首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyphosphate is a polymer of inorganic phosphate found in both prokaryotes and eukaryotes. Polyphosphate typically accumulates in acidic, calcium‐rich organelles known as acidocalcisomes, and recent research demonstrated that vacuolar transporter chaperone 4 catalyzes its synthesis in yeast. The human pathogens Trypanosoma brucei and T. cruzi possess vacuolar transporter chaperone 4 homologs. We demonstrate that T. cruzi vacuolar transporter chaperone 4 localizes to acidocalcisomes of epimastigotes by immunofluorescence and immuno‐electron microscopy and that the recombinant catalytic region of the T. cruzi enzyme is a polyphosphate kinase. RNA interference of the T. brucei enzyme in procyclic form parasites reduced short chain polyphosphate levels and resulted in accumulation of pyrophosphate. These results suggest that this trypanosome enzyme is an important component of a polyphosphate synthase complex that utilizes ATP to synthesize and translocate polyphosphate to acidocalcisomes in insect stages of these parasites.  相似文献   

2.
Target of rapamycin (TOR) kinases are highly conserved protein kinases that integrate signals from nutrients and growth factors to coordinate cell growth and cell cycle progression. It has been previously described that two TOR kinases control cell growth in the protozoan parasite Trypanosoma brucei, the causative agent of African trypanosomiasis. Here we studied an unusual TOR-like protein named TbTOR-like 1 containing a PDZ domain and found exclusively in kinetoplastids. TbTOR-like 1 localizes to unique cytosolic granules. After hyperosmotic stress, the localization of the protein shifts to the cell periphery, different from other organelle markers. Ablation of TbTOR-like 1 causes a progressive inhibition of cell proliferation, producing parasites accumulating in the S/G2 phase of the cell cycle. TbTOR-like 1 knocked down cells have an increased area occupied by acidic vacuoles, known as acidocalcisomes, and are enriched in polyphosphate and pyrophosphate. These results suggest that TbTOR-like 1 might be involved in the control of acidocalcisome and polyphosphate metabolism in T. brucei.  相似文献   

3.
Inorganic poly P (polyphosphate) is an abundant component of acidocalcisomes of Trypanosoma brucei. In the present study we report the presence of a protein homologous with the yeast Vtc1p (vacuolar transporter chaperone 1) in T. brucei that is essential for poly P synthesis, acidocalcisome biogenesis and cytokinesis. Localization studies in a cell line expressing a TbVTC1 fused to GFP (green fluorescent protein) revealed its co-localization with the V-H+-PPase (vacuolar H+-pyrophosphatase), a marker for acidocalcisomes. Western blot analysis of acidocalcisome fractions and immunogold electron microscopy using polyclonal antibodies against a fragment of TbVTC1 confirmed the acidocalcisome localization. Ablation of TbVTC1 expression by RNA interference caused an abnormal morphology of acidocalcisomes, indicating that their biogenesis was disturbed, with a decreased pyrophosphate-driven H+ uptake and Ca2+ content, a significant decrease in the amount of poly P and a deficient response to hyposmotic stress. Ablation of TbVTC1 expression for longer periods produced marked gross morphological alterations compatible with a defect in cytokinesis, followed by cell death. Overexpression of the TbVTC1 gene caused mild alterations in growth rate, but had no perceptible effect on acidocalcisome morphology. We propose that the PP(i)-driven H+ pumping deficiency induced by ablation of TbVTC1 leads to alterations in the protonmotive force of acidocalcisomes, which results in deficient fusion or budding of the organelles, decreased H+ and Ca2+ content, and decreased synthesis of poly P. A decrease in the poly P content would lead to osmotic sensitivity and defects in cytokinesis.  相似文献   

4.
Trypanosoma brucei (T. brucei) is responsible for the fatal human disease called African trypanosomiasis, or sleeping sickness. The causative parasite, Trypanosoma, encodes soluble versions of inorganic pyrophosphatases (PPase), also called vacuolar soluble proteins (VSPs), which are localized to its acidocalcisomes. The latter are acidic membrane-enclosed organelles rich in polyphosphate chains and divalent cations whose significance in these parasites remains unclear. We here report the crystal structure of T. brucei brucei acidocalcisomal PPases in a ternary complex with Mg2+ and imidodiphosphate. The crystal structure reveals a novel structural architecture distinct from known class I PPases in its tetrameric oligomeric state in which a fused EF hand domain arranges around the catalytic PPase domain. This unprecedented assembly evident from TbbVSP1 crystal structure is further confirmed by SAXS and TEM data. SAXS data suggest structural flexibility in EF hand domains indicative of conformational plasticity within TbbVSP1.  相似文献   

5.
Polyphosphate (polyP) is an anionic polymer of orthophosphate groups linked by high energy bonds that typically accumulates in acidic, calcium-rich organelles known as acidocalcisomes. PolyP synthesis in eukaryotes was unclear until it was demonstrated that the protein named Vtc4p (vacuolar transporter chaperone 4) is a long chain polyP kinase that localizes to the yeast vacuole. Here, we report that TbVtc4 (Vtc4 ortholog of Trypanosoma brucei) encodes, in contrast, a short chain polyP kinase that localizes to acidocalcisomes. The subcellular localization of TbVtc4 was demonstrated by fluorescence and electron microscopy of cell lines expressing TbVtc4 in its endogenous locus fused to an epitope tag and by purified polyclonal antibodies against TbVtc4. Recombinant TbVtc4 was expressed in bacteria, and polyP kinase activity was assayed in vitro. The in vitro growth of conditional knock-out bloodstream form trypanosomes (TbVtc4-KO) was significantly affected relative to the parental cell line. This mutant had reduced polyP kinase activity and short chain polyP content and was considerably less virulent in mice. The wild-type phenotype was recovered when an ectopic copy of the TbVtc4 gene was expressed in the presence of doxycycline. The mutant also exhibited a defect in volume recovery under osmotic stress conditions in vitro, underscoring the relevance of polyP in osmoregulation.  相似文献   

6.
ABSTRACT. Acidocalcisomes are acidic organelles with a high concentration of phosphorus present as pyrophosphate (PPi) and polyphosphate (poly P) complexed with calcium and other cations. The acidocalcisome membrane contains a number of pumps (Ca2+‐ATPase, V‐H+‐ATPase, H+‐PPase), exchangers (Na+/H+, Ca2+/H+), and channels (aquaporins), while its matrix contains enzymes related to PPi and poly P metabolism. Acidocalcisomes have been observed in pathogenic, as well as non‐pathogenic prokaryotes and eukaryotes, e.g. Chlamydomonas reinhardtii, and Dictyostelium discoideum. Some of the potential functions of the acidocalcisome are the storage of cations and phosphorus, the participation of phosphorus in PPi and poly P metabolism, calcium homeostasis, maintenance of intracellular pH homeostasis, and osmoregulation. In addition, acidocalcisomes resemble lysosome‐related organelles (LRO) from mammalian cells in many of their properties. For example, we found that platelet dense granules, which are LROs, are very similar to acidocalcisomes. They share a similar size, acidic properties, and both contain PPi, poly P, and calcium. Recent work that indicates that they also share the system for targeting of their membrane proteins through adaptor protein 3 reinforces this concept. The fact that acidocalcisomes interact with other organelles in parasitic protists, e.g. the contractile vacuole in Trypanosoma cruzi, and other vacuoles observed in Toxoplasma gondii, suggests that these cellular compartments may be associated with the endosomal/lysosomal pathway.  相似文献   

7.

Background

The yolk of insect eggs is a cellular domain specialized in the storage of reserve components for embryo development. The reserve macromolecules are stored in different organelles and their interactions with the embryo cells are mostly unknown. Acidocalcisomes are lysosome-related organelles characterized by their acidic nature, high electron density and large content of polyphosphate bound to several cations. In this work, we report the presence of acidocalcisome-like organelles in eggs of the insect vector Rhodnius prolixus.

Methodology/Principal findings

Characterization of the elemental composition of electron-dense vesicles by electron probe X-ray microanalysis revealed a composition similar to that previously described for acidocalcisomes. Following subcellular fractionation experiments, fractions enriched in acidocalcisomes were obtained and characterized. Immunofluorescence showed that polyphosphate polymers and the vacuolar proton translocating pyrophosphatase (V-H+-PPase, considered as a marker for acidocalcisomes) are found in the same vesicles and that these organelles are mainly localized in the egg cortex. Polyphosphate quantification showed that acidocalcisomes contain a significant amount of polyphosphate detected at day-0 eggs. Elemental analyses of the egg fractions showed that 24.5±0.65% of the egg calcium are also stored in such organelles. During embryogenesis, incubation of acidocalcisomes with acridine orange showed that these organelles are acidified at day-3 (coinciding with the period of yolk mobilization) and polyphosphate quantification showed that the levels of polyphosphate tend to decrease during early embryogenesis, being approximately 30% lower at day-3 compared to day-0 eggs.

Conclusions

We found that acidocalcisomes are present in the eggs and are the main storage compartments of polyphosphate and calcium in the egg yolk. As such components have been shown to be involved in a series of dynamic events that may control embryo growth, results reveal the potential involvement of a novel organelle in the storage and mobilization of inorganic elements to the embryo cells.  相似文献   

8.
Inorganic ions such as phosphate, are essential nutrients required for a broad spectrum of cellular functions and regulation. During infection, pathogens must obtain inorganic phosphate (Pi) from the host. Despite the essentiality of phosphate for all forms of life, how the intracellular parasite Toxoplasma gondii acquires Pi from the host cell is still unknown. In this study, we demonstrated that Toxoplasma actively internalizes exogenous Pi by exploiting a gradient of Na+ ions to drive Pi uptake across the plasma membrane. The Na+-dependent phosphate transport mechanism is electrogenic and functionally coupled to a cipargarmin sensitive Na+-H+-ATPase. Toxoplasma expresses one transmembrane Pi transporter harboring PHO4 binding domains that typify the PiT Family. This transporter named TgPiT, localizes to the plasma membrane, the inward buds of the endosomal organelles termed VAC, and many cytoplasmic vesicles. Upon Pi limitation in the medium, TgPiT is more abundant at the plasma membrane. We genetically ablated the PiT gene, and ΔTgPiT parasites are impaired in importing Pi and synthesizing polyphosphates. Interestingly, ΔTgPiT parasites accumulate 4-times more acidocalcisomes, storage organelles for phosphate molecules, as compared to parental parasites. In addition, these mutants have a reduced cell volume, enlarged VAC organelles, defects in calcium storage and a slightly alkaline pH. Overall, these mutants exhibit severe growth defects and have reduced acute virulence in mice. In survival mode, ΔTgPiT parasites upregulate several genes, including those encoding enzymes that cleave or transfer phosphate groups from phosphometabolites, transporters and ions exchangers localized to VAC or acidocalcisomes. Taken together, these findings point to a critical role of TgPiT for Pi supply for Toxoplasma and also for protection against osmotic stresses.  相似文献   

9.
Toxoplasma gondii tachyzoites were fractionated by modification of an iodixanol density gradient method previously used for acidocalcisome isolation from Trypanosoma cruzi epimastigotes. Fractions were characterized using electron microscopy, x-ray microanalysis, and enzymatic markers, and it was demonstrated that the heaviest (pellet) fraction contains electron-dense vacuoles rich in phosphorus, calcium, and magnesium, as found before for acidocalcisomes. Staining with 4',6-diamidino-2-phenylindole (DAPI) indicated that poly- phosphate (polyP) was preferentially localized in this fraction together with pyrophosphate (PP(i)). Using an enzyme-based method, millimolar levels (in terms of P(i) residues) of polyP chains of less than 50 residues long and micromolar levels in polyP chains of about 700-800 residues long were found to be preferentially localized in this fraction. The fraction also contained the pyrophosphatase and polyphosphatase activities characteristic of acidocalcisomes. Western blot analysis using antibodies against proteins from micronemes, dense granules, rhoptries, and plasma membrane showed that the acidocalcisomal fraction was not contaminated by these other organelles. T. gondii polyP levels rapidly decreased upon exposure of the parasites to a calcium ionophore (ionomycin), to an inhibitor of the V-H(+)-ATPase (bafilomycin A(1)), or to the alkalinizing agent NH(4)Cl. These changes were in parallel to an increase in intracellular Ca(2+) concentration, suggesting a close association between polyP hydrolysis and Ca(2+) release from the acidocalcisome. These results provide a useful method for the isolation and characterization of acidocalcisomes, showing that they are distinct from other previously recognized organelles present in T. gondii, and provide evidence for the role of polyP metabolism in response to cellular stress.  相似文献   

10.
The survival of a eukaryotic protozoan as an obligate parasite in the interior of a eukaryotic host cell implies its adaptation to an environment with a very different ionic composition from that of its extracellular habitat. This is particularly important in the case of Ca2+, the intracellular concentration of which is 3 orders of magnitude lower than the extracellular value. Ca2+ entry across the plasma membrane is a widely recognized mechanism for Ca2+ signaling, needed for a number of intracellular processes, and obviously, it would be restricted in the case of intracellular parasites. Here we show that Trypanosoma cruzi amastigotes possess a higher Ca2+ content than the extracellular stages of the parasite. This correlates with the higher expression of a calcium pump, the gene for which was cloned and sequenced. The deduced protein product (Tca1) of this gene has a calculated molecular mass of 121,141 Da and exhibits 34 to 38% identity with vacuolar Ca2+-ATPases of Saccharomyces cerevisiae and Dictyostelium discoideum, respectively. The tca1 gene suppresses the Ca2+ hypersensitivity of a mutant of S. cerevisiae that has a defect in vacuolar Ca2+ accumulation. Indirect immunofluorescence and immunoelectron microscopy analysis indicate that Tca1 colocalizes with the vacuolar H+-ATPase to the plasma membrane and to intracellular vacuoles of T. cruzi. These vacuoles were shown to have the same size and distribution as the calcium-containing vacuoles identified by the potassium pyroantimoniate-osmium technique and as the electron-dense vacuoles observed in whole unfixed parasites by transmission electron microscopy and identified in a previous work (D. A. Scott, R. Docampo, J. A. Dvorak, S. Shi, and R. D. Leapman, J. Biol. Chem. 272:28020–28029, 1997) as being acidic and possessing a high calcium content (i.e., acidocalcisomes). Together, these results suggest that acidocalcisomes are distinct from other previously recognized organelles present in these parasites and underscore the ability of intracellular parasites to adapt to the hostile environment of their hosts.  相似文献   

11.
Cation–Cl? cotransporters (CCCs) are integral membrane proteins which catalyze the coordinated symport of Cl? with Na+ and/or K+ ions in plant and mammalian cells. Here we describe the first Saccharomyces cerevisiae CCC protein, encoded by the YBR235w open reading frame. Subcellular localization studies showed that this yeast CCC is targeted to the vacuolar membrane. Deletion of the YBR235w gene in a salt-sensitive strain (lacking the plasma-membrane cation exporters) resulted in an increased sensitivity to high KCl, altered vacuolar morphology control and decreased survival upon hyperosmotic shock. In addition, deletion of the YBR235w gene in a mutant strain deficient in K+ uptake produced a significant growth advantage over the parental strain under K+-limiting conditions, and a hypersensitivity to the exogenous K+/H+ exchanger nigericin. These results strongly suggest that we have identified a novel yeast vacuolar ion transporter mediating a K+–Cl? cotransport and playing a role in vacuolar osmoregulation. Considering its identified function, we propose to refer to the yeast YBR235w gene as VHC1 (vacuolar protein homologous to CCC family 1).  相似文献   

12.
Increasing evidence indicates that the Trypanosoma brucei flagellum (synonymous with cilium) plays important roles in host-parasite interactions. Several studies have identified virulence factors and signaling proteins in the flagellar membrane of bloodstream-stage T. brucei, but less is known about flagellar membrane proteins in procyclic, insect-stage parasites. Here we report on the identification of several receptor-type flagellar adenylate cyclases (ACs) that are specifically upregulated in procyclic T. brucei parasites. Identification of insect stage-specific ACs is novel, as previously studied ACs were constitutively expressed or confined to bloodstream-stage parasites. We show that procyclic stage-specific ACs are glycosylated, surface-exposed proteins that dimerize and possess catalytic activity. We used gene-specific tags to examine the distribution of individual AC isoforms. All ACs examined localized to the flagellum. Notably, however, while some ACs were distributed along the length of the flagellum, others specifically localized to the flagellum tip. These are the first transmembrane domain proteins to be localized specifically at the flagellum tip in T. brucei, emphasizing that the flagellum membrane is organized into specific subdomains. Deletion analysis reveals that C-terminal sequences are critical for targeting ACs to the flagellum, and sequence comparisons suggest that differential subflagellar localization might be specified by isoform-specific C termini. Our combined results suggest insect stage-specific roles for a subset of flagellar adenylate cyclases and support a microdomain model for flagellar cyclic AMP (cAMP) signaling in T. brucei. In this model, cAMP production is compartmentalized through differential localization of individual ACs, thereby allowing diverse cellular responses to be controlled by a common signaling molecule.  相似文献   

13.
The acidocalcisome is an acidic calcium store in trypanosomatids with a vacuolar-type proton-pumping pyrophosphatase (V-H(+)-PPase) located in its membrane. In this paper, we describe a new method using iodixanol density gradients for purification of the acidocalcisome from Trypanosoma cruzi epimastigotes. Pyrophosphatase assays indicated that the isolated organelle was at least 60-fold purified compared with the large organelle (10,000 x g) fraction. Assays for other organelles generally indicated no enrichment in the acidocalcisome fraction; glycosomes were concentrated 5-fold. Vanadate-sensitive ATP-driven Ca(2+) uptake (Ca(2+)-ATPase) activity was detectable in the isolated acidocalcisome, but ionophore experiments indicated that it was not acidic. However, when pyrophosphate was added, the organelle acidified, and the rate of Ca(2+) uptake increased. Use of the indicator Oxonol VI showed that V-H(+)-PPase activity generated a membrane potential. Use of sulfate or nitrate in place of chloride in the assay buffer did not affect V-H(+)-PPase activity, but there was less activity with gluconate. Organelle acidification was countered by the chloride/proton symport cycloprogidiosin. No vacuolar H(+)-ATPase activity was detectable in isolated acidocalcisomes. However, immunoblots showed the presence of at least a membrane-bound V-H(+)-ATPase subunit, while experiments employing permeabilized epimastigotes suggested that vacuolar H(+)-ATPase and V-H(+)-PPase activities are present in the same Ca(2+)-containing compartment.  相似文献   

14.
15.
Feng-Jun Li  Cynthia Y He 《Autophagy》2014,10(11):1978-1988
Lysosomes play important roles in autophagy, not only in autophagosome degradation, but also in autophagy initiation. In Trypanosoma brucei, an early divergent protozoan parasite, we discovered a previously unappreciated function of the acidocalcisome, a lysosome-related organelle characterized by acidic pH and large content of Ca2+ and polyphosphates, in autophagy regulation. Starvation- and chemical-induced autophagy is accompanied with acidocalcisome acidification, and blocking the acidification completely inhibits autophagosome formation. Blocking acidocalcisome biogenesis by depleting the adaptor protein-3 complex, which does not affect lysosome biogenesis or function, also inhibits autophagy. Overall, our results support the role of the acidocalcisome, a conserved organelle from bacteria to human, as a relevant regulator in autophagy.  相似文献   

16.
In contrast to animal cells, the inositol 1,4,5-trisphosphate receptor of Trypanosoma cruzi (TcIP3R) localizes to acidocalcisomes instead of the endoplasmic reticulum. Here, we present evidence that TcIP3R is a Ca2+ release channel gated by IP3 when expressed in DT40 cells knockout for all vertebrate IP3 receptors, and is required for Ca2+ uptake by T. cruzi mitochondria, regulating pyruvate dehydrogenase dephosphorylation and mitochondrial O2 consumption, and preventing autophagy. Localization studies revealed its co-localization with an acidocalcisome marker in all life cycle stages of the parasite. Ablation of TcIP3R by CRISPR/Cas9 genome editing caused: a) a reduction in O2 consumption rate and citrate synthase activity; b) decreased mitochondrial Ca2+ transport without affecting the membrane potential; c) increased ammonia production and AMP/ATP ratio; d) stimulation of autophagosome formation, and e) marked defects in growth of culture forms (epimastigotes) and invasion of host cells by infective stages (trypomastigotes). Moreover, TcIP3R overexpressing parasites showed decreased metacyclogenesis, trypomastigote host cell invasion and intracellular amastigote replication. In conclusion, the results suggest a modulatory activity of TcIP3R-mediated acidocalcisome Ca2+ release on cell bioenergetics in T. cruzi.  相似文献   

17.
Growth of Leishmania mexicana amazonensis promastigotes in different culture media resulted in structurally and chemically different acidocalcisomes. When grown in SDM-79 medium, the promastigotes showed large spherical acidocalcisomes of up to 1.2 m diameter distributed throughout the cell. X-ray microanalysis and elemental mapping of the organelles showed large amounts of oxygen, phosphorus, sodium, potassium, magnesium, calcium, and zinc. Immunofluorescence microscopy using antisera raised against a peptide sequence of the vacuolar-type proton pyrophosphatase of Arabidopsis thaliana that is conserved in the Leishmania enzyme, indicated localization in acidocalcisomes. When cells were transferred to Warrens medium, the acidocalcisomes transformed from spherical into branched tubular organelles. The labeling pattern of the vacuolar proton-pyrophosphatase, considered as a marker for the organelle, changed accompanying the structural changes of the acidocalcisomes, and the enzyme showed an apparently lower proton-transporting activity when measured in digitonin-permeabilized promastigotes. X-ray microanalysis and elemental mapping of these structures revealed the additional presence of iron. Together, the results reveal that the morphology and composition of acidocalcisomes are greatly influenced by the culture conditions.Electronic Supplementary Material Supplementary material is available in the online version of this article at  相似文献   

18.
Fluctuations in intracellular calcium levels generate signalling events and regulate different cellular processes. Whilst the implication of Ca2+ in plant responses during arbuscular mycorrhiza (AM) interactions is well documented, nothing is known about the regulation or role of this secondary messenger in the fungal symbiont. The spatio-temporal expression pattern of putatively Ca2+-related genes of Glomus intraradices BEG141 encoding five proteins involved in membrane transport and one nuclear protein kinase, was investigated during the AM symbiosis. Expression profiles related to successful colonization of host roots were observed in interactions of G. intraradices with roots of wild-type Medicago truncatula (line J5) compared to the mycorrhiza-defective mutant dmi3/Mtsym13. Symbiotic fungal activity was monitored using stearoyl-CoA desaturase and phosphate transporter genes. Laser microdissection based-mapping of fungal gene expression in mycorrhizal root tissues indicated that the Ca2+-related genes were differentially upregulated in arbuscules and/or in intercellular hyphae. The spatio-temporal variations in gene expression suggest that the encoded proteins may have different functions in fungal development or function during symbiosis development. Full-length cDNA obtained for two genes with interesting expression profiles confirmed a close similarity with an endoplasmic reticulum P-type ATPase and a Vcx1-like vacuolar Ca2+ ion transporter functionally characterized in other fungi and involved in the regulation of cell calcium pools. Possible mechanisms are discussed in which Ca2+-related proteins G. intraradices BEG141 may play a role in mobilization and perception of the intracellular messenger by the AM fungus during symbiotic interactions with host roots.  相似文献   

19.
Acidocalcisomes are acidic calcium stores found in diverse organisms, being conserved from bacteria to humans. They possess an acidic matrix that contains several cations bound to phosphates, which are mainly present in the form of short and long polyphosphate chains. Their matrix is acidified through the action of proton pumps such as a vacuolar proton ATPase and a vacuolar proton pyrophosphatase. Calcium uptake occurs through a Ca(2+)/H(+) countertransporting ATPase located in the membrane of the organelle. Acidocalcisomes have been identified in a variety of microorganisms, including Apicomplexan parasites such as Plasmodium and Eimeria species, and in Toxoplasma gondii. We report the purification and characterization of an acidocalcisome fraction from T. gondii tachyzoites after subcellular fractionation and further discontinuous iodixanol gradient purification. Proton and calcium transport activities in the fraction were characterized by fluorescence microscopy and spectrophotometric methods using acridine orange and arsenazo III, respectively. This work will facilitate the understanding of the function of acidocalcisomes in Apicomplexan parasites, as we can now isolate highly purified fractions that could be used for proteomic analysis to find proteins that may clarify the biogenesis of these organelles.  相似文献   

20.
Transmembrane proteins translocate cotranslationally in the endoplasmic reticulum (ER) membrane and traffic as vesicular cargoes, via the Golgi, in their final membrane destination. Misfolding in the ER leads to protein degradation basically through the ERAD/proteasome system. Here, we use a mutant version of the purine transporter UapA (ΔR481) to show that specific misfolded versions of plasma membrane cargoes undergo vacuolar turnover prior to localization in the plasma membrane. We show that non‐endocytic vacuolar turnover of ΔR481 is dependent on BsdABsd2, an ER transmembrane adaptor of HulARsp5 ubiquitin ligase. We obtain in vivo evidence that BsdABsd2 interacts with HulARsp5 and ΔR481, primarily in the ER. Importantly, accumulation of ΔR481 in the ER triggers delivery of the selective autophagy marker Atg8 in vacuoles along with ΔR481. Genetic block of autophagy (atg9Δ, rabOts) reduces, but does not abolish, sorting of ΔR481 in the vacuoles, suggesting that a fraction of the misfolded transporter might be redirected for vacuolar degradation via the Golgi. Our results support that multiple routes along the secretory pathway operate for the detoxification of Aspergillus nidulans cells from misfolded membrane proteins and that BsdA is a key factor for marking specific misfolded cargoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号