首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Many intracellular bacterial pathogens possess virulence factors that prevent detection and killing by macrophages. However, similar virulence factors in non-pathogenic bacteria are less well-characterized and may contribute to the pathogenesis of chronic inflammatory conditions such as Crohn’s disease. We hypothesize that the small heat shock proteins IbpAB, which have previously been shown to reduce oxidative damage to proteins in vitro and be upregulated in luminal non-pathogenic Escherichia strain NC101 during experimental colitis in vivo, protect commensal E. coli from killing by macrophage-derived reactive oxygen species (ROS). Using real-time PCR, we measured ibpAB expression in commensal E. coli NC101 within wild-type (wt) and ROS-deficient (gp91phox-/-) macrophages and in NC101 treated with the ROS generator paraquat. We also quantified survival of NC101 and isogenic mutants in wt and gp91phox-/- macrophages using gentamicin protection assays. Similar assays were performed using a pathogenic E. coli strain O157:H7. We show that non-pathogenic E. coli NC101inside macrophages upregulate ibpAB within 2 hrs of phagocytosis in a ROS-dependent manner and that ibpAB protect E. coli from killing by macrophage-derived ROS. Moreover, we demonstrate that ROS-induced ibpAB expression is mediated by the small E. coli regulatory RNA, oxyS. IbpAB are not upregulated in pathogenic E. coli O157:H7 and do not affect its survival within macrophages. Together, these findings indicate that ibpAB may be novel virulence factors for certain non-pathogenic E. coli strains.  相似文献   

3.
ε-Poly-l-lysine (ε-PL)2 is widely used as an antibacterial agent because of its broad antimicrobial spectrum. However, the mechanism of ε-PL against pathogens at the molecular level has not been elucidated. This study investigated the antibacterial activity and mechanism of ε-PL against Escherichia coli O157:H7 CMCC44828. Propidium monoazide-PCR test results indicated that the threshold condition of ε-PL for complete membrane lysis of E. coli O157:H7 was 10 μg/mL (90% mortality for 5 μg/mL). Further verification of the destructive effect of ε-PL on cell structure was performed by atomic force microscopy and transmission electron microscopy. Results showed a positive correlation between reactive oxygen species (ROS) 3 levels and ε-PL concentration in E. coli O157:H7 cells. Moreover, the mortality of E. coli O157:H7 was reduced when antioxidant N-acetylcysteine was added. Results from real-time quantitative PCR (RT-qPCR) 4 indicated that the expression levels of oxidative stress genes sodA and oxyR were up-regulated 4- and 16-fold, respectively, whereas virulence genes eaeA and espA were down-regulated after ε-PL treatment. Expression of DNA damage response (SOS response) 5 regulon genes recA and lexA were also affected by ε-PL. In conclusion, the antibacterial mechanism of ε-PL against E. coli O157:H7 may be attributed to disturbance on membrane integrity, oxidative stress by ROS, and effects on various gene expressions, such as regulation of oxidative stress, SOS response, and changes in virulence.  相似文献   

4.
Many studies have shown that hydrogen sulfide (H2S) is both detrimental and beneficial to animals and plants, whereas its effect on bacteria is not fully understood. Here, we report that H2S, released by sodium hydrosulfide (NaHS), significantly inhibits the growth of Escherichia coli in a dose-dependent manner. Further studies have shown that H2S treatment stimulates the production of reactive oxygen species (ROS) and decreases glutathione (GSH) levels in E. coli, resulting in lipid peroxidation and DNA damage. H2S also inhibits the antioxidative enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) and induces the response of the SoxRS and OxyR regulons in E. coli. Moreover, pretreatment with the antioxidant ascorbic acid (AsA) could effectively prevent H2S-induced toxicity in E. coli. Taken together, our results indicate that H2S exhibits an antibacterial effect on E. coli through oxidative damage and suggest a possible application for H2S in water and food processing.  相似文献   

5.
Escherichia coli O157:H7 (E. coli O157:H7) is recognized as a hazardous microorganism in the environment and for public health. The E. coli O157:H7 survival dynamics were investigated in 12 representative soils from Jiangsu Province, where the largest E. coli O157:H7 infection in China occurred. It was observed that E. coli O157:H7 declined rapidly in acidic soils (pH, 4.57 – 5.14) but slowly in neutral soils (pH, 6.51 – 7.39). The survival dynamics were well described by the Weibull model, with the calculated td value (survival time of the culturable E. coli O157:H7 needed to reach the detection limit of 100 CFU g−1) from 4.57 days in an acidic soil (pH, 4.57) to 34.34 days in a neutral soil (pH, 6.77). Stepwise multiple regression analysis indicated that soil pH and soil organic carbon favored E. coli O157:H7 survival, while a high initial ratio of Gram-negative bacteria phospholipid fatty acids (PLFAs) to Gram-positive bacteria PLFAs, and high content of exchangeable potassium inhibited E. coli O157:H7 survival. Principal component analysis clearly showed that the survival profiles in soils with high pH were different from those with low pH.  相似文献   

6.

Background

Recent studies have demonstrated that several mineral products sold for medicinal purposes demonstrate antimicrobial activity, but little is known about the physicochemical properties involved in antibacterial activity.

Methodology/Principal Findings

Using in vitro mineral suspension testing, we have identified two natural mineral mixtures, arbitrarily designated BY07 and CB07, with antibacterial activity against a broad-spectrum of bacterial pathogens. Mineral-derived aqueous leachates also exhibited antibacterial activity, revealing that chemical, not physical, mineral characteristics were responsible for the observed activity. The chemical properties essential for bactericidal activity against Escherichia coli were probed by testing antibacterial activity in the presence of metal chelators, the hydroxyl radical scavenger, thiourea, and varying pH levels. Chelation of the BY07 minerals with EDTA or desferrioxamine eliminated or reduced BY07 toxicity, respectively, suggesting a role of an acid-soluble metal species, particularly Fe3+ or other sequestered metal cations, in mineral toxicity. This conclusion was supported by NMR relaxation data, which indicated that BY07 and CB07 leachates contained higher concentrations of chemically accessible metal ions than leachates from non-bactericidal mineral samples.

Conclusions/Significance

We conclude that the acidic environment of the hydrated minerals significantly contributes to antibacterial activity by increasing the availability and toxicity of metal ions. These findings provide impetus for further investigation of the physiological effects of mineral products and their applications in complementary antibacterial therapies.  相似文献   

7.
The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased.  相似文献   

8.
9.
Cellular oxidative stress responses are caused in many ways, but especially by disease and environmental stress. After the initial burst of reactive oxygen species (ROS), the effective elimination of ROS is crucial for the survival of organisms and is mediated by antioxidant defense mechanisms. In this paper, we investigate the possible antioxidant function of Penaeus monodon Receptor for Activated C Kinase-1 (Pm-RACK1). When Pm-RACK1 was over-expressed in Escherichia coli cells or Spodoptera frugiperda (Sf9) insect cells exposed to H2O2, it significantly protected the cells from oxidative damage induced by H2O2. When recombinant Pm-RACK1 protein was expressed as a histidine fusion protein in E. coli and purified with a Ni2+-column it possessed antioxidant functions that protected DNA from metal-catalyzed oxidation. Shrimp (Penaeus vannamei) held at an alkaline pH had a much higher hepatopancreatic expression of Pm-RACK1 than in those held at pH 7.4. The exposure of shrimp to alkaline pH is also known to increase ROS production. These results provide strong evidence that Pm-RACK1 can participate in the shrimp antioxidant response induced by the formation of ROS.  相似文献   

10.
Despite the wide range of available antibiotics, food borne bacteria demonstrate a huge spectrum of resistance. The current study aims to use natural components such as essential oils (EOs), chitosan, and nano-chitosan that have very influential antibacterial properties with novel technologies like chitosan solution/film loaded with EOs against multi-drug resistant bacteria. Two strains of Escherichia coli O157:H7 and three strains of Listeria monocytogenes were used to estimate antibiotics resistance. Ten EOs and their mixture, chitosan, nano-chitosan, chitosan plus EO solutions, and biodegradable chitosan film enriched with EOs were tested as antibacterial agents against pathogenic bacterial strains. Results showed that E. coli O157:H7 51,659 and L. monocytogenes 19,116 relatively exhibited considerable resistance to more than one single antibiotic. Turmeric, cumin, pepper black, and marjoram did not show any inhibition zone against L. monocytogenes; Whereas, clove, thyme, cinnamon, and garlic EOs exhibited high antibacterial activity against L. monocytogenes with minimum inhibitory concentration (MIC) of 250–400 μl 100?1 ml and against E. coli O157:H7 with an MIC of 350–500 μl 100?1 ml, respectively. Among combinations, clove, and thyme EOs showed the highest antibacterial activity against E. coli O157:H7 with MIC of 170 μl 100?1 ml, and the combination of cinnamon and clove EOs showed the strongest antibacterial activity against L. monocytogenes with an MIC of 120 μl 100?1 ml. Both chitosan and nano-chitosan showed a promising potential as an antibacterial agent against pathogenic bacteria as their MICs were relatively lower against L. monocytogenes than for E. coli O157:H7. Chitosan combined with each of cinnamon, clove, and thyme oil have a more effective antibacterial activity against L. monocytogenes and E. coli O157:H7 than the mixture of oils alone. Furthermore, the use of either chitosan solution or biodegradable chitosan film loaded with a combination of clove and thyme EOs had the strongest antibacterial activity against L. monocytogenes and E. coli O157:H7. However, chitosan film without EOs did not exhibit an inhibition zone against the tested bacterial strains.  相似文献   

11.
12.
Repeated heating and cooling in lethal (2–52°C) and nonlethal (2–37°C) temperature ranges resulted in cell death of Escherichia coli B/r and E. coli BS?1 suspended in 0.01 M phosphate buffer, pH 7.0 at varying osmotic pressure, but not in cow’s milk. The lethal effect increased with the rate of heating and cooling and with increasing suspension media tonicity; it may be caused by the temperature destabilization of cellular osmotic homeostasis.  相似文献   

13.
Current exanimation reports, green fabrication of silver doped TiO2 nanoparticles (Ag/TiO2) using aqueous extract of Acacia nilotica as bio-reductant and assess its potential as antimicrobial and anticancer agent. The obtained spherical Ag/TiO2 were characterized by various analytical techniques including FTIR, (XRD), (FE-SEM EDS), and (TEM). Synthesized Ag/TiO2 demonstrated broad spectrum antibacterial and anticandidal activity. The order of antimicrobial activity was found to be E. coli > C. albicans > MRSA > P. aeruginosa. In addition, cytotoxicity and oxidative stress of Ag/TiO2 nanoparticles in (MCF-7) cells was also investigated. Outcomes of MTT assay showed concentration dependent reduction in cell viability. Further, synthesized NPs reduced the level of glutathione, induced ROS generation and lipid peroxidation in the treated cells. Therefore, it is envisaged that these spherical nanoparticles may be exploited in drug delivery, pharmaceutical, and food industry.  相似文献   

14.
Persistence of Escherichia coli O157:H7 and its mutants in soils   总被引:1,自引:0,他引:1  
Ma J  Ibekwe AM  Yi X  Wang H  Yamazaki A  Crowley DE  Yang CH 《PloS one》2011,6(8):e23191
The persistence of Shiga toxin-producing E. coli O157:H7 in the environment poses a serious threat to public health. However, the role of Shiga toxins and other virulence factors in the survival of E. coli O157:H7 is poorly defined. The aim of this study was to determine if the virulence factors, stx 1, stx 2, stx 1–2, and eae in E. coli O157:H7 EDL933 play any significant role in the growth of this pathogen in rich media and in soils. Isogenic deletion mutants that were missing one of four virulence factors, stx 1, stx 2, stx 1–2, and eae in E. coli O157:H7 EDL933 were constructed, and their growth in rich media and survival in soils with distinct texture and chemistry were characterized. The survival data were successfully analyzed using Double Weibull model, and the modeling parameters of the mutant strains were not significantly different from those of the wild type. The calculated Td (time needed to reach the detection limit, 100 CFU/g soil) for loamy sand, sandy loam, and silty clay was 32, 80, and 110 days, respectively. It was also found that Td was positively correlated with soil structure (e.g. clay content), and soil chemistry (e.g. total nitrogen, total carbon, and water extractable organic carbon). The results of this study showed that the possession of Shiga toxins and intimin in E. coli O157:H7 might not play any important role in its survival in soils. The double deletion mutant of E. coli O157:H7 (stx 1 stx 2 ) may be a good substitute to use for the investigation of transport, fate, and survival of E. coli O157:H7 in the environment where the use of pathogenic strains are prohibited by law since the mutants showed the same characteristics in both culture media and environmental samples.  相似文献   

15.
Though metal ions are essential components of many cellular functions, their overexposure to organisms lead to oxidative stress through the formation of reactive oxygen species (ROS). Lipid peroxidation (LPX) is the oxidative deterioration of membrane lipids and considered as an index of oxidative stress. In the present study in vitro effect of various metals (FeCl3, FeSO4, CuSO4, CdCl2, and ZnSO4) on the lipid peroxidation of gills and hepatopancreas of Giant Freshwater prawn, Macrobrachium rosenbergii, was compared with respect to dose and duration. The results clearly indicate that among all the metals investigated, FeCl3 and CdCl2 are more potent in inducing LPX, and FeCl3 is more toxic than FeSO4 in inducing LPX in the hepatopancreas. ZnSO4 exhibits a moderate toxicity while CuSO4 is least toxic and also inhibits LPX at higher concentration. Thus results of the present investigation suggest that all the metal ions investigated in the present study are capable of inducing oxidative stress in gills and hepatopancreas of M. rosenbergii  相似文献   

16.
Reduced, transition metal cations commonly enhance oxidative damage to cells caused by hydroperoxides formed as a result of oxygen metabolism or added externally. As expected, the cations Fe2+ and Cu+ enhanced killing of Streptococcus mutans GS-5 by hydroperoxides. However, unexpectedly, they also induced lethal damage under fully anaerobic conditions in a glove box with no exposure to O2 or hydroperoxides from initial treatment with the cations. Sensitivities to anaerobic killing by Fe2+ varied among the organisms tested. The oral streptococci Streptococcus gordonii ATCC 10558, Streptococcus rattus FA-1, and Streptococcus sanguis NCTC 10904 were approximately as sensitive as S. mutans GS-5. Enterococcus hirae ATCC 9790, Actinomyces viscosus OMZ105E, and Actinomyces naeslundii WVU45 had intermediate sensitivity, while Lactobacillus casei ATCC 4646 and Escherichia coli B were insensitive. Killing of S. mutans GS-5 in response to millimolar levels of added Fe2+ occurred over a wide range of temperatures and pH. The organism was able to take up ferrous iron, but ferric reductase activity could not be detected. Chelators, uric acid, and thiocyanate were not effective inhibitors of the lethal damage. Sulfhydryl compounds, ferricyanide, and ferrocyanide were protective if added prior to Fe2+ exposure. Fe2+, but not Fe3+, acted to reduce the acid tolerance of glycolysis by intact cells of S. mutans. The reduction in acid tolerance appeared to be related directly to Fe2+ inhibition of F-ATPase, which could be assayed with permeabilized cells, isolated membranes, or F1 enzyme separated from membranes. Cu+ and Cu2+ also inhibited F-ATPase and sensitized glycolysis by intact cells to acid. All of these damaging actions occurred anaerobically and thus did not appear to involve reactive oxygen species.  相似文献   

17.
18.
BackgroundAntibiotic resistance is a global problem and there is an urgent need to augment the arsenal against pathogenic bacteria. The emergence of different drug resistant bacteria is threatening human lives to be pushed toward the pre-antibiotic era. Antimicrobial peptides (AMPs) are a host defense component against infectious pathogens in response to innate immunity. PMAP-23, an AMP derived from porcine myeloid, possesses antibacterial activity. It is currently not clear how the antibacterial activity of PMAP-23 is manifested.MethodsThe disruptive effect of nitric oxide (NO) on the catalase activity, reactive oxygen species (ROS) production, DNA oxidation and apoptosis-like death were evaluated using the NO generation inhibitor.ResultsIn this investigation, PMAP-23 generates NO in a dose dependent manner. NO deactivated catalase and this antioxidant could not protect Escherichia coli against ROS, especially hydroxyl radical. This redox imbalance was shown to induce oxidative stress, thus leading to DNA strand break. Consequently, PMAP-23 treated E. coli cells resulted in apoptosis-like death. These physiological changes were inhibited when NO generation was inhibited. In the ΔdinF mutant, the levels of DNA strand break sharply increased and the cells were more sensitive to PMAP-23 than wild type.ConclusionOur data strongly indicates that PMAP-23 mediates apoptosis-like cell death through affecting intracellular NO homeostasis. Furthermore, our results demonstrate that DinF functioned in protection from oxidative DNA damage.General significanceThe identification of PMAP-23 antibacterial activity and mechanism provides a promising antibacterial agent, supporting the role of NO in cell death regulation.  相似文献   

19.
Response and defense systems against reactive oxygen species (ROS) contribute to the remarkable resistance of Deinococcus radiodurans to oxidative stress induced by oxidants or radiation. However, mechanisms involved in ROS response and defense systems of D. radiodurans are not well understood. Fur family proteins are important in ROS response. Only a single Fur homolog is predicted by sequence similarity in the current D. radiodurans genome database. Our bioinformatics analysis demonstrated an additional guanine nucleotide in the genome of D. radiodurans that is not in the database, leading to the discovery of another Fur homolog DrPerR. Gene disruption mutant of DrPerR showed enhanced resistance to hydrogen peroxide (H2O2) and increased catalase activity in cell extracts. Real-time PCR results indicated that DrPerR functions as a repressor of the catalase gene katE. Meanwhile, derepression of dps (DNA-binding proteins from starved cells) gene under H2O2 stress by DrPerR point to its regulatory role in metal ions hemostasis. Thus, DrPerR might function as a Fur homolog protein which is involved in ROS response and defense. These results help clarify the complicated regulatory network that responds to ROS stress in D. radiodurans.  相似文献   

20.
In this article, a new compound H2[{Cu(HL)(H2O)}2(P2Mo5O23)]·5H2O (1) (HL = 2-acetylpyrazine thiosemicarbazone) has been synthesized and structurally characterized by single-crystal X-ray diffraction of and other detection techniques. Interestingly, the structure of 1 is different from many reported copper-based complexes, in which the [P2Mo5O23]6−, two Cu2+ ions and two HL were directly connected by covalent bands. Biological studies demonstrated that 1 indicated moderate antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and a better cytotoxicity against human hepatic cancer line (SMMC-7721) than Mitoxantrone (Mito), the current clinical anticancer drug. Besides, the antibacterial mechanisms of 1 have been studied by the membrane integrity disruption, the destructive reactive oxygen species generation (ROS), the glutathione (GSH) depletion and the depressed enzymatic activity of respiratory chain dehydrogenases (RCD). These results revealed that the combination of HL, Cu2+, [P2Mo5O23]6− shows a higher antibacterial and cytotoxic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号