首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fgf3 and Fgf10 are required for mouse otic placode induction   总被引:1,自引:0,他引:1  
The inner ear, which contains the sensory organs specialised for audition and balance, develops from an ectodermal placode adjacent to the developing hindbrain. Tissue grafting and recombination experiments suggest that placodal development is directed by signals arising from the underlying mesoderm and adjacent neurectoderm. In mice, Fgf3 is expressed in the neurectoderm prior to and concomitant with placode induction and otic vesicle formation, but its absence affects only the later stages of otic vesicle morphogenesis. We show here that mouse Fgf10 is expressed in the mesenchyme underlying the prospective otic placode. Embryos lacking both Fgf3 and Fgf10 fail to form otic vesicles and have aberrant patterns of otic marker gene expression, suggesting that FGF signals are required for otic placode induction and that these signals emanate from both the hindbrain and mesenchyme. These signals are likely to act directly on the ectoderm, as double mutant embryos showed normal patterns of gene expression in the hindbrain. Cell proliferation and survival were not markedly affected in double mutant embryos, suggesting that the major role of FGF signals in otic induction is to establish normal patterns of gene expression in the prospective placode. Finally, examination of embryos carrying three out of the four mutant Fgf alleles revealed intermediate phenotypes, suggesting a quantitative requirement for FGF signalling in otic vesicle formation.  相似文献   

2.
The vertebrate inner ear develops from an ectodermal placode adjacent to rhombomeres 4 to 6 of the segmented hindbrain. The placode then transforms into a vesicle and becomes regionalised along its anteroposterior, dorsoventral and mediolateral axes. To investigate the role of hindbrain signals in instructing otic vesicle regionalisation, we analysed ear development in zebrafish mutants for vhnf1, a gene expressed in the caudal hindbrain during otic induction and regionalisation. We show that, in vhnf1 homozygous embryos, the patterning of the otic vesicle is affected along both the anteroposterior and dorsoventral axes. First, anterior gene expression domains are either expanded along the whole anteroposterior axis of the vesicle or duplicated in the posterior region. Second, the dorsal domain is severely reduced, and cell groups normally located ventrally are shifted dorsally, sometimes forming a single dorsal patch along the whole AP extent of the otic vesicle. Third, and probably as a consequence, the size and organization of the sensory and neurogenic epithelia are disturbed. These results demonstrate that, in zebrafish, signals from the hindbrain control the patterning of the otic vesicle, not only along the anteroposterior axis, but also, as in amniotes, along the dorsoventral axis. They suggest that, despite the evolution of inner ear structure and function, some of the mechanisms underlying the regionalisation of the otic vesicle in fish and amniotes have been conserved.  相似文献   

3.
4.
FGF signaling is required during multiple stages of inner ear development in many different vertebrates, where it is involved in induction of the otic placode, in formation and morphogenesis of the otic vesicle as well as for cellular differentiation within the sensory epithelia. In this study we have looked to define the redundant and conserved roles of FGF3, FGF8 and FGF10 during the development of the murine and avian inner ear. In the mouse, hindbrain-derived FGF10 ectopically induces FGF8 and rescues otic vesicle formation in Fgf3 and Fgf10 homozygous double mutants. Conditional inactivation of Fgf8 after induction of the placode does not interfere with otic vesicle formation and morphogenesis but affects cellular differentiation in the inner ear. In contrast, inactivation of Fgf8 during induction of the placode in a homozygous Fgf3 null background leads to a reduced size otic vesicle or the complete absence of otic tissue. This latter phenotype is more severe than the one observed in mutants carrying null mutations for both Fgf3 and Fgf10 that develop microvesicles. However, FGF3 and FGF10 are redundantly required for morphogenesis of the otic vesicle and the formation of semicircular ducts. In the chicken embryo, misexpression of Fgf3 in the hindbrain induces ectopic otic vesicles in vivo. On the other hand, Fgf3 expression in the hindbrain or pharyngeal endoderm is required for formation of the otic vesicle from the otic placode. Together these results provide important insights into how the spatial and temporal expression of various FGFs controls different steps of inner ear formation during vertebrate development.  相似文献   

5.
Fgf and Wnt signalling have been shown to be required for formation of the otic placode in vertebrates. Whereas several Fgfs including Fgf3, Fgf8 and Fgf10 have been shown to participate during early placode induction, Wnt signalling is required for specification and maintenance of the otic placode, and dorsal patterning of the otic vesicle. However, the requirement for specific members of the Wnt gene family for otic placode and vesicle formation and their potential interaction with Fgf signalling has been poorly defined. Due to its spatiotemporal expression during placode formation in the hindbrain Wnt8a has been postulated as a potential candidate for its specification. Here we have examined the role of Wnt8a during formation of the otic placode and vesicle in mouse embryos. Wnt8a expression depends on the presence of Fgf3 indicating a serial regulation between Fgf and Wnt signalling during otic placode induction and specification. Wnt8a by itself however is neither essential for placode specification nor redundantly required together with Fgfs for otic placode and vesicle formation. Interestingly however, Wnt8a and Fgf3 are redundantly required for expression of Fgf15 in the hindbrain indicating additional reciprocal interactions between Fgf and Wnt signalling. Further reduction of Wnt signalling by the inactivation of Wnt1 in a Wnt8a mutant background revealed a redundant requirement for both genes during morphogenesis of the dorsal portion of the otic vesicle.  相似文献   

6.
7.
The interplay between intrinsic and extrinsic factors is essential for the transit into different cell states during development. We have analyzed the expression and function of FGF10 and FGF-signaling during the early stages of the development of otic neurons. FGF10 is expressed in a highly restricted domain overlapping the presumptive neurogenic region of the chick otic placode. A detailed study of the expression pattern of FGF10, proneural, and neurogenic genes revealed the following temporal sequence for the onset of gene expression: FGF10>Ngn1/Delta1/Hes5>NeuroD/NeuroM. FGF10 and FGF receptor inhibition cause opposed effects on cell determination and cell proliferation. Ectopic expression of FGF10 in vivo promotes an increase in NeuroD and NeuroM expression. BrdU incorporation experiments showed that the increase in NeuroD-expressing cells is not due to an increase in cell proliferation. Inhibition of FGF receptor signaling in otic explants causes a severe reduction in Neurogenin1, NeuroD, Delta1, and Hes5 expression with no change in non-neural genes like Lmx1. However, it does not interfere with NeuroD expression within the CVG or with neuroblast delamination. The loss of proneural gene expression caused by FGF inhibition is not caused by decreased cell proliferation or by increased cell death. We suggest that FGF signaling in the otic epithelium is required for neuronal precursors to withdraw from cell division and irreversibly commit to neuronal fate.  相似文献   

8.
The inner ear develops from a patch of thickened cranial ectoderm adjacent to the hindbrain called the otic placode. Studies in a number of vertebrate species suggest that the initial steps in induction of the otic placode are regulated by members of the Fibroblast Growth Factor (FGF) family, and that inhibition of FGF signaling can prevent otic placode formation. To better understand the genetic pathways activated by FGF signaling during otic placode induction, we performed microarray experiments to estimate the proportion of chicken otic placode genes that can be up-regulated by the FGF pathway in a simple culture model of otic placode induction. Surprisingly, we find that FGF is only sufficient to induce about 15% of chick otic placode-specific genes in our experimental system. However, pharmacological blockade of the FGF pathway in cultured chick embryos showed that although FGF signaling was not sufficient to induce the majority of otic placode-specific genes, it was still necessary for their expression in vivo. These inhibitor experiments further suggest that the early steps in otic placode induction regulated by FGF signaling occur through the MAP kinase pathway. Although our work suggests that FGF signaling is necessary for otic placode induction, it demonstrates that other unidentified signaling pathways are required to co-operate with FGF signaling to induce the full otic placode program.  相似文献   

9.
The vertebrate inner ear develops from initially 'simple' ectodermal placode and vesicle stages into the complex three-dimensional structure which is necessary for the senses of hearing and equilibrium. Although the main morphological events in vertebrate inner ear development are known, the genetic mechanisms controlling them are scarcely understood. Previous studies have suggested that the otic placode is induced by signals from the chordamesoderm and the hindbrain, notably by fibroblast growth factors (Fgfs) and Wnt proteins. Here we study the role of Fgf8 as a bona-fide hindbrain-derived signal that acts in conjunction with Fgf3 during placode induction, maintenance and otic vesicle patterning. Acerebellar (ace) is a mutant in the fgf8 gene that results in a non-functional Fgf8 product. Homozygous mutants for acerebellar (ace) have smaller ears that typically have only one otolith, abnormal semi-circular canals, and behavioral defects. Using gene expression markers for the otic placode, we find that ace/fgf8 and Fgf-signaling are required for normal otic placode formation and maintenance. Conversely, misexpression of fgf8 or Fgf8-coated beads implanted into the vicinity of the otic placode can increase ear size and marker gene expression, although competence to respond to the induction appears restricted. Cell transplantation experiments and expression analysis suggest that Fgf8 is required in the hindbrain in the rhombomere 4-6 area to restore normal placode development in ace mutants, in close neighbourhood to the forming placode, but not in mesodermal tissues. Fgf3 and Fgf8 are expressed in hindbrain rhombomere 4 during the stages that are critical for placode induction. Joint inactivation of Fgf3 and Fgf8 by mutation or antisense-morpholino injection causes failure of placode formation and results in ear-less embryos, mimicking the phenotype we observe after pharmacological inhibition of Fgf-signaling. Fgf8 and Fgf3 together therefore act during induction and differentiation of the ear placode. In addition to the early requirement for Fgf signaling, the abnormal differentiation of inner ear structures and mechanosensory hair cells in ace mutants, pharmacological inhibition of Fgf signaling, and the expression of fgf8 and fgf3 in the otic vesicle demonstrate independent Fgf function(s) during later development of the otic vesicle and lateral line organ. We furthermore addressed a potential role of endomesomerm by studying mzoep mutant embryos that are depleted of head endomesodermal tissue, including chordamesoderm, due to a lack of Nodal-pathway signaling. In these embryos, early placode induction proceeds largely normally, but the ear placode extends abnormally to midline levels at later stages, suggesting a role for the midline in restricting placode development to dorsolateral levels. We suggest a model of zebrafish inner ear development with several discrete steps that utilize sequential Fgf signals during otic placode induction and vesicle patterning.  相似文献   

10.
Specification of the otic anteroposterior axis is one of the earliest patterning events during inner ear development. In zebrafish, Hedgehog signalling is necessary and sufficient to specify posterior otic identity between the 10 somite (otic placode) and 20 somite (early otic vesicle) stages. We now show that Fgf signalling is both necessary and sufficient for anterior otic specification during a similar period, a function that is completely separable from its earlier role in otic placode induction. In lia(-/-) (fgf3(-/-)) mutants, anterior otic character is reduced, but not lost altogether. Blocking all Fgf signalling at 10-20 somites, however, using the pan-Fgf inhibitor SU5402, results in the loss of anterior otic structures and a mirror image duplication of posterior regions. Conversely, overexpression of fgf3 during a similar period, using a heat-shock inducible transgenic line, results in the loss of posterior otic structures and a duplication of anterior domains. These phenotypes are opposite to those observed when Hedgehog signalling is altered. Loss of both Fgf and Hedgehog function between 10 and 20 somites results in symmetrical otic vesicles with neither anterior nor posterior identity, which, nevertheless, retain defined poles at the anterior and posterior ends of the ear. These data suggest that Fgf and Hedgehog act on a symmetrical otic pre-pattern to specify anterior and posterior otic identity, respectively. Each signalling pathway has instructive activity: neither acts simply to repress activity of the other, and, together, they appear to be key players in the specification of anteroposterior asymmetries in the zebrafish ear.  相似文献   

11.
The widely held view that neurogenic placodes are vertebrate novelties has been challenged by morphological and molecular data from tunicates suggesting that placodes predate the vertebrate divergence. Here, we examine requirements for the development of the tunicate atrial siphon primordium, thought to share homology with the vertebrate otic placode. In vertebrates, FGF signaling is required for otic placode induction and for later events following placode invagination, including elaboration and patterning of the inner ear. We show that results from perturbation of the FGF pathway in the ascidian Ciona support a similar role for this pathway: inhibition with MEK or Fgfr inhibitor at tailbud stages in Ciona results in a larva which fails to form atrial placodes; inhibition during metamorphosis disrupts development of the atrial siphon and gill slits, structures which form where invaginated atrial siphon ectoderm apposes pharyngeal endoderm. We show that laser ablation of atrial primordium ectoderm also results in a failure to form gill slits in the underlying endoderm. Our data suggest interactions required for formation of the atrial siphon and highlight the role of atrial ectoderm during gill slit morphogenesis.  相似文献   

12.
Fgf3 has long been implicated in otic placode induction and early development of the otocyst; however, the results of experiments in mouse and chick embryos to determine its function have proved to be conflicting. In this study, we determined fgf3 expression in relation to otic development in the zebrafish and used antisense morpholino oligonucleotides to inhibit Fgf3 translation. Successful knockdown of Fgf3 protein was demonstrated and this resulted in a reduction of otocyst size together with reduction in expression of early markers of the otic placode. fgf3 is co-expressed with fgf8 in the hindbrain prior to otic induction and, strikingly, when Fgf3 morpholinos were co-injected together with Fgf8 morpholinos, a significant number of embryos failed to form otocysts. These effects were made manifest at early stages of otic development by an absence of early placode markers (pax2.1 and dlx3) but were not accompanied by effects on cell division or death. The temporal requirement for Fgf signalling was established as being between 60% epiboly and tailbud stages using the Fgf receptor inhibitor SU5402. However, the earliest molecular event in induction of the otic territory, pax8 expression, did not require Fgf signalling, indicating an inductive event upstream of signalling by Fgf3 and Fgf8. We propose that Fgf3 and Fgf8 are required together for formation of the otic placode and act during the earliest stages of its induction.  相似文献   

13.
Tunicates and vertebrates share a common ancestor that possessed cranial neurogenic placodes, thickenings in embryonic head epidermis giving rise to sensory structures. Though orthology assignments between vertebrate and tunicate placodes are not entirely resolved, vertebrate otic placodes and tunicate atrial siphon primordia are thought to be homologous based on morphology and position, gene expression, and a common signaling requirement during induction. Here, we probe key points in the morphogenesis of the tunicate atrial siphon. We show that the siphon primordium arises within a non-dividing field of lateral-dorsal epidermis. The initial steps of atrial primordium invagination are similar to otic placode invagination, but a placode-derived vesicle is never observed as for the otic vesicle of vertebrates. Rather, confocal imaging reveals an atrial opening through juvenile stages and beyond. We inject a photoactivatable lineage tracer to show that the early atrial siphon of the metamorphic juvenile, including its aperture and lining, derives from cells of the atrial placode itself. Finally, we perturb the routing of the gut to the left atrium by laser ablation and pharmacology to show that this adaptation to a sessile lifestyle depends on left-right patterning mechanisms present in the free-swimming chordate ancestor.  相似文献   

14.
Axial patterning in the vertebrate inner ear has been studied for over eighty years, and recent work has made great progress towards an understanding of the molecular mechanisms responsible for establishing asymmetries about the otic axes. Tissues extrinsic to the ear provide sources of signalling molecules that are active early in development, at or before otic placode stages, while intrinsic factors interpret these signals to establish and maintain axial pattern. Key features of dorsoventral otic patterning in amniote embryos involve Wnt and Fgf signalling from the hindbrain and Hh signalling from midline tissues (notochord and floorplate). Mutual antagonism between these pathways and their downstream targets within the otic epithelium help to refine and maintain dorsoventral axial patterning in the ear. In the zebrafish ear, the same tissues and signals are implicated, but appear to play a role in anteroposterior, rather than dorsoventral, otic patterning. Despite this paradox, conservation of mechanisms may be higher than is at first apparent.  相似文献   

15.
Currently, few factors have been identified that provide the inductive signals necessary to transform the simple otic placode into the complex asymmetric structure of the adult vertebrate inner ear. We provide evidence that Hedgehog signalling from ventral midline structures acts directly on the zebrafish otic vesicle to induce posterior otic identity. We demonstrate that two strong Hedgehog pathway mutants, chameleon (con(tf18b)) and slow muscle omitted (smu(b641)) exhibit a striking partial mirror image duplication of anterior otic structures, concomitant with a loss of posterior otic domains. These effects can be phenocopied by overexpression of patched1 mRNA to reduce Hedgehog signalling. Ectopic activation of the Hedgehog pathway, by injection of sonic hedgehog or dominant-negative protein kinase A RNA, has the reverse effect: ears lose anterior otic structures and show a mirror image duplication of posterior regions. By using double mutants and antisense morpholino analysis, we also show that both Sonic hedgehog and Tiggy-winkle hedgehog are involved in anteroposterior patterning of the zebrafish otic vesicle.  相似文献   

16.
The inner ear and cochleovestibular ganglion (CVG) derive from a specialized region of head ectoderm termed the otic placode. During embryogenesis, the otic placode invaginates into the head to form the otic vesicle (OV), the primordium of the inner ear and CVG. Non-autonomous cell signaling from the hindbrain to the OV is required for inner ear morphogenesis and neurogenesis. In this study, we show that neuroepithelial cells (NECs), including neural crest cells (NCCs), can contribute directly to the OV from the neural tube. Using Wnt1-Cre, Pax3(Cre/+) and Hoxb1(Cre/+) mice to label and fate map cranial NEC lineages, we have demonstrated that cells from the neural tube incorporate into the otic epithelium after otic placode induction has occurred. Pax3(Cre/+) labeled a more extensive population of NEC derivatives in the OV than did Wnt1-Cre. NEC derivatives constitute a significant population of the OV and, moreover, are regionalized specifically to proneurosensory domains. Descendents of Pax3(Cre/+) and Wnt1-Cre labeled cells are localized within sensory epithelia of the saccule, utricle and cochlea throughout development and into adulthood, where they differentiate into hair cells and supporting cells. Some NEC derivatives give rise to neuroblasts in the OV and CVG, in addition to their known contribution to glial cells. This study defines a dual cellular origin of the inner ear from sensory placode ectoderm and NECs, and changes the current paradigm of inner ear neurosensory development.  相似文献   

17.
18.
杨志  姚俊  曹新 《遗传》2018,40(7):515-524
内耳是感受听觉和平衡觉的复杂器官。在内耳发育过程中,成纤维生长因子(fibroblast growth factor, FGF)信号通路参与了听基板的诱导、螺旋神经节(statoacoustic ganglion, SAG)的发育以及Corti器感觉上皮的分化。FGF信号开启了内耳早期发育的基因调控网络,诱导前基板区域以及听基板的形成。正常表达的FGF信号分子可促进听囊腹侧成神经细胞的特化,但成熟SAG神经元释放的过量FGF5可抑制此过程,形成负反馈环路使SAG在稳定状态下发育。FGF20在Notch信号通路的调控下参与了前感觉上皮区域向毛细胞和支持细胞的分化过程,而内毛细胞分泌的FGF8可调控局部支持细胞分化为柱细胞。人类FGF信号通路异常可导致多种耳聋相关遗传病。此外,FGF信号通路在低等脊椎动物毛细胞自发再生以及干细胞向内耳毛细胞诱导过程中都起到了关键作用。本文综述了FGF信号通路在内耳发育调控以及毛细胞再生中的作用及其相关研究进展,以期为毛细胞再生中FGF信号通路调控机制的阐明奠定理论基础。  相似文献   

19.
An orthologue of the mouse homeobox gene Nkx5-1 was cloned and characterized in the zebrafish. As in the mouse and chick, the zebrafish Nkx5-1 gene is expressed in the ear placode and vesicle and in cells forming the vestibulo-acoustic ganglion. In addition, a novel expression domain, the lateral line, appears in the zebrafish, supporting a common precursor hypothesis for these two organs. In the FGF8 zebrafish mutant ace, expression of Nkx5-1 in the otic structures is diminished. The most significant reduction of zfNkx5-1 expression was observed in cells of the vestibulo-acoustic ganglion.  相似文献   

20.
The otic placode generates the auditory and vestibular sense organs and their afferent neurons; however, how auditory and vestibular fates are specified is unknown. We have generated a fate map of the otic placode and show that precursors for vestibular and auditory cells are regionally segregated in the otic epithelium. The anterior-lateral portion of the otic placode generates vestibular neurons, whereas the posterior-medial region gives rise to auditory neurons. Precursors for vestibular and auditory sense organs show the same distribution. Thus, different regions of the otic placode correspond to particular sense organs and their innervating neurons. Neurons from contiguous domains rarely intermingle suggesting that the regional organisation of the otic placode dictates positional cues to otic neurons. But, in addition, vestibular and cochlear neurogenesis also follows a stereotyped temporal pattern. Precursors from the anterior-lateral otic placode delaminate earlier than those from its medial-posterior portion. The expression of the proneural genes NeuroM and NeuroD reflects the sequence of neuroblast formation and differentiation. Both genes are transiently expressed in vestibular and then in cochlear neuroblasts, while differentiated neurons express Islet1, Tuj1 and TrkC, but not NeuroM or NeuroD. Together, our results indicate that the position of precursors within the otic placode confers identity to sensory organs and to the corresponding otic neurons. In addition, positional information is integrated with temporal cues that coordinate neurogenesis and sensory differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号