首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Driver mutations are positively selected during the evolution of cancers. The relative frequency of a particular mutation within a gene is typically used as a criterion for identifying a driver mutation. However, driver mutations may occur with relative infrequency at a particular site, but cluster within a region of the gene. When analyzing across different cancers, particular mutation sites or mutations within a particular region of the gene may be of relatively low frequency in some cancers, but still provide selective growth advantage.

Results

This paper presents a method that allows rapid and easy visualization of mutation data sets and identification of potential gene mutation hotspot sites and/or regions. As an example, we identified hotspot regions in the NFE2L2 gene that are potentially functionally relevant in endometrial cancer, but would be missed using other analyses.

Conclusions

HotSpotter is a quick, easy-to-use visualization tool that delivers gene identities with associated mutation locations and frequencies overlaid upon a large cancer mutation reference set. This allows the user to identify potential driver mutations that are less frequent in a cancer or are localized in a hotspot region of relatively infrequent mutations.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1044) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
4.

Background

Drug resistance is a major problem in leishmaniasis chemotherapy. RNA expression profiling using DNA microarrays is a suitable approach to study simultaneous events leading to a drug-resistance phenotype. Genomic analysis has been performed primarily with Old World Leishmania species and here we investigate molecular alterations in antimony resistance in the New World species L. amazonensis.

Methods/Principal Findings

We selected populations of L. amazonensis promastigotes for resistance to antimony by step-wise drug pressure. Gene expression of highly resistant mutants was studied using DNA microarrays. RNA expression profiling of antimony-resistant L. amazonensis revealed the overexpression of genes involved in drug resistance including the ABC transporter MRPA and several genes related to thiol metabolism. The MRPA overexpression was validated by quantitative real-time RT-PCR and further analysis revealed that this increased expression was correlated to gene amplification as part of extrachromosomal linear amplicons in some mutants and as part of supernumerary chromosomes in other mutants. The expression of several other genes encoding hypothetical proteins but also nucleobase and glucose transporter encoding genes were found to be modulated.

Conclusions/Significance

Mechanisms classically found in Old World antimony resistant Leishmania were also highlighted in New World antimony-resistant L. amazonensis. These studies were useful to the identification of resistance molecular markers.  相似文献   

5.

Objectives

This study was conducted to examine the development and molecular mechanisms of amphenicol resistance in Campylobacter jejuni by using in vitro selection with chloramphenicol and florfenicol. The impact of the resistance development on growth rates was also determined using in vitro culture.

Methods

Chloramphenicol and florfenicol were used as selection agents to perform in vitro stepwise selection. Mutants resistant to the selective agents were obtained from the selection process. The mutant strains were compared with the parent strain for changes in MICs and growth rates. The 23S rRNA gene and the L4 and L22 ribosomal protein genes in the mutant strains and the parent strain were amplified and sequenced to identify potential resistance-associated mutations.

Results

C. jejuni strains that were highly resistant to chloramphenicol and florfenicol were obtained from in vitro selection. A novel G2073A mutation in all three copies of the 23S rRNA gene was identified in all the resistant mutants examined, which showed resistance to both chloramphenicol and florfenicol. In addition, all the mutants selected by chloramphenicol also exhibited the G74D modification in ribosomal protein L4, which was previously shown to confer a low-level erythromycin resistance in Campylobacter species. The mutants selected by florfenicol did not have the G74D mutation in L4. Notably, the amphenicol-resistant mutants also exhibited reduced susceptibility to erythromycin, suggesting that the selection resulted in cross resistance to macrolides.

Conclusions

This study identifies a novel point mutation (G2073A) in 23S rRNA in amphenicol-selected mutants of C. jejuni. Development of amphenicol resistance in Campylobacter likely incurs a fitness cost as the mutant strains showed slower growth rates in antibiotic-free media.  相似文献   

6.

Objective

Most gain of function mutations of tyrosine kinase receptors in human tumours are hemizygous. Gastrointestinal stromal tumours (GIST) with homozygous mutations have a worse prognosis. We aimed to identify genes differentially regulated by hemizygous and heterozygous KIT mutations.

Materials and Methods

Expression of 94 genes and 384 miRNA was analysed with low density arrays in five NIH3T3 cell lines expressing the full-length human KIT cDNA wild-type (WT), hemizygous KIT mutation with del557-558 (D6) or del564-581 (D54) and heterozygous WT/D6 or WT/D54. Expression of 5 of these genes and 384 miRNA was then analysed in GISTs samples.

Results

Unsupervised and supervised hierarchical clustering of the mRNA and miRNA profiles showed that heterozygous mutants clustered with KIT WT expressing cells while hemizygous mutants were distinct. Among hemizygous cells, D6 and D54 expressing cells clustered separately. Most deregulated genes have been reported as potentially implicated in cancer and severals, as ANXA8 and FBN1, are highlighted by both, mRNA and miRNA analyses. MiRNA and mRNA analyses in GISTs samples confirmed that their expressions varied according to the mutation of the alleles. Interestingly, RGS16, a membrane protein of the regulator of G protein family, correlate with the subcellular localization of KIT mutants and might be responsible for regulation of the PI3K/AKT signalling pathway.

Conclusion

Patterns of mRNA and miRNA expression in cells and tumours depend on heterozygous/hemizygous status of KIT mutations, and deletion/presence of TYR568 & TYR570 residues. Thus each mutation of KIT may drive specific oncogenic pathways.  相似文献   

7.

Background

The human protozoan parasites Leishmania are prototrophic for pyrimidines with the ability of both de novo biosynthesis and uptake of pyrimidines.

Methodology/Principal Findings

Five independent L. infantum mutants were selected for resistance to the pyrimidine analogue 5-fluorouracil (5-FU) in the hope to better understand the metabolism of pyrimidine in Leishmania. Analysis of the 5-FU mutants by comparative genomic hybridization and whole genome sequencing revealed in selected mutants the amplification of DHFR-TS and a deletion of part of chromosome 10. Point mutations in uracil phosphorybosyl transferase (UPRT), thymidine kinase (TK) and uridine phosphorylase (UP) were also observed in three individual resistant mutants. Transfection experiments confirmed that these point mutations were responsible for 5-FU resistance. Transport studies revealed that one resistant mutant was defective for uracil and 5-FU import.

Conclusion/Significance

This study provided further insights in pyrimidine metabolism in Leishmania and confirmed that multiple mutations can co-exist and lead to resistance in Leishmania.  相似文献   

8.

Background

Miltefosine (MF) is the first oral compound used in the chemotherapy against leishmaniasis. Since the mechanism of action of this drug and the targets of MF in Leishmania are unclear, we generated in a step-by-step manner Leishmania major promastigote mutants highly resistant to MF. Two of the mutants were submitted to a short-read whole genome sequencing for identifying potential genes associated with MF resistance.

Methods/Principal Findings

Analysis of the genome assemblies revealed several independent point mutations in a P-type ATPase involved in phospholipid translocation. Mutations in two other proteins—pyridoxal kinase and α-adaptin like protein—were also observed in independent mutants. The role of these proteins in the MF resistance was evaluated by gene transfection and gene disruption and both the P-type ATPase and pyridoxal kinase were implicated in MF susceptibility. The study also highlighted that resistance can be highly heterogeneous at the population level with individual clones derived from this population differing both in terms of genotypes but also susceptibility phenotypes.

Conclusions/Significance

Whole genome sequencing was used to pinpoint known and new resistance markers associated with MF resistance in the protozoan parasite Leishmania. The study also demonstrated the polyclonal nature of a resistant population with individual cells with varying susceptibilities and genotypes.  相似文献   

9.
Lee AS  Ong DC  Wong JC  Siu GK  Yam WC 《PloS one》2012,7(2):e31934

Background

Molecular methods for the detection of drug-resistant tuberculosis are potentially more rapid than conventional culture-based drug susceptibility testing, facilitating the commencement of appropriate treatment for patients with drug resistant tuberculosis. We aimed to develop and evaluate high-resolution melting (HRM) assays for the detection of mutations within gyrA, rpsL, and rrs, for the determination of fluoroquinolone and streptomycin resistance in Mycobacterium tuberculosis (MTB).

Methodology/Principal Findings

A blinded series of DNA samples extracted from a total of 92 clinical isolates of MTB were analyzed by HRM analysis, and the results were verified using DNA sequencing. The sensitivity and specificity of the HRM assays in comparison with drug susceptibility testing were 74.1% and 100.0% for the detection of fluoroquinolone resistance, and 87.5% and 100.0% for streptomycin resistance. Five isolates with low level resistance to ofloxacin had no mutations detected in gyrA, possibly due to the action of efflux pumps, or false negativity due to mixed infections. One fluoroquinolone-resistant isolate had a mutation in a region of gyrA not encompassed by our assay. Six streptomycin-resistant strains had undetectable mutations by HRM and DNA sequencing, which may be explained by the fact that not all streptomycin-resistant isolates have mutations within rpsL and rrs, and suggesting that other targets may be involved.

Conclusion

The HRM assays described here are potentially useful adjunct tests for the efficient determination of fluoroquinolone and streptomycin resistance in MTB, and could facilitate the timely administration of appropriate treatment for patients infected with drug-resistant TB.  相似文献   

10.

Setting

Seven districts in Andhra Pradesh, South India

Objectives

To a) determine treatment outcomes of patients who fail first line anti-TB treatment and are not placed on an multi-drug resistant TB (MDR-TB) regimen, and b) relate the treatment outcomes to culture and drug susceptibility patterns (C&DST).

Design

Retrospective cohort study using routine programme data and Mycobacterium TB Culture C&DST between July 2008 and December 2009.

Results

There were 202 individuals given a re-treatment regimen and included in the study. Overall treatment outcomes were: 68 (34%) with treatment success, 84 (42%) failed, 36 (18%) died, 13 (6.5%) defaulted and 1 transferred out. Treatment success for category I and II failures was low at 37%. In those with positive cultures, 81 had pan-sensitive strains with 31 (38%) showing treatment success, while 61 had drug-resistance strains with 9 (15%) showing treatment success. In 58 patients with negative cultures, 28 (48%) showed treatment success.

Conclusion

Treatment outcomes of patients who fail a first-line anti-TB treatment and who are not placed on an MDR-TB regimen are unacceptably poor. The worst outcomes are seen among category II failures and those with negative cultures or drug-resistance. There are important programmatic implications which need to be addressed.  相似文献   

11.

Background

Multidrug resistance is a critical factor in tuberculosis control. To gain better understanding of multidrug resistant tuberculosis in Brazil, a retrospective study was performed to compare genotypic diversity and drug resistance associated mutations in Mycobacterium tuberculosis isolates from a national reference center.

Methods and Findings

Ninety-nine multidrug resistant isolates from 12 Brazilian states were studied. Drug-resistance patterns were determined and the rpoB and katG genes were screened for mutations. Genotypic diversity was investigated by IS6110-RFLP and Luminex 47 spoligotyping. Mutations in rpoB and katG were seen in 91% and 93% of the isolates, respectively. Codon 315 katG mutations occurred in 82.8% of the isolates with a predominance of the Ser315Thr substitution. Twenty-five isolates were clustered in 11 groups with identical IS6110-RFLP patterns while 74 showed unique patterns with no association between mutation frequencies or susceptibility profiles. The most prevalent spoligotyping lineages were LAM (47%), T (17%) and Haarlen (12%). The Haarlen lineage showed a higher frequency of codon 516 rpoB mutations while codon 531 mutations prevailed in the other isolates.

Conclusions

Our data suggest that there were no major multidrug resistant M. tuberculosis strains transmitted among patients referred to the reference center, indicating an independent acquisition of resistance. In addition, drug resistance associated mutation profiles were well established among the main spoligotyping lineages found in these Brazilian multidrug resistant isolates, providing useful data for patient management and treatment.  相似文献   

12.
13.

Background

Penicillin resistance in Streptococcus pneumoniae is mediated by a mosaic of genes encoding altered penicillin-binding proteins (PBPs). Nonetheless, S. pneumoniae has also developed non-PBP mechanisms implicated in penicillin resistance. In this study, whole genome sequencing of resistant organisms was used to discover mutations implicated in resistance to penicillin.

Results

We sequenced two S. pneumoniae isolates selected for resistance to penicillin in vitro. The analysis of the genome assemblies revealed that six genes were mutated in both mutants. These included three pbp genes, and three non-pbp genes, including a putative iron permease, spr1178. The nonsense mutation in spr1178 always occurred in the first step of the selection process. Although the mutants had increased resistance to penicillin, the introduction of altered versions of PBPs into a penicillin-susceptible strain by sequential transformation led to strains with a minimal increase in resistance, thus implicating other genes in resistance. The introduction by transformation of the non-PBP recurrent mutations did not increase penicillin resistance, but the introduction of the nonsense mutation in the putative iron permease spr1178 led to a reduced accumulation of reactive oxygen species following exposure to penicillin and to other bactericidal antibiotics as well.

Conclusions

This study indicates that the selection of resistance to penicillin in S. pneumoniae involves the acquisition of mutations conferring tolerance to the antibiotic-induced accumulation of oxidants, which translates into an increased survival that putatively enables the selection of major resistance determinants such as mutations in PBPs.  相似文献   

14.
15.

Background

Our aim was to estimate the effect of two myostatin (MSTN) mutations in Norwegian White Sheep, one of which is close to fixation in the Texel breed.

Methods

The impact of two known MSTN mutations was examined in a field experiment with Norwegian White Sheep. The joint effect of the two MSTN mutations on live weight gain and weaning weight was studied on 644 lambs. Carcass weight gain from birth to slaughter, carcass weight, carcass conformation and carcass fat classes were calculated in a subset of 508 lambs. All analyses were carried out with a univariate linear animal model.

Results

The most significant impact of both mutations was on conformation and fat classes. The largest difference between the genotype groups was between the wild type for both mutations and the homozygotes for the c.960delG mutation. Compared to the wild types, these mutants obtained a conformation score 5.1 classes higher and a fat score 3.0 classes lower, both on a 15-point scale.

Conclusions

Both mutations reduced fatness and increased muscle mass, although the effect of the frameshift mutation (c.960delG) was more important as compared to the 3''-UTR mutation (c.2360G>A). Lambs homozygous for the c.960delG mutation grew more slowly than those with other MSTN genotypes, but had the least fat and the largest muscle mass. Only c.960delG showed dominance effects.  相似文献   

16.

Background

Understanding the interactions between ion channels and blockers remains an important goal that has implications for delineating the basic mechanisms of ion channel function and for the discovery and development of ion channel directed drugs.

Methodology/Principal Findings

We used genetic selection methods to probe the interaction of two ion channel blockers, barium and amantadine, with the miniature viral potassium channel Kcv. Selection for Kcv mutants that were resistant to either blocker identified a mutant bearing multiple changes that was resistant to both. Implementation of a PCR shuffling and backcrossing procedure uncovered that the blocker resistance could be attributed to a single change, T63S, at a position that is likely to form the binding site for the inner ion in the selectivity filter (site 4). A combination of electrophysiological and biochemical assays revealed a distinct difference in the ability of the mutant channel to interact with the blockers. Studies of the analogous mutation in the mammalian inward rectifier Kir2.1 show that the T→S mutation affects barium block as well as the stability of the conductive state. Comparison of the effects of similar barium resistant mutations in Kcv and Kir2.1 shows that neighboring amino acids in the Kcv selectivity filter affect blocker binding.

Conclusions/Significance

The data support the idea that permeant ions have an integral role in stabilizing potassium channel structure, suggest that both barium and amantadine act at a similar site, and demonstrate how genetic selections can be used to map blocker binding sites and reveal mechanistic features.  相似文献   

17.

Background

Anti-mitotic compounds (microtubule de-stabilizers) such as vincristine and vinblastine have been shown clinically successful in treating various cancers. However, development of drug-resistance cells limits their efficacies in clinical situations. Therefore, experiments were performed to determine possible drug resistance mechanisms related to the application of anti-mitotic cancer therapy.

Principal Findings

A KB-derived microtubule de-stabilizer-resistant KB-L30 cancer cell line was generated for this study. KB-L30 cells showed cross-resistance to various microtubule de-stabilizers including BPR0L075, vincristine and colchicine through multiple-drug resistant (MDR)-independent mechanisms. Surprisingly, KB-L30 cells showed hyper-sensitivity to the microtubule-stabilizer, paclitaxel. Results of the RT-PCR analysis revealed that expression of both class II and III β-tubulin was down-regulated in KB-L30 cells as compared to its parental KB cancer cells. In addition, DNA sequencing analysis revealed six novel mutation sites present in exon four of the βI-tubulin gene. Computational modeling indicated that a direct relationship exists between βI-tubulin mutations and alteration in the microtubule assembly and dynamic instability in KB-L30 cells and this predicted model was supported by an increased microtubule assembly and reduced microtubule dynamic instability in KB-L30 cells, as shown by Western blot analysis.

Conclusions and Significance

Our study demonstrated that these novel mutations in exon four of the βI-tubulin induced resistance to microtubule de-stabilizers and hyper-sensitivity to microtubule stabilizer through an alteration in the microtubule assembly and dynamics in cancer cells. Importantly, the current study reveals that cancer cells may acquire drug resistance ability to anti-mitotic compounds through multiple changes in the microtubule networks. This study further provided molecular information in drug selection for patients with specific tubulin mutations.  相似文献   

18.

Objective

Mutations associated with HIV drug resistance have been extensively characterized at the HIV-1 polymerase domain, but more studies have verified that mutations outside of the polymerase domain also results in resistance to antiviral drugs. In this study, mutations were identified in 354 patients experiencing antiretroviral therapy (ART) failure and in 97 naïve-therapy patients. Mutations whose impact on antiviral drugs was unknown were verified by phenotypic testing.

Methods

Pol sequences of HIV subtype B obtained from patients experiencing ART failure and from naïve-therapy patients were analyzed for mutations distinct between two groups. Mutations that occurred at a significantly higher frequency in the ART failure than the naïve-therapy group were submitted to the Stanford HIV Drug Resistance Database (SHDB) to analyze the correlation between HIV mutations and drug resistance. For mutations whose impact on the antiviral drug response is unknown, the site-directed mutagenesis approach was applied to construct plasmids containing the screened mutations. 50% inhibitory concentration (IC50) to AZT, EFV and NVP was measured to determine the response of the genetically constructed viruses to antiviral drugs.

Results

7 mutations at 6 positions of the RT region, D123E, V292I, K366R, T369A, T369V, A371V and I375V, occurred more frequently in the ART failure group than the naïve-therapy group. Phenotypic characterization of these HIV mutants revealed that constructed viruses with mutations A371V and T369V exhibited dual resistance to AZT and EFV respectively, whereas the other 5 mutations showed weak resistance. Although the impact of the other six mutations on response to NVP was minimal, mutation T369V could enhance resistance to NVP.

Conclusions

This study demonstrated that mutations at the RT C-terminal in subtype B′ could result in resistance to RT inhibitors if the mutations occurred alone, but that some mutations could promote susceptibility to antiviral drugs.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号