embryonic SMAD‐dependent BMP‐signaling in r3 and r5 contributes to the histogenesis of auditory brainstem nuclei. On the other hand, BMP‐receptor signaling early postnatally in presynaptic neurons of the calyx of Held projection is necessary for correct axon branch retraction, which suggests a cell‐autonomous role of presynaptic BMP‐receptors in synapse elimination at the developing calyx of Held. Thus, our work dissects developmentally early and late roles of BMP‐signaling for the formation of auditory brainstem nuclei, and the highly specialized synaptic connectivity in these structures.  相似文献   

14.
15.
Neisseria meningitidis is a major cause of septicaemia and meningitis worldwide. Most disease in Europe, the Americas and Australasia is caused by meningococci expressing serogroup B capsules, but no vaccine against this polysaccharide exists. Potential candidates for ‘serogroup B substitute’ vaccines are outer membrane protein antigens including the typing antigens PorA and FetA. The web-accessible PubMLST database (www.pubmlst.org) was used to investigate the temporal and geographical patterns of associations among PorA and FetA protein variants and lineages defined by combinations of housekeeping genes, known as clonal complexes. The sample contained 3460 isolates with genotypic information from 57 countries over a 74 year period. Although shifting associations among antigen variants and clonal complexes were evident, a subset of strain types associated with several serogroups persisted for decades and proliferated globally. Genetic stability among outer membrane proteins of serogroup A meningococci has been described previously, but here long-lived genetic associations were also observed among meningococci belonging to serogroups B and C. The patterns of variation were consistent with behaviour predicted by models that invoke inter-strain competition mediated by immune selection. There was also substantial geographic and temporal heterogeneity in antigenic repertoires, providing both opportunities and challenges for the design of broad coverage protein-based meningococcal vaccines.  相似文献   

16.

Objectives

Saliva is a biological fluid suitable for biomarker analysis, and differences in the salivary microbiota in oral health and disease have been reported. For such comparative analyses, time of sampling is critical since the bacterial composition may vary throughout the day, i.e., diurnal variation. The purpose of this study is to compare the salivary microbiome over time to determine the optimal time for sampling.

Design

Stimulated saliva samples were collected from 5 orally healthy individuals in 4 h intervals for 24 h, and collection was repeated 7 days later (number of samples per person, n = 12, total number of samples, n = 60). Salivary microbiota was analyzed using the Human Oral Microbe Identification using Next Generation Sequencing (HOMINGS), and statistical analysis was performed using the Kruskal-Wallis test with Benjamini-Hochberg’s correction for multiple comparisons, cluster analysis, principal component analysis and correspondence analysis.

Results

From a total of 60 saliva samples, 477 probe targets were collectively identified with a mean number of probes per sample of 207 (range: 153–307). Little or no variation in microbial profiles within subjects was observed over time.

Conclusions

Although there was considerable variation between subjects, microbial profiles within subjects were stable throughout a 24 hour period and after 1 week. Since there is little or no evidence of diurnal variation of the salivary microbiome, time of sampling of saliva is not critical for perturbation or other microbial studies.  相似文献   

17.
Humans and a few select insect and reptile species synchronise inter-individual behaviour without any time lag by predicting the time of future events rather than reacting to them. This is evident in music performance, dance, and drill. Although repetition of equal time intervals (i.e. isochrony) is the central principle for such prediction, this simple information is used in a flexible and complex way that accommodates both multiples, subdivisions, and gradual changes of intervals. The scope of this flexibility remains largely uncharted, and the underlying mechanisms are a matter for speculation. Here I report an auditory illusion that highlights some aspects of this behaviour and that provides a powerful tool for its future study. A sound pattern is described that affords multiple alternative and concurrent rates of recurrence (temporal levels). An algorithm that systematically controls time intervals and the relative loudness among these levels creates an illusion that the perceived rate speeds up or slows down infinitely. Human participants synchronised hand movements with their perceived rate of events, and exhibited a change in their movement rate that was several times larger than the physical change in the sound pattern. The illusion demonstrates the duality between the external signal and the internal predictive process, such that people''s tendency to follow their own subjective pulse overrides the overall properties of the stimulus pattern. Furthermore, accurate synchronisation with sounds separated by more than 8 s demonstrate that multiple temporal levels are employed for facilitating temporal organisation and integration by the human brain. A number of applications of the illusion and the stimulus pattern are suggested.  相似文献   

18.
The neural response to a stimulus is influenced by endogenous factors such as expectation and attention. Current research suggests that expectation and attention exert their effects in opposite directions, where expectation decreases neural activity in sensory areas, while attention increases it. However, expectation and attention are usually studied either in isolation or confounded with each other. A recent study suggests that expectation and attention may act jointly on sensory processing, by increasing the neural response to expected events when they are attended, but decreasing it when they are unattended. Here we test this hypothesis in an auditory temporal cueing paradigm using magnetoencephalography in humans. In our study participants attended to, or away from, tones that could arrive at expected or unexpected moments. We found a decrease in auditory beta band synchrony to expected (versus unexpected) tones if they were unattended, but no difference if they were attended. Modulations in beta power were already evident prior to the expected onset times of the tones. These findings suggest that expectation and attention jointly modulate sensory processing.  相似文献   

19.
In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex.  相似文献   

20.
Zircon ages and trace element compositions from recent silicic eruptions in the Lassen Volcanic Center (LVC) allow for an evaluation of the timing and conditions of rejuvenation (reheating and mobilization of crystals) within the LVC magmatic system. The LVC is the southernmost active Cascade volcano and, prior to the 1980 eruption of Mount St. Helens, was the site of the only eruption in the Cascade arc during the last century. The three most recent silicic eruptions from the LVC were very small to moderate-sized lava flows and domes of dacite (1915 and 27 ka eruptions of Lassen Peak) and rhyodacite (1.1 ka eruption of Chaos Crags). These eruptions produced mixed and mingled lavas that contain a diverse crystal cargo, including zircon. 238U-230Th model ages from interior and surface analyses of zircon reveal ages from ∼17 ka to secular equilibrium (>350 ka), with most zircon crystallizing during a period between ∼60–200 ka. These data support a model for localized rejuvenation of crystal mush beneath the LVC. This crystal mush evidently is the remnant of magmatism that ended ∼190 ka. Most zircon are thought to have been captured from “cold storage” in the crystal mush (670–725°C, Hf >10,000 ppm, Eu/Eu* 0.25–0.4) locally remobilized by intrusion of mafic magma. A smaller population of zircon (>730°C, Hf <10,000 ppm, Eu/Eu* >0.4) grew in, and are captured from, rejuvenation zones. These data suggest the dominant method to produce eruptible melt within the LVC is small-scale, local rejuvenation of the crystal mush accompanied by magma mixing and mingling. Based on zircon stability, the time required to heat, erupt and then cool to background conditions is relatively short, lasting a maximum of 10 s–1000 s years. Rejuvenation events in the LVC are ephemeral and permit eruption within an otherwise waning and cooling magmatic body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号