首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PISTILLATA (PI) is a floral homeotic B function gene in Arabidopsis and together with the other B function gene, APETALA3 (AP3), is involved in specifying petal and stamen identities. The expression of PI and AP3 is under similar developmental control. The initiation of AP3 and PI expression is at least partly caused by the floral meristem identity gene LEAFY, but the maintenance of AP3 and PI expression involves an autoregulatory loop requiring the activity of both genes. PI and AP3 are MADS domain proteins that form, and appear to function as, a heterodimer. AP3/PI binds in vitro to a sequence motif, CC(A/T)6GG, a MADS domain protein consensus binding site also known as the CArG box. We identified a 481-bp PI promoter region that confers both the initiation and the maintenance of PI expression patterns. We further dissected the promoter and identified minimal regions responsible for the AP3/PI-dependent expression. No CArG box is present in these minimal regions, suggesting that either AP3/PI does not bind directly to the PI promoter for the maintenance control, or that it requires additional factors to bind to the PI promoter. Our results suggest that the mechanisms of regulation of the two B function genes, AP3 and PI, are different, because CArG boxes are present in the AP3 promoter and are necessary for the AP3 feedback control. Received: 1 March 2000 / Revision accepted: 15 June 2000  相似文献   

2.
In many flowering plants, flowers consist of two peripheral organs, sepals and petals, occurring in outer two whorls, and two inner reproductive organs, stamens and carpels. These organs are arranged in a concentric pattern in a floral meristem, and the organ identity is established by the combined action of floral homeotic genes expressed along the whorls. Floral organ primordia arise at fixed positions in the floral meristem within each whorl. The RABBIT EARS (RBE) gene is transcribed in the petal precursor cells and primordia, and regulates petal initiation and early growth in Arabidopsis thaliana. We investigated the spatial and temporal expression pattern of a RBE protein fused to the green fluorescent protein (GFP). Expression of the GFP:RBE fusion gene under the RBE cis-regulatory genomic fragment rescues the rbe petal defects, indicating that the fusion protein is functional. The GFP signal is located to the cells where RBE is transcribed, suggesting that RBE function is cell-autonomous. Ectopic expression of GFP:RBE under the APETALA1 promoter causes the homeotic conversion of floral organs, resulting in sterile flowers. In these plants, the class B homeotic genes APETALA3 and PISTILLATA are down-regulated, suggesting that the restriction of the RBE expression to the petal precursor cells is crucial for flower development.  相似文献   

3.
4.
5.
Orchidaceae are an excellent model to examine perianth development because of their sophisticated floral architecture. In this study, we identified 24 APETALA3 (AP3)-like and 13 PISTILLA (PI)-like genes from 11 species of orchids and characterized them into four AP3- and two PI-duplicated homologs. The first duplication event in AP3 homologs occurring in the early evolutionary history of the Orchidaceae gave rise to AP3A and AP3B clades. Further duplication events resulted in four subclades, namely AP3A1, AP3A2, AP3B1 and AP3B2, during the evolution of Orchidaceae. The AP3 paralogous genes were expressed throughout inflorescence and floral bud development. From the in situ hybridization results, we noticed that the transition timings from ubiquitous to constrained expression in floral organs for both clades are different. The transition point of expression of the AP3A clade (clades 3 and 4) was at the late floral organ primordia stage. In contrast, that for the AP3B clade (clades 1 and 2) was not observed until the late inflorescence and floral bud stages. In addition, the AP3 orthologous genes revealed diverse expression patterns in various species of orchids, whereas the PI homologs were uniformly expressed in all floral whorls. AP3A2 orthologs play a noticeable role in lip formation because of their exclusive expression in the lip. Further evidence comes from the ectopic expression of AP3A2 detected in the lip-like petals extending from the lip in four sets of peloric mutants. Finally, a Homeotic Orchid Tepal (HOT) model is proposed, in which dualistic characters of duplicated B-class MADS-box genes are involved in orchid perianth development and growth.  相似文献   

6.
Luo H  Chen S  Jiang J  Chen Y  Chen F  Teng N  Yin D  Huang C 《Plant cell reports》2011,30(10):1909-1918
The floral organs of typical eudicots such as Arabidopsis thaliana are arranged in four characteristic whorls, namely the sepal, petal, stamen and carpel, and the “ABC” floral organ identity model has been based on this arrangement. However, the floral organs in most basal angiosperms are spirally arranged with a gradual transition from the inside to outside, and an alternative model referred to as “fading borders” was developed to take account of this. The flower morphology of the water lily was tested against the “fading borders” model by determining the expression profile of the six primary floral organ identity genes AP2, AGL6, AP3, PI, AG and SEP1 in two cultivars showing contrasting floral morphology. In addition, to get accurate floatation of the genes expression level from outer to inner, we divided the floral organs into eight whorls according to morphological features. All these genes were expressed throughout all whorls of the flower, but their expression level changed gradually from the outside of the flower to its inside. This pattern was consistent with the “fading borders” model.  相似文献   

7.
8.
9.
10.
蝴蝶兰PhalPI基因的克隆及在花器官突变体中的表达分析   总被引:1,自引:0,他引:1  
为深入研究兰科植物花器官发育的调控机理,从蝴蝶兰花瓣中克隆了一个B类MADS-box转录因子PhalPI(GenBank登录号为KY020416)。序列分析表明,该基因的cDNA全长为944 bp,含完整的开放阅读框,可编码210个氨基酸,属于BGLO/PI蛋白家族,与蝴蝶兰属的PhPI10和PeMADS6基因关系最近;表达模式分析表明,PhalPI基因在生殖器官中表达,在营养器官中不表达,在授粉后的子房中,该基因的表达水平降低。在5种花器官突变体中,PhalPI基因在萼片唇瓣化突变体的萼片和蕊柱中表达水平明显升高;在雄蕊花瓣化突变体的萼片和侧瓣中表达水平降低,在其唇瓣和蕊柱中显著升高;在侧瓣合柱化突变体的蕊柱中,PhalPI基因的表达也发生了显著升高;PhalPI基因表达的改变与花器官形态的突变相关;而在侧瓣唇瓣化和侧瓣花药化突变体中,PhalPI基因的表达水平没有变化。推测该基因在决定蝴蝶兰侧瓣和唇瓣的发育中起重要的调控作用。  相似文献   

11.
12.
13.
14.
15.
G N Drews  J L Bowman  E M Meyerowitz 《Cell》1991,65(6):991-1002
We characterized the distribution of AGAMOUS (AG) RNA during early flower development in Arabidopsis. Mutations in this homeotic gene cause the transformation of stamens to petals in floral whorl 3 and of carpels to another ag flower in floral whorl 4. We found that AG RNA is present in the stamen and carpel primordia but is undetectable in sepal and petal primordia throughout early wild-type flower development, consistent with the mutant phenotype. We also analyzed the distribution of AG RNA in apetela2 (ap2) mutant flowers. AP2 is a floral homeotic gene that is necessary for the normal development of sepals and petals in floral whorls 1 and 2. In ap2 mutant flowers, AG RNA is present in the organ primordia of all floral whorls. These observations show that the expression patterns of the Arabidopsis floral homeotic genes are in part established by regulatory interactions between these genes.  相似文献   

16.
The floral organ morphogenesis of the apetalous flower mutant Apet33-10 in Brassica napus was investigated and the result showed that all the floral organ morphogenesis was normal except that petal primordium was not observed during flower development. Eighteen genes were found to be down regulated in early floral buds (less than 200 μm in length) of Apet33-10 at the stage of floral organ initiation by means of suppressive subtraction hybridization (SSH) and RT-PCR. These genes were involved in petal identity, calcium iron signal transduction, mRNA processing, protein synthesis and degradation, construction of cytoskeleton, hydrogen transportation, nucleic acid binding, alkaloid biosynthesis and unknown function. Three overall coding region cDNAs of APETALA3 (AP3) gene, BnAP3-2, BnAP3-3 and BnAP3-4 were obtained by RT-PCR, respectively. Real-time quantitative PCR analysis showed that the expression ratio among BnAP3-2, BnAP3-3 and BnAP3-4 was 3.67:3.68:1 in early floral buds of wild type Pet33-10. The expression level of BnAP3-2, BnAP3-3 and BnAP3-4 in early floral buds of Apet33-10 was down-regulated to 36.6, 28.3 and 66.8% with the comparison of that of wild type, respectively, and the overall expression level of AP3 genes in apetalous mutant amounted to 45.0% of that in wild type. The difference in the expression level of each AP3 gene in stamen between apetalous and wild type lines was not significant. It is suggested that lower abundant expression of AP3 genes during the early flower development might be enough for stamen primordium initiation, but not enough for petal primordium initiation in the apetalous line Apet33-10. Y.T. Zhou and H.Y. Wang are committed as the first author.  相似文献   

17.
18.
19.
Growth of lateral organs is a complex mechanism that starts with formation of lateral primordia.Basal developmental programs like polarity, organ identity and environmental cues influence the final organ size achieved via coordinated cell division and expansion. recent evidence shows that the precise balance between these two processes, known as compensation mechanisms, seems to be influenced by the identity of the organ. Furthermore, studies of mutants affected in floral organ size suggest the existence of developmental compartments within different floral whorls that show distinct compensation behaviors.Key words: Antirrhinum majus, cell division, cell expansion, COMPACTA ÄHNLICH, compensation, floral size, FORMOSA, NITIDA, organ identity  相似文献   

20.
Alpinia genus are known generally as ginger–lilies for showy flowers in the ginger family, Zingiberaceae, and their floral morphology diverges from typical monocotyledon flowers. However, little is known about the functions of ginger MADS–box genes in floral identity. In this study, four AP1/AGL9 MADS–box genes were cloned from Alpinia hainanensis, and protein–protein interactions (PPIs) and roles of the four genes in floral homeotic conversion and in floral evolution are surveyed for the first time. AhFUL is clustered to the AP1lineage, AhSEP4 and AhSEP3b to the SEP lineage, and AhAGL6–like to the AGL6 lineage. The four genes showed conserved and divergent expression patterns, and their encoded proteins were localized in the nucleus. Seven combinations of PPI (AhFUL–AhSEP4, AhFUL–AhAGL6–like, AhFUL–AhSEP3b, AhSEP4–AhAGL6–like, AhSEP4–AhSEP3b, AhAGL6–like–AhSEP3b, and AhSEP3b–AhSEP3b) were detected, and the PPI patterns in the AP1/AGL9 lineage revealed that five of the 10 possible combinations are conserved and three are variable, while conclusions cannot yet be made regarding the other two. Ectopic expression of AhFUL in Arabidopsis thaliana led to early flowering and floral organ homeotic conversion to sepal–like or leaf–like. Therefore, we conclude that the four A. hainanensis AP1/AGL9 genes show functional conservation and divergence in the floral identity from other MADS–box genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号