首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The neuronal mechanisms underlying the emergence of orientation selectivity in the primary visual cortex of mammals are still elusive. In rodents, visual neurons show highly selective responses to oriented stimuli, but neighboring neurons do not necessarily have similar preferences. Instead of a smooth map, one observes a salt-and-pepper organization of orientation selectivity. Modeling studies have recently confirmed that balanced random networks are indeed capable of amplifying weakly tuned inputs and generating highly selective output responses, even in absence of feature-selective recurrent connectivity. Here we seek to elucidate the neuronal mechanisms underlying this phenomenon by resorting to networks of integrate-and-fire neurons, which are amenable to analytic treatment. Specifically, in networks of perfect integrate-and-fire neurons, we observe that highly selective and contrast invariant output responses emerge, very similar to networks of leaky integrate-and-fire neurons. We then demonstrate that a theory based on mean firing rates and the detailed network topology predicts the output responses, and explains the mechanisms underlying the suppression of the common-mode, amplification of modulation, and contrast invariance. Increasing inhibition dominance in our networks makes the rectifying nonlinearity more prominent, which in turn adds some distortions to the otherwise essentially linear prediction. An extension of the linear theory can account for all the distortions, enabling us to compute the exact shape of every individual tuning curve in our networks. We show that this simple form of nonlinearity adds two important properties to orientation selectivity in the network, namely sharpening of tuning curves and extra suppression of the modulation. The theory can be further extended to account for the nonlinearity of the leaky model by replacing the rectifier by the appropriate smooth input-output transfer function. These results are robust and do not depend on the state of network dynamics, and hold equally well for mean-driven and fluctuation-driven regimes of activity.  相似文献   

2.
3.
The synaptic connectivity of cortical networks features an overrepresentation of certain wiring motifs compared to simple random-network models. This structure is shaped, in part, by synaptic plasticity that promotes or suppresses connections between neurons depending on their joint spiking activity. Frequently, theoretical studies focus on how feedforward inputs drive plasticity to create this network structure. We study the complementary scenario of self-organized structure in a recurrent network, with spike timing-dependent plasticity driven by spontaneous dynamics. We develop a self-consistent theory for the evolution of network structure by combining fast spiking covariance with a slow evolution of synaptic weights. Through a finite-size expansion of network dynamics we obtain a low-dimensional set of nonlinear differential equations for the evolution of two-synapse connectivity motifs. With this theory in hand, we explore how the form of the plasticity rule drives the evolution of microcircuits in cortical networks. When potentiation and depression are in approximate balance, synaptic dynamics depend on weighted divergent, convergent, and chain motifs. For additive, Hebbian STDP these motif interactions create instabilities in synaptic dynamics that either promote or suppress the initial network structure. Our work provides a consistent theoretical framework for studying how spiking activity in recurrent networks interacts with synaptic plasticity to determine network structure.  相似文献   

4.
The dynamics of a network of randomly connected inhibitory linear integrate and fire (LIF) neurons (with a floor for the depolarization), in the presence of stochastic external afferent input, is considered in various parameter regimes of the neurons and of the network. Applying a technique recently introduced by Brunel and Hakim, we classify the regimes in which such a network has stable stationary states and in which spike emission rates oscillate. In the vicinity of the bifurcation line, the oscillation frequency and its amplitude are computed and compared with simulations. As for leaky IF neurons, the space of parameters can be compacted into two. Yet despite significant technical differences between the two models, related to both the different dynamics of the depolarization as well as to the different boundary conditions, the qualitative behavior is rather similar. The significance of LIF neurons and of the differences with leaky IF neurons is discussed.  相似文献   

5.
We investigate the efficient transmission and processing of weak, subthreshold signals in a realistic neural medium in the presence of different levels of the underlying noise. Assuming Hebbian weights for maximal synaptic conductances—that naturally balances the network with excitatory and inhibitory synapses—and considering short-term synaptic plasticity affecting such conductances, we found different dynamic phases in the system. This includes a memory phase where population of neurons remain synchronized, an oscillatory phase where transitions between different synchronized populations of neurons appears and an asynchronous or noisy phase. When a weak stimulus input is applied to each neuron, increasing the level of noise in the medium we found an efficient transmission of such stimuli around the transition and critical points separating different phases for well-defined different levels of stochasticity in the system. We proved that this intriguing phenomenon is quite robust, as it occurs in different situations including several types of synaptic plasticity, different type and number of stored patterns and diverse network topologies, namely, diluted networks and complex topologies such as scale-free and small-world networks. We conclude that the robustness of the phenomenon in different realistic scenarios, including spiking neurons, short-term synaptic plasticity and complex networks topologies, make very likely that it could also occur in actual neural systems as recent psycho-physical experiments suggest.  相似文献   

6.
The dynamics of networks of sparsely connected excitatory and inhibitory integrate-and-fire neurons are studied analytically. The analysis reveals a rich repertoire of states, including synchronous states in which neurons fire regularly; asynchronous states with stationary global activity and very irregular individual cell activity; and states in which the global activity oscillates but individual cells fire irregularly, typically at rates lower than the global oscillation frequency. The network can switch between these states, provided the external frequency, or the balance between excitation and inhibition, is varied. Two types of network oscillations are observed. In the fast oscillatory state, the network frequency is almost fully controlled by the synaptic time scale. In the slow oscillatory state, the network frequency depends mostly on the membrane time constant. Finite size effects in the asynchronous state are also discussed.  相似文献   

7.
The wide range of time scales involved in neural excitability and synaptic transmission might lead to ongoing change in the temporal structure of responses to recurring stimulus presentations on a trial-to-trial basis. This is probably the most severe biophysical constraint on putative time-based primitives of stimulus representation in neuronal networks. Here we show that in spontaneously developing large-scale random networks of cortical neurons in vitro the order in which neurons are recruited following each stimulus is a naturally emerging representation primitive that is invariant to significant temporal changes in spike times. With a relatively small number of randomly sampled neurons, the information about stimulus position is fully retrievable from the recruitment order. The effective connectivity that makes order-based representation invariant to time warping is characterized by the existence of stations through which activity is required to pass in order to propagate further into the network. This study uncovers a simple invariant in a noisy biological network in vitro; its applicability under in vivo constraints remains to be seen.  相似文献   

8.
Although models based on independent component analysis (ICA) have been successful in explaining various properties of sensory coding in the cortex, it remains unclear how networks of spiking neurons using realistic plasticity rules can realize such computation. Here, we propose a biologically plausible mechanism for ICA-like learning with spiking neurons. Our model combines spike-timing dependent plasticity and synaptic scaling with an intrinsic plasticity rule that regulates neuronal excitability to maximize information transmission. We show that a stochastically spiking neuron learns one independent component for inputs encoded either as rates or using spike-spike correlations. Furthermore, different independent components can be recovered, when the activity of different neurons is decorrelated by adaptive lateral inhibition.  相似文献   

9.
朝向选择性是初级视皮层(17区或V1)神经元的基本性质,在图形感知中起着关键作用.同时这些神经元对于持续时间大于100 ms的视觉刺激具有清晰的响应反应(Onset responses)和撤反应(Offset responses).以往的研究只关注响应反应的朝向选择性,而忽视了对撤反应的朝向选择性研究.我们比较了响应与撤反应的朝向调谐性质,大多数细胞的撤反应与响应反应基本上具有相似的最优朝向,而撤反应的朝向调谐宽度有窄于响应反应的趋势,撤反应的最优延迟普遍滞后于响应反应的最优延迟.撤反应的朝向选择性略强于响应反应和具有显著长的反应延迟提示,皮层内的反馈输入可能在形成撤反应的朝向选择性中起着作用.本研究揭示了撤反应的朝向选择性在刺激朝向的连续表征和主体在形状知觉的后期对朝向的精细区分中起着作用.  相似文献   

10.
Neuronal avalanches are a form of spontaneous activity widely observed in cortical slices and other types of nervous tissue, both in vivo and in vitro. They are characterized by irregular, isolated population bursts when many neurons fire together, where the number of spikes per burst obeys a power law distribution. We simulate, using the Gillespie algorithm, a model of neuronal avalanches based on stochastic single neurons. The network consists of excitatory and inhibitory neurons, first with all-to-all connectivity and later with random sparse connectivity. Analyzing our model using the system size expansion, we show that the model obeys the standard Wilson-Cowan equations for large network sizes ( neurons). When excitation and inhibition are closely balanced, networks of thousands of neurons exhibit irregular synchronous activity, including the characteristic power law distribution of avalanche size. We show that these avalanches are due to the balanced network having weakly stable functionally feedforward dynamics, which amplifies some small fluctuations into the large population bursts. Balanced networks are thought to underlie a variety of observed network behaviours and have useful computational properties, such as responding quickly to changes in input. Thus, the appearance of avalanches in such functionally feedforward networks indicates that avalanches may be a simple consequence of a widely present network structure, when neuron dynamics are noisy. An important implication is that a network need not be “critical” for the production of avalanches, so experimentally observed power laws in burst size may be a signature of noisy functionally feedforward structure rather than of, for example, self-organized criticality.  相似文献   

11.
Perceptual learning has been used to probe the mechanisms of cortical plasticity in the adult brain. Feedback projections are ubiquitous in the cortex, but little is known about their role in cortical plasticity. Here we explore the hypothesis that learning visual orientation discrimination involves learning-dependent plasticity of top-down feedback inputs from higher cortical areas, serving a different function from plasticity due to changes in recurrent connections within a cortical area. In a Hodgkin-Huxley-based spiking neural network model of visual cortex, we show that modulation of feedback inputs to V1 from higher cortical areas results in shunting inhibition in V1 neurons, which changes the response properties of V1 neurons. The orientation selectivity of V1 neurons is enhanced without changing orientation preference, preserving the topographic organizations in V1. These results provide new insights to the mechanisms of plasticity in the adult brain, reconciling apparently inconsistent experiments and providing a new hypothesis for a functional role of the feedback connections.  相似文献   

12.
13.
14.
The cortex processes stimuli through a distributed network of specialized brain areas. This processing requires mechanisms that can route neuronal activity across weakly connected cortical regions. Routing models proposed thus far are either limited to propagation of spiking activity across strongly connected networks or require distinct mechanisms that create local oscillations and establish their coherence between distant cortical areas. Here, we propose a novel mechanism which explains how synchronous spiking activity propagates across weakly connected brain areas supported by oscillations. In our model, oscillatory activity unleashes network resonance that amplifies feeble synchronous signals and promotes their propagation along weak connections (“communication through resonance”). The emergence of coherent oscillations is a natural consequence of synchronous activity propagation and therefore the assumption of different mechanisms that create oscillations and provide coherence is not necessary. Moreover, the phase-locking of oscillations is a side effect of communication rather than its requirement. Finally, we show how the state of ongoing activity could affect the communication through resonance and propose that modulations of the ongoing activity state could influence information processing in distributed cortical networks.  相似文献   

15.
Individual neurons in the suprachiasmatic nucleus (SCN), the master biological clock in mammals, autonomously produce highly complex patterns of spikes. We have shown that most (~90%) SCN neurons exhibit truly stochastic interspike interval (ISI) patterns. The aim of this study was to understand the stochastic nature of the firing patterns in SCN neurons by analyzing the ISI sequences of 150 SCN neurons in hypothalamic slices. Fractal analysis, using the periodogram, Fano factor, and Allan factor, revealed the presence of a 1/f-type power-law (fractal) behavior in the ISI sequences. This fractal nature was persistent after the application of the GABAA receptor antagonist bicuculline, suggesting that the fractal stochastic activity is an intrinsic property of individual SCN neurons. Based on these physiological findings, we developed a computational model for the stochastic SCN neurons to find that their stochastic spiking activity was best described by a gamma point process whose mean firing rate was modulated by a fractal binomial noise. Taken together, we suggest that SCN neurons generate temporal spiking patterns using the fractal stochastic point process.Action Editor: Carson C. Chow  相似文献   

16.
The pattern of neuronal spiking of cortical neurons was investigated in an awake nonimmobilized rabbit. Thecharacteristics of the interspike intervals (total numberof intervals, mean interval, mean-square deviation) and of the burst (group) activity (burst number, mean spikefrequency in a burst, mean spike number for a burst, meanburst duration) were considered. Nonlinear relationshipbetween the values of mean interspike intervals and thenumber of spike bursts was found. A number of functionswere applied to describe the observed phenomena. On thebasis of regression analysis two populations of corticalneurons with distinct neuronal spiking patterns wereidentified. Bursts occur at a higher rate in one populationthan the other, although both populations exhibit burstsand are otherwise indistinguishable.  相似文献   

17.
18.
The autoencoder algorithm is a simple but powerful unsupervised method for training neural networks. Autoencoder networks can learn sparse distributed codes similar to those seen in cortical sensory areas such as visual area V1, but they can also be stacked to learn increasingly abstract representations. Several computational neuroscience models of sensory areas, including Olshausen & Field’s Sparse Coding algorithm, can be seen as autoencoder variants, and autoencoders have seen extensive use in the machine learning community. Despite their power and versatility, autoencoders have been difficult to implement in a biologically realistic fashion. The challenges include their need to calculate differences between two neuronal activities and their requirement for learning rules which lead to identical changes at feedforward and feedback connections. Here, we study a biologically realistic network of integrate-and-fire neurons with anatomical connectivity and synaptic plasticity that closely matches that observed in cortical sensory areas. Our choice of synaptic plasticity rules is inspired by recent experimental and theoretical results suggesting that learning at feedback connections may have a different form from learning at feedforward connections, and our results depend critically on this novel choice of plasticity rules. Specifically, we propose that plasticity rules at feedforward versus feedback connections are temporally opposed versions of spike-timing dependent plasticity (STDP), leading to a symmetric combined rule we call Mirrored STDP (mSTDP). We show that with mSTDP, our network follows a learning rule that approximately minimizes an autoencoder loss function. When trained with whitened natural image patches, the learned synaptic weights resemble the receptive fields seen in V1. Our results use realistic synaptic plasticity rules to show that the powerful autoencoder learning algorithm could be within the reach of real biological networks.  相似文献   

19.
There is a growing interest in developing novel brain stimulation methods to control disease-related aberrant neural activity and to address basic neuroscience questions. Conventional methods for manipulating brain activity rely on open-loop approaches that usually lead to excessive stimulation and, crucially, do not restore the original computations performed by the network. Thus, they are often accompanied by undesired side-effects. Here, we introduce delayed feedback control (DFC), a conceptually simple but effective method, to control pathological oscillations in spiking neural networks (SNNs). Using mathematical analysis and numerical simulations we show that DFC can restore a wide range of aberrant network dynamics either by suppressing or enhancing synchronous irregular activity. Importantly, DFC, besides steering the system back to a healthy state, also recovers the computations performed by the underlying network. Finally, using our theory we identify the role of single neuron and synapse properties in determining the stability of the closed-loop system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号